Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, , 62 - 69, 13.12.2022
https://doi.org/10.21657/soilst.1218396

Öz

Kaynakça

  • Acosta, J. A., Jansen, B., Kalbitz, K., Faz, A., & Martínez-Martínez, S. (2011). Salinity increases mobility of heavy metals in soils. Chemosphere, 85(8):1318-1324. https://doi.org/10.1016/j.chemosphere.2011.07.046
  • Allen, S. E. (1989). Chemical Analysis of Ecological Materials, (second ed). Blackwell, London.
  • Angelova, V., Ivanov, K., & Ivanova, R. (2006). Heavy metal content in plants from family Lamiaceae cultivated in an industrially polluted region. Journal of Herbs, Spices & Medicinal Plants, Vol. 11(4). https://doi.org/10.1300/J044v11n04_05
  • Angelova, V. R., Ivanova, R. V., Todorov, G. M., & Ivanov, K. I. (2016). Potential of Salvia sclarea L. for phytoremediation of soils contaminated with heavy metals. World Academy of Science, Engineering and Technology International Journal of Agricultural and Biosystems Engineering, Vol:10, No:12. https://doi.org/10.5281/zenodo.1127523
  • Baker, A. J. M., McGrath, S. P., Sidoli, C. M. D., & Reeves, R. D. (1994). The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resources, Conservation and Recycling, 11(1–4):41-49. https://doi.org/10.1016/0921-3449(94)90077-9
  • Barthwal, J., Nair, S., & Kakkar, P. (2008). Heavy metal accumulation in medicinal plants collected from environmentally different sites. Biomedical and Environmental Sciences, 21: 319-324. https://doi.org/10.1016/S0895-3988(08)60049-5
  • Baysal Furtana, G., Duman, H., & Tıpırdamaz, R. (2013). Seasonal changes of inorganic and organic osmolyte content in three endemic Limonium species of Lake Tuz (Turkey). Turkish Journal of Botany, 37: 455-463. https://doi.org/10.3906/bot-1112-8
  • Baytop T (1984). Türkiye’ de Bitkiler ile Tedavi. İ.Ü. Yayınları No: 3255, İstanbul.
  • Caparros, P. G., Ozturk, M., Gul, A., Sharf Batool, T., Pirasteh-Anosheh, H., Turkyilmaz Unal, B., Altay, V., & Toderich, K. N. (2022). Halophytes have potential as heavy metal phytoremediators: A comprehensive review. Environmental and Experimental Botany, 193, 104666. https://doi.org/10.1016/j.envexpbot.2021.104666
  • Celep, F., & Dirmenci, T. (2017). Systematic and biogeographic overview of Lamiaceae in Turkey. Nat. Volatiles & Essent. Oils, 4(4): 14-27.
  • Chary, N. S., Kamala, C. T., & Raj, D. S. S. (2008). Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicology and Environmental Safety, 69(3): 513-524. https://doi.org/10.1016/j.ecoenv.2007.04.013
  • Demir, A., Baysal Furtana, G., Tekşen, M., & Tıpırdamaz, R. (2021). Determination of the heavy metal contents and the benefıt/cost analysis of Hypericum salsugineum in the Salt Lake around. Sains Malaysiana, Vol: 50, Number: 12. https://doi.org/10.17576/jsm-2021-5012-03
  • Diacu, E., Pavel, B. P., Ivanov, A. A., & Bogdan, D. (2011). Heavy metal content analysis in Salvia officinalis plants by graphite furnance atomic absorption spectrometry. U.P.B. Sci. Bull., Series B, Volume 73, Issue 3.
  • EC (Commission Regulation). 2001. 466/2001. Setting maximum levels for certain contaminants in food stuffs. Official Journal of the European Communities.
  • Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes. New Phytologist, 179: 945–963. https://doi.org/10.1111/j.1469-8137.2008.02531.x
  • Gruenwald, J., Brendler, T., & Jaenicke, C. (2004). PDR for Herbal Medicines, 3rd Edition. Medical Economics Company, 698-699, New Jersey.
  • Kılıç, D. D. (2019). Investigation of heavy metal accumulation and biomonitoring of Calepina irregularis species growing in Amasya (Turkey) province. Anatolian Journal of Botany 3(2): 44-50. https://doi.org/10.30616/ajb.516101
  • Kuşaksız, G. (2019). Rare and endemic taxa of Lamiaceae in Turkey and their threat categories. Journal of Scientific Perspectives 3(1): 69-84. https://doi.org/10.26900/jsp.3.008
  • Li, B., Wang, J., Yao, L., Meng, Y., Ma, X., Si, E., Ren, P., Yang, K., Shang, X., & Wang, H. (2019). Halophyte Halogeton glomeratus, a promising candidate for phytoremediation of heavy metal-contaminated saline soils. Plant Soil, 442:323–331. https://doi.org/10.1007/s11104-019-04152-4
  • Liang, L., Liu, W., Sun, Y., Huo, X., Li, S., & Zhou, Q. (2017). Phytoremediation of heavy metal contaminated saline soils using halophytes: current progress and future perspectives Environ. Rev., 25: 269–281. https://doi.org/10.1139/er-2016-0063
  • Manousaki, E., & Kalogerakis, N. (2011a). Halophytes—An emerging trend in phytoremediation. International Journal of Phytoremediation, 13(10):959–969. https://doi.org/10.1080/15226514.2010.532241
  • Manousaki, E., & Kalogerakis, N. (2011b). Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Ind. Eng. Chem. Res., 50(2): 656–660. https://doi.org/10.1021/ie100270x
  • Manousaki, E., Kadukova, J., Papadantonakis, N., & Kalogerakis, N. (2008). Phytoextraction and phytoexcretion of Cd by the leaves of Tamarix smyrnensis growing on contaminated non-saline and saline soils. Environ. Res., 106:326–332. https://doi.org/10.1016/j.envres.2007.04.004
  • Markert, B. (1994). Plants of Biomonitors-Potential Advantages and Problems. In: Adriano DC, Chen ES, & Yang, SS (eds), Biochemistry of Trace Elements. Science and Technology Letters, Northwood, NewYork, 601-613.
  • Meng, C., Wang, P., Hao, Z., Gao, Z., Li, Q., Gao, H., Liu, Y., Li, Q., Wang, Q., & Feng, F. (2022). Ecological and health risk assessment of heavy metals in soil and Chinese herbal medicines. Environ Geochem Health, 44:817–828. https://doi.org/10.1007/s10653-021-00978-z
  • Mensah, E., Allen, H. E., Shoji, R., Odai, S. N., Kyei-Baffour, N., Ofori, E., & Mezler, D. (2008). Cadmium (Cd) and lead (Pb) concentrations effects on yields of some vegetables due to uptake from irrigation water in Ghana. International Journal of Agricultural Research, 3(4): 243–251. https://doi.org/10.3923/ijar.2008.243.251
  • Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M (2010). Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters, 8:199-216. https://doi.org/10.1007/s10311-010-0297-8
  • Naser, H. M., Sultana, S., Mahmud, N. U., Gomes, R., & Noor, S. (2011). Heavy metal levels in vegetables with growth stage and plant species variations. Bangladesh J. Agril. Res., 36(4): 563-574. https://doi.org/10.3329/bjar.v36i4.11743
  • Nedjimi, B. (2021). Phytoremediation: a sustainable environmental technology for heavy metals decontamination. SN Applied Sciences, 3: 286. https://doi.org/10.1007/s42452-021-04301-4
  • Ozturk, A., Yarci, C., & Ozyigit, I. I. (2017). Assessment of heavy metal pollution in Istanbul using plant (Celtis australis L.) and soil assays. Biotechnology & Biotechnological Equipment, https://doi.org/10.1080/13102818.2017.1353922
  • Peng, G., Lan, W., & Pan, K. (2022). Mechanisms of metal tolerance in halophytes: A mini review. Bulletin of Environmental Contamination and Toxicology https://doi.org/10.1007/s00128-022-03487-6
  • Sezik, E., & Yeşilada, E. (1999). Uçucu Yağ Taşıyan Türk Halk İlaçları. Essential Oil. In honour of Prof. Dr. K.H.C. Baser on his 50th birthday, (Eds. N. Kırımer, A. Mat)
  • Srivastava, V., Sarkar, A., Singh, S., Singh, P., Araujo, A. S. F., & Singh, R. P. (2017). Agroecological responses of heavy metal pollution with special emphasis on soil health and plant performances. Frontiers in Environmental Science, Volume 5, Article 64. https://doi.org/10.3389/fenvs.2017.00064
  • Srivastava, S., Tandon, P. K., & Mishra, K. (2020). The toxicity and accumulation of metals in crop plants In: Mishra, K., Tandon, P. K., & Srivastava, S. (eds.) sustainable solutions for elemental deficiency and excess in crop plants, Springer Nature Singapore, 53-68
  • Tuğ, G. N., & Duman, F. (2010). Heavy metal accumulation in soils around Salt Lake in Turkey. Pakistan Journal of Botany, 42(4): 2327-2333.
  • Wang, H. L., Tian, C. Y., Jiang, L., & Wang, L. (2013). Remediation of heavy metals contaminated saline soils: A halophyte choice? Environ. Sci. Technol., 48(1): 21–22. https://doi.org/10.1021/es405052j
  • Wuana, R. A., Okieimen, F. E. (2011). Heavy metals in contaminated soils: a review ofsources, chemistry, risks and best available strategies for remediation. ISRN Ecology, 1–20. https://doi.org/10.5402/2011/402647.

Heavy metal (Cr, Cu, Ni, Pb, and Zn) contents of endemic Salvia halophila plants around Lake Tuz

Yıl 2022, , 62 - 69, 13.12.2022
https://doi.org/10.21657/soilst.1218396

Öz

Heavy metals occur naturally in ecosystems at varying concentrations. However, heavy metal sources that have emerged in present-day mainly due to human influence, i.e. industrial activities, agricultural waste, pesticides, use of fossil fuels and traffic, have included a part of heavy metals in the ecosystem. Lake Tuz, together with the entire lake surroundings, water beds and important steppe areas, was declared Turkey’s Specially Protected Area (SPA) in 2001. Our aim in this investigation was to determine the levels of heavy metals such as Chrome (Cr), Copper (Cu), Nickel (Ni), Lead (Pb) and Zinc (Zn) in endemic Salvia halophila grown in different areas of Lake Tuz. The results of the heavy metal contents analyzed at the plant were compared with the international standard levels of heavy metals. The consequences displayed that differing extents of heavy metals are accumulated in S. halophila. The results obtained differed in accordance with the collection time and localities. When the outcomes are appraised, it is achievable to say that Pb is higher than the standard values. The findings of this investigation are the first reported results for this endemic S. halophila species that grows naturally at Lake Tuz and are important as they are newly discovered results.

Kaynakça

  • Acosta, J. A., Jansen, B., Kalbitz, K., Faz, A., & Martínez-Martínez, S. (2011). Salinity increases mobility of heavy metals in soils. Chemosphere, 85(8):1318-1324. https://doi.org/10.1016/j.chemosphere.2011.07.046
  • Allen, S. E. (1989). Chemical Analysis of Ecological Materials, (second ed). Blackwell, London.
  • Angelova, V., Ivanov, K., & Ivanova, R. (2006). Heavy metal content in plants from family Lamiaceae cultivated in an industrially polluted region. Journal of Herbs, Spices & Medicinal Plants, Vol. 11(4). https://doi.org/10.1300/J044v11n04_05
  • Angelova, V. R., Ivanova, R. V., Todorov, G. M., & Ivanov, K. I. (2016). Potential of Salvia sclarea L. for phytoremediation of soils contaminated with heavy metals. World Academy of Science, Engineering and Technology International Journal of Agricultural and Biosystems Engineering, Vol:10, No:12. https://doi.org/10.5281/zenodo.1127523
  • Baker, A. J. M., McGrath, S. P., Sidoli, C. M. D., & Reeves, R. D. (1994). The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resources, Conservation and Recycling, 11(1–4):41-49. https://doi.org/10.1016/0921-3449(94)90077-9
  • Barthwal, J., Nair, S., & Kakkar, P. (2008). Heavy metal accumulation in medicinal plants collected from environmentally different sites. Biomedical and Environmental Sciences, 21: 319-324. https://doi.org/10.1016/S0895-3988(08)60049-5
  • Baysal Furtana, G., Duman, H., & Tıpırdamaz, R. (2013). Seasonal changes of inorganic and organic osmolyte content in three endemic Limonium species of Lake Tuz (Turkey). Turkish Journal of Botany, 37: 455-463. https://doi.org/10.3906/bot-1112-8
  • Baytop T (1984). Türkiye’ de Bitkiler ile Tedavi. İ.Ü. Yayınları No: 3255, İstanbul.
  • Caparros, P. G., Ozturk, M., Gul, A., Sharf Batool, T., Pirasteh-Anosheh, H., Turkyilmaz Unal, B., Altay, V., & Toderich, K. N. (2022). Halophytes have potential as heavy metal phytoremediators: A comprehensive review. Environmental and Experimental Botany, 193, 104666. https://doi.org/10.1016/j.envexpbot.2021.104666
  • Celep, F., & Dirmenci, T. (2017). Systematic and biogeographic overview of Lamiaceae in Turkey. Nat. Volatiles & Essent. Oils, 4(4): 14-27.
  • Chary, N. S., Kamala, C. T., & Raj, D. S. S. (2008). Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicology and Environmental Safety, 69(3): 513-524. https://doi.org/10.1016/j.ecoenv.2007.04.013
  • Demir, A., Baysal Furtana, G., Tekşen, M., & Tıpırdamaz, R. (2021). Determination of the heavy metal contents and the benefıt/cost analysis of Hypericum salsugineum in the Salt Lake around. Sains Malaysiana, Vol: 50, Number: 12. https://doi.org/10.17576/jsm-2021-5012-03
  • Diacu, E., Pavel, B. P., Ivanov, A. A., & Bogdan, D. (2011). Heavy metal content analysis in Salvia officinalis plants by graphite furnance atomic absorption spectrometry. U.P.B. Sci. Bull., Series B, Volume 73, Issue 3.
  • EC (Commission Regulation). 2001. 466/2001. Setting maximum levels for certain contaminants in food stuffs. Official Journal of the European Communities.
  • Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes. New Phytologist, 179: 945–963. https://doi.org/10.1111/j.1469-8137.2008.02531.x
  • Gruenwald, J., Brendler, T., & Jaenicke, C. (2004). PDR for Herbal Medicines, 3rd Edition. Medical Economics Company, 698-699, New Jersey.
  • Kılıç, D. D. (2019). Investigation of heavy metal accumulation and biomonitoring of Calepina irregularis species growing in Amasya (Turkey) province. Anatolian Journal of Botany 3(2): 44-50. https://doi.org/10.30616/ajb.516101
  • Kuşaksız, G. (2019). Rare and endemic taxa of Lamiaceae in Turkey and their threat categories. Journal of Scientific Perspectives 3(1): 69-84. https://doi.org/10.26900/jsp.3.008
  • Li, B., Wang, J., Yao, L., Meng, Y., Ma, X., Si, E., Ren, P., Yang, K., Shang, X., & Wang, H. (2019). Halophyte Halogeton glomeratus, a promising candidate for phytoremediation of heavy metal-contaminated saline soils. Plant Soil, 442:323–331. https://doi.org/10.1007/s11104-019-04152-4
  • Liang, L., Liu, W., Sun, Y., Huo, X., Li, S., & Zhou, Q. (2017). Phytoremediation of heavy metal contaminated saline soils using halophytes: current progress and future perspectives Environ. Rev., 25: 269–281. https://doi.org/10.1139/er-2016-0063
  • Manousaki, E., & Kalogerakis, N. (2011a). Halophytes—An emerging trend in phytoremediation. International Journal of Phytoremediation, 13(10):959–969. https://doi.org/10.1080/15226514.2010.532241
  • Manousaki, E., & Kalogerakis, N. (2011b). Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Ind. Eng. Chem. Res., 50(2): 656–660. https://doi.org/10.1021/ie100270x
  • Manousaki, E., Kadukova, J., Papadantonakis, N., & Kalogerakis, N. (2008). Phytoextraction and phytoexcretion of Cd by the leaves of Tamarix smyrnensis growing on contaminated non-saline and saline soils. Environ. Res., 106:326–332. https://doi.org/10.1016/j.envres.2007.04.004
  • Markert, B. (1994). Plants of Biomonitors-Potential Advantages and Problems. In: Adriano DC, Chen ES, & Yang, SS (eds), Biochemistry of Trace Elements. Science and Technology Letters, Northwood, NewYork, 601-613.
  • Meng, C., Wang, P., Hao, Z., Gao, Z., Li, Q., Gao, H., Liu, Y., Li, Q., Wang, Q., & Feng, F. (2022). Ecological and health risk assessment of heavy metals in soil and Chinese herbal medicines. Environ Geochem Health, 44:817–828. https://doi.org/10.1007/s10653-021-00978-z
  • Mensah, E., Allen, H. E., Shoji, R., Odai, S. N., Kyei-Baffour, N., Ofori, E., & Mezler, D. (2008). Cadmium (Cd) and lead (Pb) concentrations effects on yields of some vegetables due to uptake from irrigation water in Ghana. International Journal of Agricultural Research, 3(4): 243–251. https://doi.org/10.3923/ijar.2008.243.251
  • Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M (2010). Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters, 8:199-216. https://doi.org/10.1007/s10311-010-0297-8
  • Naser, H. M., Sultana, S., Mahmud, N. U., Gomes, R., & Noor, S. (2011). Heavy metal levels in vegetables with growth stage and plant species variations. Bangladesh J. Agril. Res., 36(4): 563-574. https://doi.org/10.3329/bjar.v36i4.11743
  • Nedjimi, B. (2021). Phytoremediation: a sustainable environmental technology for heavy metals decontamination. SN Applied Sciences, 3: 286. https://doi.org/10.1007/s42452-021-04301-4
  • Ozturk, A., Yarci, C., & Ozyigit, I. I. (2017). Assessment of heavy metal pollution in Istanbul using plant (Celtis australis L.) and soil assays. Biotechnology & Biotechnological Equipment, https://doi.org/10.1080/13102818.2017.1353922
  • Peng, G., Lan, W., & Pan, K. (2022). Mechanisms of metal tolerance in halophytes: A mini review. Bulletin of Environmental Contamination and Toxicology https://doi.org/10.1007/s00128-022-03487-6
  • Sezik, E., & Yeşilada, E. (1999). Uçucu Yağ Taşıyan Türk Halk İlaçları. Essential Oil. In honour of Prof. Dr. K.H.C. Baser on his 50th birthday, (Eds. N. Kırımer, A. Mat)
  • Srivastava, V., Sarkar, A., Singh, S., Singh, P., Araujo, A. S. F., & Singh, R. P. (2017). Agroecological responses of heavy metal pollution with special emphasis on soil health and plant performances. Frontiers in Environmental Science, Volume 5, Article 64. https://doi.org/10.3389/fenvs.2017.00064
  • Srivastava, S., Tandon, P. K., & Mishra, K. (2020). The toxicity and accumulation of metals in crop plants In: Mishra, K., Tandon, P. K., & Srivastava, S. (eds.) sustainable solutions for elemental deficiency and excess in crop plants, Springer Nature Singapore, 53-68
  • Tuğ, G. N., & Duman, F. (2010). Heavy metal accumulation in soils around Salt Lake in Turkey. Pakistan Journal of Botany, 42(4): 2327-2333.
  • Wang, H. L., Tian, C. Y., Jiang, L., & Wang, L. (2013). Remediation of heavy metals contaminated saline soils: A halophyte choice? Environ. Sci. Technol., 48(1): 21–22. https://doi.org/10.1021/es405052j
  • Wuana, R. A., Okieimen, F. E. (2011). Heavy metals in contaminated soils: a review ofsources, chemistry, risks and best available strategies for remediation. ISRN Ecology, 1–20. https://doi.org/10.5402/2011/402647.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ziraat, Veterinerlik ve Gıda Bilimleri
Bölüm Research Articles
Yazarlar

Gökçen Baysal Furtana Bu kişi benim 0000-0001-6931-2430

Aynur Demir Bu kişi benim 0000-0002-7856-2789

Mehtap Tekşen Bu kişi benim 0000-0003-0191-4229

Adeleh Rashıdı Bu kişi benim 0000-0002-4831-7539

Rukiye Tıpırdamaz Bu kişi benim 0000-0003-2322-6646

Yayımlanma Tarihi 13 Aralık 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Baysal Furtana, G., Demir, A., Tekşen, M., Rashıdı, A., vd. (2022). Heavy metal (Cr, Cu, Ni, Pb, and Zn) contents of endemic Salvia halophila plants around Lake Tuz. Soil Studies, 11(2), 62-69. https://doi.org/10.21657/soilst.1218396