Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, , 62 - 69, 21.12.2023
https://doi.org/10.21657/soilst.1407937

Öz

Kaynakça

  • Adhikari, D., Itoh, K., & Suyama, K. (2013). Genetic diversity of common bean (Phaseolus vulgaris L.) nodulating rhizobia in Nepal. Plant and soil, 368, 341-353. https://doi.org/10.1007/s11104-012-1518-7.
  • Akter, M. S., Nahar, N., Begum, A., & Akhter, H. (2016). Molecular characterization of rhizobial isolates from Sesbania bispinoa. Bioresearch Communications. 2(1), 164-169.
  • Arachis hypogaea Grown under Stress Environment. Sustainability, 12, 6259. https://doi.org/10.3390/su12156259.
  • Baginsky, C., Brito, B., Scherson, R., Pertuzé, R., Seguel, O., & Cañete, A., et al. (2014). Genetic diversity of Rhizobium from nodulating beans grown in a variety of Mediterranean climate soils of Chile. Archives of Microbiology. 197, 419–429. https://doi.org/10.1007/s00203-014-1067-y .
  • Bambara, S., & Ndakidemi, P. A. (2010). Effect of Rhizobium inoculation, lime and molybdenum on nitrogen fixation of nodulated Phaseolus vulgaris L. African. Journal of Microbiology Research, 4: 682-696. https://doi.org/10.5897/AJMR.
  • Batista, L., Irisarri, P., Rebuffo, M., Cuitiño, M. J., Sanjuán, J., & Monza, J. (2015). Nodulation competitiveness as a requisite for improved rhizobial inoculants of Trifolium pratense. Biology and Fertility of Soils 51, 11–20. https://doi.org/10.1007/s00374-014- 0946-3.
  • Beck, D. P., Materon, L. A., & Afandi, F. (1993). Practical Rhizobium-Legume Technology Manual. Aleppo: International Center for Agricultural Research in the Dry Areas (ICARDA).
  • de Lajudie, P., Laurent-Fulele, E., Willems, A., Torek, U., Coopman, R., Collins, M.D., Kersters, K., Dreyfus, B., & Gillis, M. (1998). Allorhizobium undicola gen. nov., sp. nov., nitrogen-fixing bacteria that efficiently nodulate Neptunia natans in Senegal. International Journal of Systematic and Evolutionary Microbiology, 48, 1277–1290. https://doi.org/10.1099/00207713-48-4-1277.
  • Dubey, R.C., Maheshwari, D.K., Kumar, H., & Choure, K. (2010). Assessment of diversity and plant growth promoting attributes of rhizobia isolated from Cajanus cajan L. African Journal of Biotechnology, 9 (50), 8619-8629. https://doi.org/10.5897/AJB10.1127.
  • Figueiredo M. V. B., Burity H. A., Martinez C. R., & Chanway C. P. (2008). Alleviation of water stress effects in common bean (Phaseolus vulgaris L.) by co-inoculation Paenibacillus x Rhizobium tropici. Applied Soil Ecology. 40, 182-188. https://doi.org/10.1016/j.apsoil.2008.04.005. Gerakis, A., & Baer, B. (1999). A computer program for soil textural classification. Soil Science Society of America Journal, 63(4), 807-808. https://doi.org/10.2136/sssaj1999.634807x. Hameed, A. S., Yoganandhan, K., Widada, J. S., & Bonami, J. R. (2004). Experimental transmission and tissue tropism of Macrobrachium rosenbergii nodavirus (MrNV) and its associated extra small virus (XSV). Diseases of Aquatic Organisms, 62(3), 191-196. https://doi.org/10.3354/dao062191.
  • Khalid, R.; Zhang, X.X.; Hayat, R.; Ahmed, M. Molecular Characteristics of Rhizobia Isolated from Arachis hypogaea Grown under Stress Environment. Sustainability 2020, 12, 6259. https://doi.org/10.3390/su12156259.
  • Koskey G, Mburu SW, Kimiti JM, Ombori O, Maingi JM & Njeru EM. (2018). Genetic Characterization and Diversity of Rhizobium Isolated from Root Nodules of Mid-Altitude Climbing Bean (Phaseolus vulgaris L.) Varieties. Frontiers in Microbiology. 9, 968. https://doi.org/10.3389/fmicb.2018.00968.
  • Kumar, A., (2016). Phosphate solubilizing bacteria in agriculture biotechnology: diversity, mechanism and their role in plant growth and crop yield. International Journal of Advanced Research. 4(4), 116–124. http://dx.doi.org/10.21474/IJAR01/111.
  • Kumar, P. S., Mason, M. R., Brooker, M. R., & O'Brien, K. (2012). Pyrosequencing reveals unique microbial signatures associated with healthy and failing dental implants. Journal of clinical periodontology, 39(5), 425-433. https://doi.org/10.1111/j.1600-051X.2012.01856.x. Lemaire, B., Dlodlo, O., Chimphango, S., Stirton, C., Schrire, B., Boatwright, S., & Muasya, M. (2015). Symbiotic diversity, specificity and distribution of rhizobia in native legumes of the Core Cape Subregion (South Africa). FEMS Microbiology Ecology, 91(2), 2-17. https://doi.org/10.1093/femsec/fiu024. Mhamdi, R., Mrabet, M., Laguerre, G., Tiwari, R., & Aouani, M.E. (2005) Colonization of Phaseolus vulgaris nodules by Agrobacterium-like strains, Canadian Journal of Microbiology. 51, 105–111. https://doi.org/10.1139/w04-120
  • Mhamdi, R., Laguerre, G., Aouani, M. E., Mars, M., & Amarger, N. (2002). Different species and symbiotic genotypes of field rhizobia can nodulate Phaseolus vulgaris in Tunisian soils. FEMS Microbiology Ecology, 41(1), 77-84. https://doi.org/10.1111/j.1574-6941.2002.tb00968.x.
  • Mrabet, M., Mnasri, M., Ben Romdhane, S., Laguerre, G., Aouani, M.E., & Mhamdi, R. (2006) Agrobacterium strains isolated from root nodules of common bean specifically reduce nodulation by Rhizobium gallicum, FEMS Microbiology Ecology. 56, 304–309. https://doi.org/10.1111/j.1574-6941.2006.00069.x. Orrell, P., & Bennett, A. E. (2013). How can we exploit above–belowground interactions to assist in addressing the challenges of food security?. Frontiers in plant science, 4, 432. https://doi.org/10.3389/fpls.2013.00432
  • Otieno, P. E., Muthomi, J. W., Chemining'wa, N. G., & John, H. N. (2009). Effect of rhizobia inoculation, farmyard manure and nitrogen fertilizer on nodulation and yield of food grain legumes. Journal of Biological Sciences. 9, 326-332. https://doi.org/10.3923/jbs.2009.326.332.
  • Özdoğan, D.K., Akçelik, N. & Akçelik, M. (2022). Genetic Diversity and Characterization of Plant Growth-Promoting Effects of Bacteria Isolated from Rhizospheric Soils. Current Microbiology. 79, 132. https://doi.org/10.1007/s00284-022-02827-3.
  • Pervin, S., Jannat, B., Sanjee, S. & Farzana, T. (2017). Characterization of Rhizobia from Root Nodule and Rhizosphere of Lablab Purpureus and Vigna Sinensis in Bangladesh. Turkish Journal of Agriculture - Food Science and Technology, 5(1), 14-17. https://doi.org/10.24925/turjaf.v5i1.14-17.743.
  • Poly, F., Monrozier, L. J., & Bally, R. (2001). Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Research in Microbiology, 152, 95–103. https://doi.org/10.1016/s0923-2508(00)01172-4.
  • Saitou, N., & Nei, M., (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees, Molecular Biology and Evolution. 4, 406-425. https://doi.org/10.1093/oxfordjournals.molbev.a040454. Sharma, A., Johri, B.N., Sharma, A. K., & Glick, B. R. (2003). Plant growth-promoting bacterium Pseudomonas sp. strain GRP3 influences iron acquisition in mung bean (Vigna radiata L. Wilzeck). Soil Biology and Biochemistry. 35, 887-894. https://doi.org/10.1016/S0038-0717(03)00119-6. Somasegaran, P., & Hoben, H. J., (1994). Quantifying the growth of rhizobia. Handbook for Rhizobia: Methods in Legume-Rhizobium Technology, 47-57. https://doi.org/10.1007/978-1-4613-8375-8. Tu, Q., Deng, Y., Yan, Q., Shen, L., Lin, L., & He, Z., et al. (2016). Biogeographic patterns of soil diazotrophic communities across six forests in the North America. Moleculer Ecology. 25, 2937–2948. https://doi.org/10.1111/mec.13651.
  • Vincent, J.M. (1970) A manual for practical study of root nodule bacteria, IBP Handbook, Blackwell Scientific Publications, Oxford. https://doi.org/10.12691/ajmr-3-2-5. Wang, Q., Liu, J., & Zhu, H. (2018). Genetic and molecular mechanisms underlying symbiotic specificity in legume-rhizobium interactions. Frontiers in Plant Science, 9, 313. https://doi.org/10.3389/fpls.2018.00313. Wilson, K., (2001). Preparation of genomic DNA from bacteria. Current Protocol of Molecular Biology. 2, 2. https://doi.org/10.1002/0471142727.mb0204s56.

Genetic characterization of rhizobium bacteria isolated from bean (Phaseolus vulgaris L.) nodules and its effect on growth

Yıl 2023, , 62 - 69, 21.12.2023
https://doi.org/10.21657/soilst.1407937

Öz

Biological nitrogen fixation (BNF) is an important nitrogen source, providing a variety
of legumes and pasture plants. Rhizobia is soil bacteria that can form nitrogen-fixing
nodules on legumes. In this study, we have isolated 10 bacteria from root nodules of
sugar beans from the Gembos plain Derebucak district of Konya, Turkey. The
morphological and metabolic characteristics of the isolates were tested under
laboratory conditions. According to molecular identification, eight bacterial isolates
were identified as Agrobacterium tumefaciens, and two isolates (F4DC and F6DC) were
identified as Rhizobium gallicum. Field experiments were carried out to compare the
effect of one native rhizobia (Rhizobium gallicum F4DC), chemical fertilizer, and nonfertilizer control in SFWRRI Sarayköy Research and Application Station in Ankara. Our
results show that sugar bean (Phaseolus vulgaris L.) inoculation with Rhizobium
gallicum F4DC (MZ156852) induced a significant increase in the number of nodules,
grain yield, number of pods, and plant height compared to the control. These results
show that Rhizobium gallicum F4DC is a suitable choice for use in symbiotic association
with beans to work as a biofertilizer.

Kaynakça

  • Adhikari, D., Itoh, K., & Suyama, K. (2013). Genetic diversity of common bean (Phaseolus vulgaris L.) nodulating rhizobia in Nepal. Plant and soil, 368, 341-353. https://doi.org/10.1007/s11104-012-1518-7.
  • Akter, M. S., Nahar, N., Begum, A., & Akhter, H. (2016). Molecular characterization of rhizobial isolates from Sesbania bispinoa. Bioresearch Communications. 2(1), 164-169.
  • Arachis hypogaea Grown under Stress Environment. Sustainability, 12, 6259. https://doi.org/10.3390/su12156259.
  • Baginsky, C., Brito, B., Scherson, R., Pertuzé, R., Seguel, O., & Cañete, A., et al. (2014). Genetic diversity of Rhizobium from nodulating beans grown in a variety of Mediterranean climate soils of Chile. Archives of Microbiology. 197, 419–429. https://doi.org/10.1007/s00203-014-1067-y .
  • Bambara, S., & Ndakidemi, P. A. (2010). Effect of Rhizobium inoculation, lime and molybdenum on nitrogen fixation of nodulated Phaseolus vulgaris L. African. Journal of Microbiology Research, 4: 682-696. https://doi.org/10.5897/AJMR.
  • Batista, L., Irisarri, P., Rebuffo, M., Cuitiño, M. J., Sanjuán, J., & Monza, J. (2015). Nodulation competitiveness as a requisite for improved rhizobial inoculants of Trifolium pratense. Biology and Fertility of Soils 51, 11–20. https://doi.org/10.1007/s00374-014- 0946-3.
  • Beck, D. P., Materon, L. A., & Afandi, F. (1993). Practical Rhizobium-Legume Technology Manual. Aleppo: International Center for Agricultural Research in the Dry Areas (ICARDA).
  • de Lajudie, P., Laurent-Fulele, E., Willems, A., Torek, U., Coopman, R., Collins, M.D., Kersters, K., Dreyfus, B., & Gillis, M. (1998). Allorhizobium undicola gen. nov., sp. nov., nitrogen-fixing bacteria that efficiently nodulate Neptunia natans in Senegal. International Journal of Systematic and Evolutionary Microbiology, 48, 1277–1290. https://doi.org/10.1099/00207713-48-4-1277.
  • Dubey, R.C., Maheshwari, D.K., Kumar, H., & Choure, K. (2010). Assessment of diversity and plant growth promoting attributes of rhizobia isolated from Cajanus cajan L. African Journal of Biotechnology, 9 (50), 8619-8629. https://doi.org/10.5897/AJB10.1127.
  • Figueiredo M. V. B., Burity H. A., Martinez C. R., & Chanway C. P. (2008). Alleviation of water stress effects in common bean (Phaseolus vulgaris L.) by co-inoculation Paenibacillus x Rhizobium tropici. Applied Soil Ecology. 40, 182-188. https://doi.org/10.1016/j.apsoil.2008.04.005. Gerakis, A., & Baer, B. (1999). A computer program for soil textural classification. Soil Science Society of America Journal, 63(4), 807-808. https://doi.org/10.2136/sssaj1999.634807x. Hameed, A. S., Yoganandhan, K., Widada, J. S., & Bonami, J. R. (2004). Experimental transmission and tissue tropism of Macrobrachium rosenbergii nodavirus (MrNV) and its associated extra small virus (XSV). Diseases of Aquatic Organisms, 62(3), 191-196. https://doi.org/10.3354/dao062191.
  • Khalid, R.; Zhang, X.X.; Hayat, R.; Ahmed, M. Molecular Characteristics of Rhizobia Isolated from Arachis hypogaea Grown under Stress Environment. Sustainability 2020, 12, 6259. https://doi.org/10.3390/su12156259.
  • Koskey G, Mburu SW, Kimiti JM, Ombori O, Maingi JM & Njeru EM. (2018). Genetic Characterization and Diversity of Rhizobium Isolated from Root Nodules of Mid-Altitude Climbing Bean (Phaseolus vulgaris L.) Varieties. Frontiers in Microbiology. 9, 968. https://doi.org/10.3389/fmicb.2018.00968.
  • Kumar, A., (2016). Phosphate solubilizing bacteria in agriculture biotechnology: diversity, mechanism and their role in plant growth and crop yield. International Journal of Advanced Research. 4(4), 116–124. http://dx.doi.org/10.21474/IJAR01/111.
  • Kumar, P. S., Mason, M. R., Brooker, M. R., & O'Brien, K. (2012). Pyrosequencing reveals unique microbial signatures associated with healthy and failing dental implants. Journal of clinical periodontology, 39(5), 425-433. https://doi.org/10.1111/j.1600-051X.2012.01856.x. Lemaire, B., Dlodlo, O., Chimphango, S., Stirton, C., Schrire, B., Boatwright, S., & Muasya, M. (2015). Symbiotic diversity, specificity and distribution of rhizobia in native legumes of the Core Cape Subregion (South Africa). FEMS Microbiology Ecology, 91(2), 2-17. https://doi.org/10.1093/femsec/fiu024. Mhamdi, R., Mrabet, M., Laguerre, G., Tiwari, R., & Aouani, M.E. (2005) Colonization of Phaseolus vulgaris nodules by Agrobacterium-like strains, Canadian Journal of Microbiology. 51, 105–111. https://doi.org/10.1139/w04-120
  • Mhamdi, R., Laguerre, G., Aouani, M. E., Mars, M., & Amarger, N. (2002). Different species and symbiotic genotypes of field rhizobia can nodulate Phaseolus vulgaris in Tunisian soils. FEMS Microbiology Ecology, 41(1), 77-84. https://doi.org/10.1111/j.1574-6941.2002.tb00968.x.
  • Mrabet, M., Mnasri, M., Ben Romdhane, S., Laguerre, G., Aouani, M.E., & Mhamdi, R. (2006) Agrobacterium strains isolated from root nodules of common bean specifically reduce nodulation by Rhizobium gallicum, FEMS Microbiology Ecology. 56, 304–309. https://doi.org/10.1111/j.1574-6941.2006.00069.x. Orrell, P., & Bennett, A. E. (2013). How can we exploit above–belowground interactions to assist in addressing the challenges of food security?. Frontiers in plant science, 4, 432. https://doi.org/10.3389/fpls.2013.00432
  • Otieno, P. E., Muthomi, J. W., Chemining'wa, N. G., & John, H. N. (2009). Effect of rhizobia inoculation, farmyard manure and nitrogen fertilizer on nodulation and yield of food grain legumes. Journal of Biological Sciences. 9, 326-332. https://doi.org/10.3923/jbs.2009.326.332.
  • Özdoğan, D.K., Akçelik, N. & Akçelik, M. (2022). Genetic Diversity and Characterization of Plant Growth-Promoting Effects of Bacteria Isolated from Rhizospheric Soils. Current Microbiology. 79, 132. https://doi.org/10.1007/s00284-022-02827-3.
  • Pervin, S., Jannat, B., Sanjee, S. & Farzana, T. (2017). Characterization of Rhizobia from Root Nodule and Rhizosphere of Lablab Purpureus and Vigna Sinensis in Bangladesh. Turkish Journal of Agriculture - Food Science and Technology, 5(1), 14-17. https://doi.org/10.24925/turjaf.v5i1.14-17.743.
  • Poly, F., Monrozier, L. J., & Bally, R. (2001). Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Research in Microbiology, 152, 95–103. https://doi.org/10.1016/s0923-2508(00)01172-4.
  • Saitou, N., & Nei, M., (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees, Molecular Biology and Evolution. 4, 406-425. https://doi.org/10.1093/oxfordjournals.molbev.a040454. Sharma, A., Johri, B.N., Sharma, A. K., & Glick, B. R. (2003). Plant growth-promoting bacterium Pseudomonas sp. strain GRP3 influences iron acquisition in mung bean (Vigna radiata L. Wilzeck). Soil Biology and Biochemistry. 35, 887-894. https://doi.org/10.1016/S0038-0717(03)00119-6. Somasegaran, P., & Hoben, H. J., (1994). Quantifying the growth of rhizobia. Handbook for Rhizobia: Methods in Legume-Rhizobium Technology, 47-57. https://doi.org/10.1007/978-1-4613-8375-8. Tu, Q., Deng, Y., Yan, Q., Shen, L., Lin, L., & He, Z., et al. (2016). Biogeographic patterns of soil diazotrophic communities across six forests in the North America. Moleculer Ecology. 25, 2937–2948. https://doi.org/10.1111/mec.13651.
  • Vincent, J.M. (1970) A manual for practical study of root nodule bacteria, IBP Handbook, Blackwell Scientific Publications, Oxford. https://doi.org/10.12691/ajmr-3-2-5. Wang, Q., Liu, J., & Zhu, H. (2018). Genetic and molecular mechanisms underlying symbiotic specificity in legume-rhizobium interactions. Frontiers in Plant Science, 9, 313. https://doi.org/10.3389/fpls.2018.00313. Wilson, K., (2001). Preparation of genomic DNA from bacteria. Current Protocol of Molecular Biology. 2, 2. https://doi.org/10.1002/0471142727.mb0204s56.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ziraat Mühendisliği (Diğer)
Bölüm Research Articles
Yazarlar

Dilek Kaya Özdoğan Bu kişi benim 0000-0002-4371-2118

Çağlar Sagun Bu kişi benim 0000-0001-8821-3972

Vecihe İncirkuş Bu kişi benim 0000-0003-1979-9556

Atilla Polat Bu kişi benim 0000-0002-2222-3665

Emre Karmaz Bu kişi benim 0000-0002-2027-3933

Yayımlanma Tarihi 21 Aralık 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Kaya Özdoğan, D., Sagun, Ç., İncirkuş, V., Polat, A., vd. (2023). Genetic characterization of rhizobium bacteria isolated from bean (Phaseolus vulgaris L.) nodules and its effect on growth. Soil Studies, 12(2), 62-69. https://doi.org/10.21657/soilst.1407937