Derleme
BibTex RIS Kaynak Göster
Yıl 2024, , 119 - 130, 28.12.2024
https://doi.org/10.21657/soilst.1601789

Öz

Kaynakça

  • Abd El-Fattah, D. A., Ewedab, W. E., Zayed, M. S., & Hassaneina, M. K. (2013). Effect of carrier materials, sterilization method, and storage temperature on survival and biological activities of Azotobacter chroococcum inoculants. Annals of Agricultural Sciences, 58, 111–118. https://doi.org/10.1016/j.aoas.2013.07.001
  • Ağırağaç, Z., & Çelebi, Ş. Z. (2021). Kentsel Atık Suların Karamba (Lolium multiflorum cv. Caramba)’nın Ağır Metal ve Bazı Besin Elementi İçeriğine Etkisi. Journal of the Institute of Science and Technology, 11(3), 2400-2411. https://doi.org/10.21597/jist.885297
  • Akdağ, N., & Avcı, S. (2023). The impact of sowing time and biostimulant application on seed production in Italian ryegrass. Turkish Journal of Agriculture - Food Science and Technology, 11(8), 1260–1264. https://doi.org/10.24925/turjaf.v11i8.1260-1264.5306
  • Alfosea-Simón, M., Simón-Grao, S., Zavala-Gonzalez, E. A., Cámara-Zapata, J. M., Simón, I., Martínez-Nicolás, J. J., Lidón, V., Rodríguez-Ortega, W. M., & García-Sánchez, F. (2020). Applying biostimulants containing amino acids to tomatoes could favor sustainable cultivation: Implications for tyrosine, lysine, and methionine. Sustainability, 12, 9729. https://doi.org/10.3390/su12229729
  • Alrubaiee, S. H., & Al-Sulaiman, M. A. (2023). Effect of foliar application of Humic acid on some Growth properties and forage yield of Oat cultivars (Avena sativa L.). Revista Bionatura, 8, 3. http://dx.doi.org/10.21931/RB/2023.08.03.131.NQ44803
  • Altuner, F., Oral, E., Tunçtürk, R., & Baran, İ. (2019). The effect of pre-treatment with gibberellic acid on the salt (NaCl) stress on germination in triticale (× Triticosecale Wittmack). KSÜ Tarım ve Doğa Dergisi, 22(2), 235–242. https://doi.org/10.18016/ksutarimdoga.vi.553769
  • Anonymous. (2024a). Web Site: https://www.scival.com/. Accessed: 30.04.2024.
  • Anonymous. (2024b). Web Site: https://www.mku.edu.tr/files/898-029a7752-0bb3-453c-84ba-672e1d9e10f0.pdf. Accessed: 30.04.2024.
  • Anonymous. (2024c). Web Site: https://www.precedenceresearch.com/biostimulants-market#:~:text=The%20global%20biostimulants%20market%20size,revenue%20share%2038%25%20in%202022. Accessed: 30.04.2024.
  • Aziz, G., Bajsa, N., Haghjou, T., Taule, C., Valverde, A., Mariano, J., & Arias, A. (2012). Abundance, diversity, and prospecting of culturable phosphate solubilizing bacteria on soils under crop–pasture rotations in a no tillage regime in Uruguay. Applied Soil Ecology, 61, 320–326.
  • Baharlouei, K., Pazira, E., & Solhi, M. (2011). Evaluation of inoculation of plant growth-promoting rhizobacteria on cadmium. Singapore: International Conference on Environmental Science and Technology IPCBEE, 6.
  • Bekar, T. (2016). Waste technology in viticulture. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6(1), 17–24.
  • Bhardwaj, D., Ansari, M. W., Sahoo, R. K., & Tuteja, N. (2014). Biofertilizers function as key players in sustainable agriculture by improving soil fertility, plant tolerance, and crop productivity. Microbial Cell Factories, 13, 66. http://www.microbialcellfactories.com/content/13/1/66
  • Boddey, R. M., Urquiaga, S., Reis, V., & Döbereiner, J. (1991). Biological nitrogen fixation associated with sugar cane. Plant and Soil, 137, 111–117.
  • Bulgari, R., Franzoni, G., & Ferrante, A. (2019). Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy, 9(6), 306. https://doi.org/10.3390/agronomy9060306
  • Buono, D., Bartucca, M. L., Ballerini, E., Senizza, B., Lucini, L., & Trevisan, M. (2021). Physiological and biochemical effects of an aqueous extract of Lemna minor L. as a potential biostimulant for maize. Journal of Plant Growth Regulation, 41. https://doi.org/10.1007/s00344-021-10491-3
  • Büyükkeskin, T., Akıncı, Ş., & Eroğlu, A. E. (2015). The effects of humic acid on root development and nutrient uptake of Vicia faba L. (Broad Bean) seedlings grown under aluminum toxicity. Soil Science and Plant Analysis, 46, 277–292. https://doi.org/10.1080/00103624.2014.969402
  • Chieb, M., & Gachomo, E. W. (2023). The role of plant growth-promoting rhizobacteria in plant drought stress responses. BMC Plant Biology, 23(1), 407. https://doi.org/10.1186/s12870-023-04403-8
  • Cho, M. H., No, H. K., & Prinyawiwatkul, W. (2008). Chitosan treatments affect growth and selected quality of sunflower sprouts. Journal of food science, 73(1), S70-S77. https://doi.org/10.1111/j.1750-3841.2007.00607.x
  • Choudhary, R. C., Kumaraswamy, R. V., Kumari, S., Sharma, S. S., Pal, A., Raliya, R., ... & Saharan, V. (2017). Cu-chitosan nanoparticle boost defense responses and plant growth in maize (Zea mays L.). Scientific reports, 7(1), 9754. https://doi.org/10.1038/s41598-017-08571-0
  • Chynoweth, R., & Moot, D. J. (2013). Seed yield of three perennial ryegrass cultivars following treatment with Moddus® straw shortener. Agronomy New Zealand, 43, 71–80.
  • Ciepiela, G. A., & Godlewska, A. (2019). The effect of biostimulants derived from various materials on the yield and selected organic components of Italian rye grass (Lolium multiflorum Lam.) against the background of nitrogen regime. Applied Ecology & Environmental Research, 17(5). http://dx.doi.org/10.15666/aeer/1705_1240712418
  • Craigie, J. S. (2011). Seaweed extract stimuli in plant science and agriculture. Journal of Applied Phycology, 23(3), 371–393. https://doi.org/10.1007/s10811-010-9560-4
  • Çakmaçı, R. (2005). Bitki Gelişimini Teşvik Eden Rizobakterilerin Tarımda Kullanımı. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 36(1), 97-107.
  • Dağ, F., Mut, Z. & Erbaş Köse, Ö. D. (2024). Farklı Lokasyonlarda Yetiştirilen Mısıra Mikrobiyal Gübre Uygulamasının Etkisi: I. Verim ve Verim Unsurları. ISPEC Journal of Agricultural Sciences, 8(1), 72-80. https://doi.org/10.5281/zenodo.10813331
  • De Luca, V., Gómez de Barreda, D., Lidón, A. & Lull, C. (2020). Effect of Nitrogenfixing Microorganisms and Amino Acid-based Biostimulants on Perennial Ryegrass, HortTechnology, 30(2), 280-291. https://doi.org/10.21273/HORTTECH04236-19
  • Demiray, H. C. & Parlak, A. Ö. (2023). Tek Yıllık Çim Yetiştiriciliğinde Organik Madde ve Farklı Azot Kaynaklarının Ot Verimi ve Kalitesine Etkisi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 26(4); 827-834. https://doi.org/10.18016/ksutarimdoga.vi.1102770
  • Doğan, K, Çelik, I., Gok, M. & Coşkan, A. (2011). Effect of different soil tillage methods on rhizobial nodulation, biyomas and nitrogen content of second crop soybean. African Journal of Microbiology Research, 5, 3186– 3194. https://doi.org/10.5897/AJMR11.165
  • Du Jardin, P. (2015). Plant biostimulants: Definition, Concept, Main Categories and Regulation. Scientia Horticulturae. 196; 3–14.
  • Ertani, A., Cavani, L. & Pizzeghello, D. (2009). Biostimulant activity of two protein hydrolyzates in the growth and nitrogen metabolism of maize seedlings. Journal of Plant Nutrition and Soil Science, 172(2); 237–244. https://doi.org/10.1002/jpln.200800174
  • Ferreira, L. L., Curvelo, C. R. S., Pereira, A. I. A. & Tomazele, A. A. S. (2018). Nitrogen Fertilization Combined with Biostimulant in Second-Crop Maize. International Journal of Agriculture Innovations and Research, 6(5), 246-249.
  • Forde, B.G. & Lea, P.J. (2007). Glutamate in plants: metabolism, regulation, and signaling. Journal of Experimental Botany, 58(9), 2339–2358.
  • Gibson, S. W., Ziobron, S. A., Olson, E. N., Neher, A.D., Smith, C. F. & Holden, V. (2024). On-farm biomass recycling with biostimulant Re-Gen increases corn yields in multi-year farm trials. bioRxiv. https://doi.org/10.1101/2024.04.12.589288
  • Gholami, A., Shahsavani, S. & Nezarat, S. (2009). The Effect of Plant Growth Promoting Rhizobacteria (PGPR) on Germination seedling Growth and Yield of Maize. International Journal of Biological Sciences, 5, 1.
  • Godlewska, A., & Cıepıela, G. A. (2013). The Effect of Natural Growth Regulators Obtained from Ecklonia Maxima and Mineral Nitrogen on True Protein and Simple Sugar Contents of Dactylis Glom. Turkish Journal of Field Crops, 18(2), 247-253.
  • Godlewska, A. & Ciepiela, G. A. (2018). Assessment of the effect of varıous bıostımulants on medıcago x varıa t. Martyn yıeldıng and content of selected organıc component. S. Applied Ecology & Environmental Research, 16(5). http://dx.doi.org/10.15666/aeer/1605_55715581
  • Godlewska, A. & Ciepiela, G. A. (2020). Italian Ryegrass (Lolium multiflorum Lam.) Fiber Fraction Content and Dry Matter Digestibility Following Biostimulant Application against the Background of Varied Nitrogen Regime. Agronomy, 11(1), 39, https://doi.org/10.3390/agronomy11010039
  • Godlewska, A., & Becher, M. (2021). The effect of waste materials on the content of some macroelements in test plants. Journal of Ecological Engineering, 22(4). https://doi.org/10.12911/22998993/134046
  • Gürsoy, M. (2022a). Biostimulant Applications in Agriculture. 7th International Zeugma Conference on Scientific Research. Pp:41-47. 21-23 January, Gaziantep/Türkiye
  • Gürsoy, M. (2022b). Role of Biostimulant Priming Applications on Germination, Growth and Chlorophyll Content of Sunflower (Helianthus annuus L.) Cultivars under Salinity Stress. Selcuk Journal of Agriculture and Food Sciences, 36(1), 75-81. https://doi.org/10.15316/SJAFS/2022.011
  • Hadwiger, L. A. (2013). Multiple effects of chitosan on plant systems: Solid science orhype. Plant Science, 208, 42–49.
  • Hai-Yang, Yu., Wan-Xia, He., Ying-Ning, Zou., Mashael Daghash, Alqahtani., Qiang-Sheng, Wu. (2024). Arbuscular mycorrhizal fungi and rhizobia accelerate plant growth and N accumulation and contribution to soil total N in white clover by difficultly extractable glomalin-related soil protein, Applied Soil Ecology, 197, 105348. https://doi.org/10.1016/j.apsoil.2024.105348
  • Han, M., Kasim, S., Yang, Z., Deng, X., Uddin, M. K., Saidi, N. B., & Shuib, E. M. (2024). Application of Polygonum minus Extract in Enhancing Drought Tolerance in Maize by Regulating Osmotic and Antioxidant System. Phyton (0031-9457), 93(2) https://dx.doi.org/10.32604/phyton.2024.047150
  • Iriti, M., Picchi, V., Rossoni, M., Gomarasca Ludwig, N, Gargano, M. & Faoro F. (2009). Chitosan antitranspirant activity is due to abscisic acid-dependentstomatal closure. Environmental and Experimental Botany, 66(3), 493–500. https://doi.org/10.1016/j.envexpbot.2009.01.004
  • Jabeen, N. & Ahmad, R. (2013). The Activity of Antioxidant Enzymes in Response to Salt Stress in Safflower (Carthamus tinctorius L.) and Sunflower (Helianthus annuus L.) Seedlings Raised from Seed Treated with Chitosan. J Sci Food Agric, 93; 1699-1705. https://doi.org/10.1002/jsfa.5953
  • Katiyar Hemantaranjan, A., & Singh, B. (2015). Chitosan as a promising natural compound to enhance potential physiological responses in plant. Indian Journal of Plant Physiology, 20, 1–9. https://doi.org/10.1007/s40502-015-0139-6
  • Kaya, A. R., Yıldırım, M., & Sakin, S. Ç. (2024). A Study of Effects of Different Organic Origin Liquid Seaweed Doses on Germination Radicle and Plumule Growth in Winter Cereal Species. Türk Doğa ve Fen Dergisi, 13(2), 114-120. https://doi.org/10.46810/tdfd.1413556
  • Khaleda, L., Kim, M. G., Kim, W. Y., Jeon, J. R. & Cha, J. Y. (2017). Humic Acid and Synthesized Humic Mimic Promote the Growth of Italian Ryegrass. Journal of The Korean Society of Grassland and Forage Science. The Korean Society of Grassland and Forage Science. https://doi.org/10.5333/kgfs.2017.37.3.242
  • Khan, W., Rayirath, U. P. & Subramanian, S. (2009). Seaweed extracts as biostimulants of plant growth and development. Journal of Plant Growth Regulation, 28, 386–399. https://doi.org/10.1007/s00344-009-9103-x
  • Khan, W., Hiltz, D., Critchley, A. T., & Prithiviraj, B., (2011). Bioassay to detect Ascophyllum nodosum extract-induced cytokinin-like activity in Arabidopsis thaliana. Journal of Applied Phycology, 23(3); 409–414. https://doi.org/10.1007/s10811-010-9583-x
  • Khan, Z. H., Kahn, M. A., Aftab, T., Idrees, M. & Naeem, M. (2011). Influence of alginate oligosaccharides on growth, yield and alkaloid production of opium poppy (Papaver somniferum L.). Front Agriculture China, 5, 122–127. https://doi.org/10.1007/s11703-010-1056-0
  • Kpomblekou, K. & Tabatabai, M. A. (1994). Effect of organic acids on release of phosphorus from phosphate rocks. Soil Science Society of America Journal, 158, 442–453. https://doi.org/10.1016/S0167-8809(03)00185-3
  • Kumaraswamy, R. V., Saharan, V., Kumari, S., Choudhary, R. C., Pal, A., Sharma, S.S., Rakshit, S., Raliya, R. & Biswas, P. (2021). Chitosan-silicon nanofertilizer to enhance plant growth and yield in maize (Zea mays L.), Plant Physiology and Biochemistry, 159, 53-66, https://doi.org/10.1016/j.plaphy.2020.11.054
  • Külahtaş, B. & Çokuysal, B. (2016). Biyostimulantların Sınıflandırılması ve Türkiye’deki Durumu. Çukurova Tarım ve Gıda Bilimleri Dergisi, 31(3); 185-200.
  • Lamabam, P. S., Gill, S. S. & Tuteja, N. (2011). Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav, 6;175-191. https://doi.org/10.4161/psb.6.2.14146
  • Lucini, L., Rouphael, Y., Cardarelli, M., Canaguier, R., Kumar, P. & Colla, G. (2015). The effect of a plant-derived biostimulant on metabolic profiling and crop performance of lettuce grown under saline conditions. Scientia Horticulturae, 182, 124-133. https://doi.org/10.1016/j.scienta.2014.11.022
  • Lumactud, R. A., Gorim, L. Y. & Thilakarathna, M. S. (2022). Impacts of humic-based products on the microbial community structure and functions toward sustainable agriculture. Frontiers in Sustainable Food Systems. 6, 977121. https://doi.org/10.3389/fsufs.2022.977121
  • Macháč, R. (2013). Effects of Trinexapac-Ethyl (Moddus) on Seed Yields and Its Quality of Eleven Temperate Grass Species. In: Barth, S., Milbourne, D. (eds) Breeding strategies for sustainable forage and turf grass improvement. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4555-1_49
  • Maçin, K. E. (2021). Biyoekonomi Stratejisi ve Sıfır Atık Perspektifinden Türkiye’de Gıda Atıkları Yönetimi ve Paydaşların Görevleri, 15-17 Eylül 2021 AB Yeşil Mutabakatı, İstanbul.
  • Makhlouf, B. S. I., Khalil, S. R. A. E. & Saudy, H. S. (2022). Efficacy of Humic Acids and Chitosan for Enhancing Yield and Sugar Quality of Sugar Beet Under Moderate and Severe Drought. Journal of Soil Science and Plant Nutrition, 22; 1676–1691. https://doi.org/10.1007/s42729-022- 00762-7
  • Malécange, M., Sergheraert, R., Teulat, B., Mounier, E., Lothier, J. & Sakr, S. (2023). Biostimulant Properties of Protein Hydrolysates: Recent Advances and Future Challenges. International Journal of Molecular Sciences, 24(11); 9714. https://doi.org/10.3390/ijms24119714
  • Malik, K. A., Mirza, M. S., Hassan, U., Mehnaz, S., Rasul, G., Haurat, J., Bauy, R. & Normanel, P. (2002). The role of plant associated beneficial bacteria in rice-wheat cropping system. In: Kennedy IR, Chaudhry A (eds) Biofertilisers in action. Rural Industries Research and Development Corporation, Canberra; 73–83. https://doi.org/10.1007/s13213-010-0117-1
  • Mancuso, S., Azzarello, E., Mugnai, S. & Briand, X. (2006). Marine bioactive substances (IPA extract) improve foliar ion uptake and water stress tolerance in potted Vitis vinifera plants. Advances in Horticultural Science, 20; 156-161.
  • Nazzal, M., Uzun, F., Öztürk, Ö. F., & Çetin, U. (2023). The Effect of Soil and Foliar Application of Macro-Algae at Increasing Doses on the Nutrient Content of the Alfalfa Plants. Agribalkan. V. Balkan Agricultural Congress, 534.
  • Nehra, K., Yadav, S. A., Sehrawat, A. R. & Vashishat, R. K. (2007). Characterization of heat resistant mutant strains of Rhizobium sp. [Cajanus] for growth, survival and symbiotic properties. Indian Journal of Microbiology, 47, 329–335. https://doi.org/ 10.1007/s12088-007-0060-4
  • Oddi, L., Volpe, V., Carotenuto, G., Politi, M., Barni, E., Crosino, A., Siniscalco, C., & Genre, A. 2024. Boosting species evenness, productivity, and weed control in a mixed meadow by promoting arbuscular mycorrhizas. Frontiers in Plant Science, 15, 1303750. https://doi.org/10.3389/fpls.2024.1303750
  • Okur, N. & Ortaş, İ. (2012). Mikrobiyolojik Gübreler ve Tarımda Mikorizalar: Bitki Besleme M. Rüştü Karaman (Ed.), Gübretaş Rehber Kitaplar Dizisi, 555-599, Ankara.
  • Ortaş, İ., Ergün, B., Ortakçı, D., Ercan, S. & Köse, Ö. (1999). Mikoriza Sporlarının Üretim Tekniği ve Tarımda Kullanım Olanakları. Turkish Journal of Agriculture and Forestry, 23(4), 959-968.
  • Öner, N., Demirkıran, A. R. & Öner, F. (2023). Time-Dependent Change of Plant Nutrients in Italian Grass (Lolium multiflorum) after Foliar Fertilization. Türk Doğa ve Fen Dergisi, 12(1), 136-143. https://doi.org/10.46810/tdfd.1206130
  • Öner, M. & Cengiz, R. (2023). Mısır (Zea mays L.) Bitkisi Çimlenme Dönemi Parametrelerini İyileştirilmesi İçin Priming Yöntemiyle Kitosan Kaplamada Doz Belirlenmesi. Journal of Agricultural Biotechnology, 4(2), 63-74.
  • Parrado, J., Bautista, J., Romero, E. J., García-Martínez, A. M., Friaza, V. & Tejada, M. (2008). Production of A Carob Enzymatic Extract: Potential Use As A Biofertilizer. Bioresource Technology, 99(7), 2312-2318 https://doi.org/10.1016/j.biortech.2007.05.029
  • Paul, D. & Nair, S. (2008). Stress adaptations in a plant growth promoting Rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. Journal of Basic Microbiology, 4, 1–7. https://doi.org/10.1002/jobm.200700365
  • Peñas-Corte, M., Bouzas, P. R., Nieto del Río, J., Manzanera, M., Barros-Rodríguez, A., & Fernández-Navarro, J. R. (2024). Enhancing maize stress tolerance and productivity through synergistic application of Bacillus velezensis A6 and Lamiales plant extract, biostimulants suitable for organic farming. Biology, 13(9), 718. https://doi.org/10.3390/biology13090718
  • Piccolo, A. & Spiteller, M. (2003). Electrospray ionization mass spectrometry of terrestrial humic substances and their size fractions. Analytical and Bioanalytical Chemistry, 377(6), 1047–1059. https://doi.org/10.1007/s00216-003-2186-5
  • Pretorius, J. C. (2013). Extracts and compounds from “Agapanthus africanus” and their use as biological plant protecting agents. U.S. Patent No:8, 435-571.
  • Priolo, D., Tolisano, C., Ballerini, E., Brienza, M. & Del Buono, D. (2024). Stimulatory Effect of an Extract of Lemna minor L. in Protecting Maize from Salinity: A Multifaceted Biostimulant for Modulating Physiology, Redox Balance, and Nutrient Uptake. Agriculture, 14, 705. https://doi.org/10.3390/agriculture14050705
  • Przybysz, A., Gawrońska, H., & Gajc-Wolska, J. (2014). Biological mode of action of a nitrophenolates-based biostimulant: case study. Frontiers in Plant Science, 5, 713. https://doi.org/10.3389/fpls.2014.00713
  • Povero, G., Mejia, J. F., Di Tommaso, D., Piaggesi, A. & Warrior, P. A. (2016). Systematic Approach to Discover and Characterize Natural Plant Biostimulants. Frontiers in Plant Science, 7, 435. https://doi.org/10.3389/fpls.2016.00435
  • Qiu, Y., Amirkhani, M., Mayton, H., Chen, Z. & Taylor, A.G. (2020). Biostimulant seed coating treatments to improve cover crop germination and seedling growth. Agronomy, 10 (2),154. https://doi.org/10.3390/agronomy10020154
  • Radkowski, A., Radkowska, I., Bocianowski, J., Sladkovska, T. & Wolski, K. (2020). The Effect of Foliar Application of an Amino Acid-Based Biostimulant on Lawn Functional Value. Agronomy, 10(11), 1656. https://doi.org/10.3390/agronomy10111656
  • Rayorath, P., Jithesh, M. N., Farid, A., Khan, W., Palanisamy, R., Hankins, S. D., Critchley, A. T. & Prithiviraj, B. (2008). Rapid bioassays to evaluate the plant growth promoting activity of Ascophyllum nodosum (L.) Le Jol. using a model plant, Arabidopsis thaliana (L.) Heynh. Journal of Applied Phycology, 20(4), 423-429. https://doi.org/10.1007/s10811-007-9280-6
  • Rouphael Colla, G. (2018). Synergistic Biostimulatory Action: Designing the Next Generation of Plant Biostimulants for Sustainable Agriculture. Frontiers Plant Science, 9, 1655. https://doi.org/10.3389/fpls.2018.01655
  • Ryan, M. H., Norton, R. M., Kirkegaard, J. A., McCormick, K. M., Knights, S. E. & Angus, J. F. (2002). Increasing mycorrhizal colonization does not improve growth and nutrition of wheat on Vertosols in south-eastern Australia. Australian Journal of Agricultural Research, 53(10), 1173-1181. https://doi.org/10.1071/AR02005
  • Saadat, D., Siller, A., & Hashemi, M. (2023). Phenology, Nitrogen Status, and Yield of Red Clover (Trifolium pretense L.) Affected by Application of Vitamin B12, Humic Acid, and Enriched Biochar. Agronomy, 13, 2885. https://doi.org/10.3390/agronomy13122885
  • Sahoo, R., K., Ansari, M., W., Dangar, T., K., Mohanty, S. & Tuteja, N. (2013). Phenotypic and molecular characterization of efficient nitrogen fixing Azotobacter strains of the rice fields. Protoplasma, https://doi.org/10.1007/s00709-013-0547-2
  • Sánchez-Gómez, R., Zalacain, A., Pardo, F., Alonso, G. L. & Salinas, M. R. (2016). An innovative use of vine-shoots residues and their “feedback” effect on wine quality. Innovative Food Science & Emerging Technologies, 37, 18-26. https://doi.org/10.1016/j.ifset.2016.07.021
  • Senthilraja, K., Jothimani, P., & Rajannan, G. (2013). Effect of brewery wastewater on growth and physiological changes in maize, sunflower and sesame crops. Int J Life Sci Educ Res, 1(1), 36-42.
  • Sever Mutlu, S., Sever, E. & Sonmez, S. (2019). Mikrobiyal gübre uygulamalarının Lolium perenne L. türünün çim performansı üzerine etkileri. Mediterranean Agricultural Sciences; 147-155. https://doi.org/10.29136/mediterranean.560213
  • Sezen, G. & Küçük, Ç. (2021). Microcystis viridis ve Aphanizomenon gracile Karışık Kültürün Fiğ, Nohut ve Arpa Gelişimine Etkileri. Commagene Journal of Biology, 5(2); 182-186. https://doi.org/10.31594/commagene.1031232
  • Sezen, G. & Küçük, Ç. 2023. Mısır (Zea mays L. ) ve Mercimek (Lens culinaris Medik) Gelişimi Üzerine Microcystis viridis ve Aphanizomenon gracile Karışımının Etkisi. Commagene Journal of Biology, 7(2); 141-146. https://doi.org/10.31594/commagene.1396910
  • Sharma, P., Sardana, V. & Kandola, S. S. (2011). Response of groundnut (Arachishypogaea L.) to Rhizobium Inoculation. Libyan Agriculture Research Center Journal International, 2 (3), 101–104
  • Sharma, S. S., & Dietz, K. J. (2006). The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. Journal of Experimental Botany, 57(4), 711-726. https://doi.org/10.1093/JXB/ERJ073
  • Shen, J., Guo, M. J., Wang, Y. G., Yuan, X. Y., Wen, Y. Y., Song, X. E., Dong, S. Q. & Guo, P. Y. (2020). Humic acid improves the physiologial and photosynthetic characteristics of millet seedlings under drought stress. Plant Signal Behav. 15, 1774212. https://doi.org/10.1080/15592324.1774212
  • Sheng, X. F. & He, L. Y. (2006). Solubilization of potassium-bearing minerals by a wildtype strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Canadian Journal of Microbiology, 52, 66–72. https://doi.org/10.1139/w05-117
  • Smith, S. E., Jakobsen, I., Grønlund, M. & Smith, F. A. (2011). Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156; 1050–1057. https://doi.org/10.1104/pp.111.174581
  • Şanlı, A., Ok, F. Z. & Erbaş, S. (2023). Yapraktan Amino Asit Uygulamalarının Bazı Şeker Pancarı (Beta vulgaris var. saccharifera L.) Çeşitlerinin Verim ve Kalitesine Etkileri. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(1), 290-298. https://doi.org/10.53433/yyufbed.1188512
  • Şen, F., Eroğul, D. & Altuntaş, Ö. (2022). Yapraktan Farklı Biyostimülant Uygulama Programlarının ‘0900 Ziraat’ Kiraz Meyvelerinin Kalitesi ve Hasat Sonrası Dayanımına Etkisi. ISPEC Tarım Bilimleri Dergisi. https://doi.org/10.46291/ISPECJASvol6iss2id302
  • Trethewey, J., Rolston, M. P., McCloy, B. L., & Chynoweth, R. J. (2016), The plant growth regulator, trinexapac-ethyl, increases seed yield in annual ryegrass (Lolium multiflorum Lam.), New Zealand Journal of Agricultural Research, 59, 113 – 121. https://doi.org/10.1080/00288233.2015.1134590
  • Torres-García, A., Héctor-Ardisana, E. F., León-Aguilar, R., Zambrano-Gavilanes, F. E. & Fosado Téllez, O. A. (2024). Vermicompost Leachate-Based Biostimulant and its Effects on Physiological Variables and Yield of Different Crops in Manabí, Ecuador. Ciencia & Tecnología Agropecuaria, 25(1). https://doi.org/10.21930/rcta.vol25_num1_art:3388.
  • Ugolini, L., Cinti, S., Righetti, L., Stefan, A., Matteo, R., D’Avino, L. & Lazzeri L. (2015). Production of an enzymatic protein hydrolyzate from defatted sunflower seed meal for potential application as a plant biostimulant. Industrial Crops and Products, 75, 15-23.https://doi.org/10.1016/j.indcrop.2014.11.026
  • Umarusman, M. A., Aysan, Y. & Özgüven, M. (2019). Farklı bitki ekstraktlarının bezelye bakteriyel yaprak yanıklığına (Pseudomonas syringae pv. pisi) antibakteriyel etkilerinin araştırılması. Tekirdağ Ziraat Fakültesi Dergisi, 16(3), 297-314.
  • Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant Soil, 255, 571–586. https://doi.org/10.1023/a:1026037216893
  • Yakhin, I. A., Ibragimov, R. I., Yakhin, O. I., Isaev, R. F. & Vakhitov, V. A. (1998). The induced effect of biopreparation stifun on the accumulation of trypsin inhibitors in potato tubers during storage. Russian Agricultural Sciences, 4; 12–13. https://doi.org/10.3389/fpls.2016.02049
  • Yakhin, O. I., Lubyanov, A. A., Yakhin, I. A. & Brown, P. H., (2017). Biostimulants in plant science: a global perspective. Frontiers in Plant Science, 7; 204. https://doi.org/10.3389/fpls.2016.02049
  • Yasmeen, A., Nouman, W., Basra, S. M. A., Wahid, A., Rehman, H., Hussain, N. & Afzal, I. (2014). Morphological and physiological response of tomato (Solanum lycopersicum L.) to natural and synthetic cytokinin sources: a comparative study. Acta Physiologiae Plantarum, 36(12); 3147-3155. https://doi.org/10.1007/s11738-014-1662-1

Biostimulants for sustainable agriculture in forage crops

Yıl 2024, , 119 - 130, 28.12.2024
https://doi.org/10.21657/soilst.1601789

Öz

Biostimulants, a promising avenue in agriculture, are substances that significantly enhance plant growth and productivity. They are a rich source of various compounds and microorganisms, including humic substances, amino acids, seaweed extracts, chitin and chitosan polymers, inorganic compounds, seed and root extracts, and organic wastes. Humic substances derived from decomposed organic matter are crucial in improving soil structure and nutrient availability. On the other hand, amino acids and protein hydrolysates promote nitrogen uptake and stress resistance, enhancing plant growth. The rich in polysaccharides and phytohormones, seaweed extracts enhance root development and stress tolerance. Polymers such as chitin and chitosan, derived from crustaceans and fungi, provide protective effects against pathogens and environmental stressors. Inorganic compounds and plant extracts also contribute to growth and resistance. The growing global biostimulants market is a testament to the increasing demand for environmentally friendly agricultural solutions, highlighting the urgency of adopting these solutions. Unlike traditional fertilizers, biostimulants do not directly provide nutrients but improve how plants use available nutrients more efficiently. Research underscores the potential of biostimulants to contribute to sustainable agriculture by increasing yield, quality, and disease resistance. Indispensable in modern agriculture, biostimulants are the key to creating sustainable and productive agricultural systems with more resilient plants by stimulating the development of crops, especially under unfavorable conditions, and improving crop quality.

Kaynakça

  • Abd El-Fattah, D. A., Ewedab, W. E., Zayed, M. S., & Hassaneina, M. K. (2013). Effect of carrier materials, sterilization method, and storage temperature on survival and biological activities of Azotobacter chroococcum inoculants. Annals of Agricultural Sciences, 58, 111–118. https://doi.org/10.1016/j.aoas.2013.07.001
  • Ağırağaç, Z., & Çelebi, Ş. Z. (2021). Kentsel Atık Suların Karamba (Lolium multiflorum cv. Caramba)’nın Ağır Metal ve Bazı Besin Elementi İçeriğine Etkisi. Journal of the Institute of Science and Technology, 11(3), 2400-2411. https://doi.org/10.21597/jist.885297
  • Akdağ, N., & Avcı, S. (2023). The impact of sowing time and biostimulant application on seed production in Italian ryegrass. Turkish Journal of Agriculture - Food Science and Technology, 11(8), 1260–1264. https://doi.org/10.24925/turjaf.v11i8.1260-1264.5306
  • Alfosea-Simón, M., Simón-Grao, S., Zavala-Gonzalez, E. A., Cámara-Zapata, J. M., Simón, I., Martínez-Nicolás, J. J., Lidón, V., Rodríguez-Ortega, W. M., & García-Sánchez, F. (2020). Applying biostimulants containing amino acids to tomatoes could favor sustainable cultivation: Implications for tyrosine, lysine, and methionine. Sustainability, 12, 9729. https://doi.org/10.3390/su12229729
  • Alrubaiee, S. H., & Al-Sulaiman, M. A. (2023). Effect of foliar application of Humic acid on some Growth properties and forage yield of Oat cultivars (Avena sativa L.). Revista Bionatura, 8, 3. http://dx.doi.org/10.21931/RB/2023.08.03.131.NQ44803
  • Altuner, F., Oral, E., Tunçtürk, R., & Baran, İ. (2019). The effect of pre-treatment with gibberellic acid on the salt (NaCl) stress on germination in triticale (× Triticosecale Wittmack). KSÜ Tarım ve Doğa Dergisi, 22(2), 235–242. https://doi.org/10.18016/ksutarimdoga.vi.553769
  • Anonymous. (2024a). Web Site: https://www.scival.com/. Accessed: 30.04.2024.
  • Anonymous. (2024b). Web Site: https://www.mku.edu.tr/files/898-029a7752-0bb3-453c-84ba-672e1d9e10f0.pdf. Accessed: 30.04.2024.
  • Anonymous. (2024c). Web Site: https://www.precedenceresearch.com/biostimulants-market#:~:text=The%20global%20biostimulants%20market%20size,revenue%20share%2038%25%20in%202022. Accessed: 30.04.2024.
  • Aziz, G., Bajsa, N., Haghjou, T., Taule, C., Valverde, A., Mariano, J., & Arias, A. (2012). Abundance, diversity, and prospecting of culturable phosphate solubilizing bacteria on soils under crop–pasture rotations in a no tillage regime in Uruguay. Applied Soil Ecology, 61, 320–326.
  • Baharlouei, K., Pazira, E., & Solhi, M. (2011). Evaluation of inoculation of plant growth-promoting rhizobacteria on cadmium. Singapore: International Conference on Environmental Science and Technology IPCBEE, 6.
  • Bekar, T. (2016). Waste technology in viticulture. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6(1), 17–24.
  • Bhardwaj, D., Ansari, M. W., Sahoo, R. K., & Tuteja, N. (2014). Biofertilizers function as key players in sustainable agriculture by improving soil fertility, plant tolerance, and crop productivity. Microbial Cell Factories, 13, 66. http://www.microbialcellfactories.com/content/13/1/66
  • Boddey, R. M., Urquiaga, S., Reis, V., & Döbereiner, J. (1991). Biological nitrogen fixation associated with sugar cane. Plant and Soil, 137, 111–117.
  • Bulgari, R., Franzoni, G., & Ferrante, A. (2019). Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy, 9(6), 306. https://doi.org/10.3390/agronomy9060306
  • Buono, D., Bartucca, M. L., Ballerini, E., Senizza, B., Lucini, L., & Trevisan, M. (2021). Physiological and biochemical effects of an aqueous extract of Lemna minor L. as a potential biostimulant for maize. Journal of Plant Growth Regulation, 41. https://doi.org/10.1007/s00344-021-10491-3
  • Büyükkeskin, T., Akıncı, Ş., & Eroğlu, A. E. (2015). The effects of humic acid on root development and nutrient uptake of Vicia faba L. (Broad Bean) seedlings grown under aluminum toxicity. Soil Science and Plant Analysis, 46, 277–292. https://doi.org/10.1080/00103624.2014.969402
  • Chieb, M., & Gachomo, E. W. (2023). The role of plant growth-promoting rhizobacteria in plant drought stress responses. BMC Plant Biology, 23(1), 407. https://doi.org/10.1186/s12870-023-04403-8
  • Cho, M. H., No, H. K., & Prinyawiwatkul, W. (2008). Chitosan treatments affect growth and selected quality of sunflower sprouts. Journal of food science, 73(1), S70-S77. https://doi.org/10.1111/j.1750-3841.2007.00607.x
  • Choudhary, R. C., Kumaraswamy, R. V., Kumari, S., Sharma, S. S., Pal, A., Raliya, R., ... & Saharan, V. (2017). Cu-chitosan nanoparticle boost defense responses and plant growth in maize (Zea mays L.). Scientific reports, 7(1), 9754. https://doi.org/10.1038/s41598-017-08571-0
  • Chynoweth, R., & Moot, D. J. (2013). Seed yield of three perennial ryegrass cultivars following treatment with Moddus® straw shortener. Agronomy New Zealand, 43, 71–80.
  • Ciepiela, G. A., & Godlewska, A. (2019). The effect of biostimulants derived from various materials on the yield and selected organic components of Italian rye grass (Lolium multiflorum Lam.) against the background of nitrogen regime. Applied Ecology & Environmental Research, 17(5). http://dx.doi.org/10.15666/aeer/1705_1240712418
  • Craigie, J. S. (2011). Seaweed extract stimuli in plant science and agriculture. Journal of Applied Phycology, 23(3), 371–393. https://doi.org/10.1007/s10811-010-9560-4
  • Çakmaçı, R. (2005). Bitki Gelişimini Teşvik Eden Rizobakterilerin Tarımda Kullanımı. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 36(1), 97-107.
  • Dağ, F., Mut, Z. & Erbaş Köse, Ö. D. (2024). Farklı Lokasyonlarda Yetiştirilen Mısıra Mikrobiyal Gübre Uygulamasının Etkisi: I. Verim ve Verim Unsurları. ISPEC Journal of Agricultural Sciences, 8(1), 72-80. https://doi.org/10.5281/zenodo.10813331
  • De Luca, V., Gómez de Barreda, D., Lidón, A. & Lull, C. (2020). Effect of Nitrogenfixing Microorganisms and Amino Acid-based Biostimulants on Perennial Ryegrass, HortTechnology, 30(2), 280-291. https://doi.org/10.21273/HORTTECH04236-19
  • Demiray, H. C. & Parlak, A. Ö. (2023). Tek Yıllık Çim Yetiştiriciliğinde Organik Madde ve Farklı Azot Kaynaklarının Ot Verimi ve Kalitesine Etkisi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 26(4); 827-834. https://doi.org/10.18016/ksutarimdoga.vi.1102770
  • Doğan, K, Çelik, I., Gok, M. & Coşkan, A. (2011). Effect of different soil tillage methods on rhizobial nodulation, biyomas and nitrogen content of second crop soybean. African Journal of Microbiology Research, 5, 3186– 3194. https://doi.org/10.5897/AJMR11.165
  • Du Jardin, P. (2015). Plant biostimulants: Definition, Concept, Main Categories and Regulation. Scientia Horticulturae. 196; 3–14.
  • Ertani, A., Cavani, L. & Pizzeghello, D. (2009). Biostimulant activity of two protein hydrolyzates in the growth and nitrogen metabolism of maize seedlings. Journal of Plant Nutrition and Soil Science, 172(2); 237–244. https://doi.org/10.1002/jpln.200800174
  • Ferreira, L. L., Curvelo, C. R. S., Pereira, A. I. A. & Tomazele, A. A. S. (2018). Nitrogen Fertilization Combined with Biostimulant in Second-Crop Maize. International Journal of Agriculture Innovations and Research, 6(5), 246-249.
  • Forde, B.G. & Lea, P.J. (2007). Glutamate in plants: metabolism, regulation, and signaling. Journal of Experimental Botany, 58(9), 2339–2358.
  • Gibson, S. W., Ziobron, S. A., Olson, E. N., Neher, A.D., Smith, C. F. & Holden, V. (2024). On-farm biomass recycling with biostimulant Re-Gen increases corn yields in multi-year farm trials. bioRxiv. https://doi.org/10.1101/2024.04.12.589288
  • Gholami, A., Shahsavani, S. & Nezarat, S. (2009). The Effect of Plant Growth Promoting Rhizobacteria (PGPR) on Germination seedling Growth and Yield of Maize. International Journal of Biological Sciences, 5, 1.
  • Godlewska, A., & Cıepıela, G. A. (2013). The Effect of Natural Growth Regulators Obtained from Ecklonia Maxima and Mineral Nitrogen on True Protein and Simple Sugar Contents of Dactylis Glom. Turkish Journal of Field Crops, 18(2), 247-253.
  • Godlewska, A. & Ciepiela, G. A. (2018). Assessment of the effect of varıous bıostımulants on medıcago x varıa t. Martyn yıeldıng and content of selected organıc component. S. Applied Ecology & Environmental Research, 16(5). http://dx.doi.org/10.15666/aeer/1605_55715581
  • Godlewska, A. & Ciepiela, G. A. (2020). Italian Ryegrass (Lolium multiflorum Lam.) Fiber Fraction Content and Dry Matter Digestibility Following Biostimulant Application against the Background of Varied Nitrogen Regime. Agronomy, 11(1), 39, https://doi.org/10.3390/agronomy11010039
  • Godlewska, A., & Becher, M. (2021). The effect of waste materials on the content of some macroelements in test plants. Journal of Ecological Engineering, 22(4). https://doi.org/10.12911/22998993/134046
  • Gürsoy, M. (2022a). Biostimulant Applications in Agriculture. 7th International Zeugma Conference on Scientific Research. Pp:41-47. 21-23 January, Gaziantep/Türkiye
  • Gürsoy, M. (2022b). Role of Biostimulant Priming Applications on Germination, Growth and Chlorophyll Content of Sunflower (Helianthus annuus L.) Cultivars under Salinity Stress. Selcuk Journal of Agriculture and Food Sciences, 36(1), 75-81. https://doi.org/10.15316/SJAFS/2022.011
  • Hadwiger, L. A. (2013). Multiple effects of chitosan on plant systems: Solid science orhype. Plant Science, 208, 42–49.
  • Hai-Yang, Yu., Wan-Xia, He., Ying-Ning, Zou., Mashael Daghash, Alqahtani., Qiang-Sheng, Wu. (2024). Arbuscular mycorrhizal fungi and rhizobia accelerate plant growth and N accumulation and contribution to soil total N in white clover by difficultly extractable glomalin-related soil protein, Applied Soil Ecology, 197, 105348. https://doi.org/10.1016/j.apsoil.2024.105348
  • Han, M., Kasim, S., Yang, Z., Deng, X., Uddin, M. K., Saidi, N. B., & Shuib, E. M. (2024). Application of Polygonum minus Extract in Enhancing Drought Tolerance in Maize by Regulating Osmotic and Antioxidant System. Phyton (0031-9457), 93(2) https://dx.doi.org/10.32604/phyton.2024.047150
  • Iriti, M., Picchi, V., Rossoni, M., Gomarasca Ludwig, N, Gargano, M. & Faoro F. (2009). Chitosan antitranspirant activity is due to abscisic acid-dependentstomatal closure. Environmental and Experimental Botany, 66(3), 493–500. https://doi.org/10.1016/j.envexpbot.2009.01.004
  • Jabeen, N. & Ahmad, R. (2013). The Activity of Antioxidant Enzymes in Response to Salt Stress in Safflower (Carthamus tinctorius L.) and Sunflower (Helianthus annuus L.) Seedlings Raised from Seed Treated with Chitosan. J Sci Food Agric, 93; 1699-1705. https://doi.org/10.1002/jsfa.5953
  • Katiyar Hemantaranjan, A., & Singh, B. (2015). Chitosan as a promising natural compound to enhance potential physiological responses in plant. Indian Journal of Plant Physiology, 20, 1–9. https://doi.org/10.1007/s40502-015-0139-6
  • Kaya, A. R., Yıldırım, M., & Sakin, S. Ç. (2024). A Study of Effects of Different Organic Origin Liquid Seaweed Doses on Germination Radicle and Plumule Growth in Winter Cereal Species. Türk Doğa ve Fen Dergisi, 13(2), 114-120. https://doi.org/10.46810/tdfd.1413556
  • Khaleda, L., Kim, M. G., Kim, W. Y., Jeon, J. R. & Cha, J. Y. (2017). Humic Acid and Synthesized Humic Mimic Promote the Growth of Italian Ryegrass. Journal of The Korean Society of Grassland and Forage Science. The Korean Society of Grassland and Forage Science. https://doi.org/10.5333/kgfs.2017.37.3.242
  • Khan, W., Rayirath, U. P. & Subramanian, S. (2009). Seaweed extracts as biostimulants of plant growth and development. Journal of Plant Growth Regulation, 28, 386–399. https://doi.org/10.1007/s00344-009-9103-x
  • Khan, W., Hiltz, D., Critchley, A. T., & Prithiviraj, B., (2011). Bioassay to detect Ascophyllum nodosum extract-induced cytokinin-like activity in Arabidopsis thaliana. Journal of Applied Phycology, 23(3); 409–414. https://doi.org/10.1007/s10811-010-9583-x
  • Khan, Z. H., Kahn, M. A., Aftab, T., Idrees, M. & Naeem, M. (2011). Influence of alginate oligosaccharides on growth, yield and alkaloid production of opium poppy (Papaver somniferum L.). Front Agriculture China, 5, 122–127. https://doi.org/10.1007/s11703-010-1056-0
  • Kpomblekou, K. & Tabatabai, M. A. (1994). Effect of organic acids on release of phosphorus from phosphate rocks. Soil Science Society of America Journal, 158, 442–453. https://doi.org/10.1016/S0167-8809(03)00185-3
  • Kumaraswamy, R. V., Saharan, V., Kumari, S., Choudhary, R. C., Pal, A., Sharma, S.S., Rakshit, S., Raliya, R. & Biswas, P. (2021). Chitosan-silicon nanofertilizer to enhance plant growth and yield in maize (Zea mays L.), Plant Physiology and Biochemistry, 159, 53-66, https://doi.org/10.1016/j.plaphy.2020.11.054
  • Külahtaş, B. & Çokuysal, B. (2016). Biyostimulantların Sınıflandırılması ve Türkiye’deki Durumu. Çukurova Tarım ve Gıda Bilimleri Dergisi, 31(3); 185-200.
  • Lamabam, P. S., Gill, S. S. & Tuteja, N. (2011). Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav, 6;175-191. https://doi.org/10.4161/psb.6.2.14146
  • Lucini, L., Rouphael, Y., Cardarelli, M., Canaguier, R., Kumar, P. & Colla, G. (2015). The effect of a plant-derived biostimulant on metabolic profiling and crop performance of lettuce grown under saline conditions. Scientia Horticulturae, 182, 124-133. https://doi.org/10.1016/j.scienta.2014.11.022
  • Lumactud, R. A., Gorim, L. Y. & Thilakarathna, M. S. (2022). Impacts of humic-based products on the microbial community structure and functions toward sustainable agriculture. Frontiers in Sustainable Food Systems. 6, 977121. https://doi.org/10.3389/fsufs.2022.977121
  • Macháč, R. (2013). Effects of Trinexapac-Ethyl (Moddus) on Seed Yields and Its Quality of Eleven Temperate Grass Species. In: Barth, S., Milbourne, D. (eds) Breeding strategies for sustainable forage and turf grass improvement. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4555-1_49
  • Maçin, K. E. (2021). Biyoekonomi Stratejisi ve Sıfır Atık Perspektifinden Türkiye’de Gıda Atıkları Yönetimi ve Paydaşların Görevleri, 15-17 Eylül 2021 AB Yeşil Mutabakatı, İstanbul.
  • Makhlouf, B. S. I., Khalil, S. R. A. E. & Saudy, H. S. (2022). Efficacy of Humic Acids and Chitosan for Enhancing Yield and Sugar Quality of Sugar Beet Under Moderate and Severe Drought. Journal of Soil Science and Plant Nutrition, 22; 1676–1691. https://doi.org/10.1007/s42729-022- 00762-7
  • Malécange, M., Sergheraert, R., Teulat, B., Mounier, E., Lothier, J. & Sakr, S. (2023). Biostimulant Properties of Protein Hydrolysates: Recent Advances and Future Challenges. International Journal of Molecular Sciences, 24(11); 9714. https://doi.org/10.3390/ijms24119714
  • Malik, K. A., Mirza, M. S., Hassan, U., Mehnaz, S., Rasul, G., Haurat, J., Bauy, R. & Normanel, P. (2002). The role of plant associated beneficial bacteria in rice-wheat cropping system. In: Kennedy IR, Chaudhry A (eds) Biofertilisers in action. Rural Industries Research and Development Corporation, Canberra; 73–83. https://doi.org/10.1007/s13213-010-0117-1
  • Mancuso, S., Azzarello, E., Mugnai, S. & Briand, X. (2006). Marine bioactive substances (IPA extract) improve foliar ion uptake and water stress tolerance in potted Vitis vinifera plants. Advances in Horticultural Science, 20; 156-161.
  • Nazzal, M., Uzun, F., Öztürk, Ö. F., & Çetin, U. (2023). The Effect of Soil and Foliar Application of Macro-Algae at Increasing Doses on the Nutrient Content of the Alfalfa Plants. Agribalkan. V. Balkan Agricultural Congress, 534.
  • Nehra, K., Yadav, S. A., Sehrawat, A. R. & Vashishat, R. K. (2007). Characterization of heat resistant mutant strains of Rhizobium sp. [Cajanus] for growth, survival and symbiotic properties. Indian Journal of Microbiology, 47, 329–335. https://doi.org/ 10.1007/s12088-007-0060-4
  • Oddi, L., Volpe, V., Carotenuto, G., Politi, M., Barni, E., Crosino, A., Siniscalco, C., & Genre, A. 2024. Boosting species evenness, productivity, and weed control in a mixed meadow by promoting arbuscular mycorrhizas. Frontiers in Plant Science, 15, 1303750. https://doi.org/10.3389/fpls.2024.1303750
  • Okur, N. & Ortaş, İ. (2012). Mikrobiyolojik Gübreler ve Tarımda Mikorizalar: Bitki Besleme M. Rüştü Karaman (Ed.), Gübretaş Rehber Kitaplar Dizisi, 555-599, Ankara.
  • Ortaş, İ., Ergün, B., Ortakçı, D., Ercan, S. & Köse, Ö. (1999). Mikoriza Sporlarının Üretim Tekniği ve Tarımda Kullanım Olanakları. Turkish Journal of Agriculture and Forestry, 23(4), 959-968.
  • Öner, N., Demirkıran, A. R. & Öner, F. (2023). Time-Dependent Change of Plant Nutrients in Italian Grass (Lolium multiflorum) after Foliar Fertilization. Türk Doğa ve Fen Dergisi, 12(1), 136-143. https://doi.org/10.46810/tdfd.1206130
  • Öner, M. & Cengiz, R. (2023). Mısır (Zea mays L.) Bitkisi Çimlenme Dönemi Parametrelerini İyileştirilmesi İçin Priming Yöntemiyle Kitosan Kaplamada Doz Belirlenmesi. Journal of Agricultural Biotechnology, 4(2), 63-74.
  • Parrado, J., Bautista, J., Romero, E. J., García-Martínez, A. M., Friaza, V. & Tejada, M. (2008). Production of A Carob Enzymatic Extract: Potential Use As A Biofertilizer. Bioresource Technology, 99(7), 2312-2318 https://doi.org/10.1016/j.biortech.2007.05.029
  • Paul, D. & Nair, S. (2008). Stress adaptations in a plant growth promoting Rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. Journal of Basic Microbiology, 4, 1–7. https://doi.org/10.1002/jobm.200700365
  • Peñas-Corte, M., Bouzas, P. R., Nieto del Río, J., Manzanera, M., Barros-Rodríguez, A., & Fernández-Navarro, J. R. (2024). Enhancing maize stress tolerance and productivity through synergistic application of Bacillus velezensis A6 and Lamiales plant extract, biostimulants suitable for organic farming. Biology, 13(9), 718. https://doi.org/10.3390/biology13090718
  • Piccolo, A. & Spiteller, M. (2003). Electrospray ionization mass spectrometry of terrestrial humic substances and their size fractions. Analytical and Bioanalytical Chemistry, 377(6), 1047–1059. https://doi.org/10.1007/s00216-003-2186-5
  • Pretorius, J. C. (2013). Extracts and compounds from “Agapanthus africanus” and their use as biological plant protecting agents. U.S. Patent No:8, 435-571.
  • Priolo, D., Tolisano, C., Ballerini, E., Brienza, M. & Del Buono, D. (2024). Stimulatory Effect of an Extract of Lemna minor L. in Protecting Maize from Salinity: A Multifaceted Biostimulant for Modulating Physiology, Redox Balance, and Nutrient Uptake. Agriculture, 14, 705. https://doi.org/10.3390/agriculture14050705
  • Przybysz, A., Gawrońska, H., & Gajc-Wolska, J. (2014). Biological mode of action of a nitrophenolates-based biostimulant: case study. Frontiers in Plant Science, 5, 713. https://doi.org/10.3389/fpls.2014.00713
  • Povero, G., Mejia, J. F., Di Tommaso, D., Piaggesi, A. & Warrior, P. A. (2016). Systematic Approach to Discover and Characterize Natural Plant Biostimulants. Frontiers in Plant Science, 7, 435. https://doi.org/10.3389/fpls.2016.00435
  • Qiu, Y., Amirkhani, M., Mayton, H., Chen, Z. & Taylor, A.G. (2020). Biostimulant seed coating treatments to improve cover crop germination and seedling growth. Agronomy, 10 (2),154. https://doi.org/10.3390/agronomy10020154
  • Radkowski, A., Radkowska, I., Bocianowski, J., Sladkovska, T. & Wolski, K. (2020). The Effect of Foliar Application of an Amino Acid-Based Biostimulant on Lawn Functional Value. Agronomy, 10(11), 1656. https://doi.org/10.3390/agronomy10111656
  • Rayorath, P., Jithesh, M. N., Farid, A., Khan, W., Palanisamy, R., Hankins, S. D., Critchley, A. T. & Prithiviraj, B. (2008). Rapid bioassays to evaluate the plant growth promoting activity of Ascophyllum nodosum (L.) Le Jol. using a model plant, Arabidopsis thaliana (L.) Heynh. Journal of Applied Phycology, 20(4), 423-429. https://doi.org/10.1007/s10811-007-9280-6
  • Rouphael Colla, G. (2018). Synergistic Biostimulatory Action: Designing the Next Generation of Plant Biostimulants for Sustainable Agriculture. Frontiers Plant Science, 9, 1655. https://doi.org/10.3389/fpls.2018.01655
  • Ryan, M. H., Norton, R. M., Kirkegaard, J. A., McCormick, K. M., Knights, S. E. & Angus, J. F. (2002). Increasing mycorrhizal colonization does not improve growth and nutrition of wheat on Vertosols in south-eastern Australia. Australian Journal of Agricultural Research, 53(10), 1173-1181. https://doi.org/10.1071/AR02005
  • Saadat, D., Siller, A., & Hashemi, M. (2023). Phenology, Nitrogen Status, and Yield of Red Clover (Trifolium pretense L.) Affected by Application of Vitamin B12, Humic Acid, and Enriched Biochar. Agronomy, 13, 2885. https://doi.org/10.3390/agronomy13122885
  • Sahoo, R., K., Ansari, M., W., Dangar, T., K., Mohanty, S. & Tuteja, N. (2013). Phenotypic and molecular characterization of efficient nitrogen fixing Azotobacter strains of the rice fields. Protoplasma, https://doi.org/10.1007/s00709-013-0547-2
  • Sánchez-Gómez, R., Zalacain, A., Pardo, F., Alonso, G. L. & Salinas, M. R. (2016). An innovative use of vine-shoots residues and their “feedback” effect on wine quality. Innovative Food Science & Emerging Technologies, 37, 18-26. https://doi.org/10.1016/j.ifset.2016.07.021
  • Senthilraja, K., Jothimani, P., & Rajannan, G. (2013). Effect of brewery wastewater on growth and physiological changes in maize, sunflower and sesame crops. Int J Life Sci Educ Res, 1(1), 36-42.
  • Sever Mutlu, S., Sever, E. & Sonmez, S. (2019). Mikrobiyal gübre uygulamalarının Lolium perenne L. türünün çim performansı üzerine etkileri. Mediterranean Agricultural Sciences; 147-155. https://doi.org/10.29136/mediterranean.560213
  • Sezen, G. & Küçük, Ç. (2021). Microcystis viridis ve Aphanizomenon gracile Karışık Kültürün Fiğ, Nohut ve Arpa Gelişimine Etkileri. Commagene Journal of Biology, 5(2); 182-186. https://doi.org/10.31594/commagene.1031232
  • Sezen, G. & Küçük, Ç. 2023. Mısır (Zea mays L. ) ve Mercimek (Lens culinaris Medik) Gelişimi Üzerine Microcystis viridis ve Aphanizomenon gracile Karışımının Etkisi. Commagene Journal of Biology, 7(2); 141-146. https://doi.org/10.31594/commagene.1396910
  • Sharma, P., Sardana, V. & Kandola, S. S. (2011). Response of groundnut (Arachishypogaea L.) to Rhizobium Inoculation. Libyan Agriculture Research Center Journal International, 2 (3), 101–104
  • Sharma, S. S., & Dietz, K. J. (2006). The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. Journal of Experimental Botany, 57(4), 711-726. https://doi.org/10.1093/JXB/ERJ073
  • Shen, J., Guo, M. J., Wang, Y. G., Yuan, X. Y., Wen, Y. Y., Song, X. E., Dong, S. Q. & Guo, P. Y. (2020). Humic acid improves the physiologial and photosynthetic characteristics of millet seedlings under drought stress. Plant Signal Behav. 15, 1774212. https://doi.org/10.1080/15592324.1774212
  • Sheng, X. F. & He, L. Y. (2006). Solubilization of potassium-bearing minerals by a wildtype strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Canadian Journal of Microbiology, 52, 66–72. https://doi.org/10.1139/w05-117
  • Smith, S. E., Jakobsen, I., Grønlund, M. & Smith, F. A. (2011). Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156; 1050–1057. https://doi.org/10.1104/pp.111.174581
  • Şanlı, A., Ok, F. Z. & Erbaş, S. (2023). Yapraktan Amino Asit Uygulamalarının Bazı Şeker Pancarı (Beta vulgaris var. saccharifera L.) Çeşitlerinin Verim ve Kalitesine Etkileri. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(1), 290-298. https://doi.org/10.53433/yyufbed.1188512
  • Şen, F., Eroğul, D. & Altuntaş, Ö. (2022). Yapraktan Farklı Biyostimülant Uygulama Programlarının ‘0900 Ziraat’ Kiraz Meyvelerinin Kalitesi ve Hasat Sonrası Dayanımına Etkisi. ISPEC Tarım Bilimleri Dergisi. https://doi.org/10.46291/ISPECJASvol6iss2id302
  • Trethewey, J., Rolston, M. P., McCloy, B. L., & Chynoweth, R. J. (2016), The plant growth regulator, trinexapac-ethyl, increases seed yield in annual ryegrass (Lolium multiflorum Lam.), New Zealand Journal of Agricultural Research, 59, 113 – 121. https://doi.org/10.1080/00288233.2015.1134590
  • Torres-García, A., Héctor-Ardisana, E. F., León-Aguilar, R., Zambrano-Gavilanes, F. E. & Fosado Téllez, O. A. (2024). Vermicompost Leachate-Based Biostimulant and its Effects on Physiological Variables and Yield of Different Crops in Manabí, Ecuador. Ciencia & Tecnología Agropecuaria, 25(1). https://doi.org/10.21930/rcta.vol25_num1_art:3388.
  • Ugolini, L., Cinti, S., Righetti, L., Stefan, A., Matteo, R., D’Avino, L. & Lazzeri L. (2015). Production of an enzymatic protein hydrolyzate from defatted sunflower seed meal for potential application as a plant biostimulant. Industrial Crops and Products, 75, 15-23.https://doi.org/10.1016/j.indcrop.2014.11.026
  • Umarusman, M. A., Aysan, Y. & Özgüven, M. (2019). Farklı bitki ekstraktlarının bezelye bakteriyel yaprak yanıklığına (Pseudomonas syringae pv. pisi) antibakteriyel etkilerinin araştırılması. Tekirdağ Ziraat Fakültesi Dergisi, 16(3), 297-314.
  • Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant Soil, 255, 571–586. https://doi.org/10.1023/a:1026037216893
  • Yakhin, I. A., Ibragimov, R. I., Yakhin, O. I., Isaev, R. F. & Vakhitov, V. A. (1998). The induced effect of biopreparation stifun on the accumulation of trypsin inhibitors in potato tubers during storage. Russian Agricultural Sciences, 4; 12–13. https://doi.org/10.3389/fpls.2016.02049
  • Yakhin, O. I., Lubyanov, A. A., Yakhin, I. A. & Brown, P. H., (2017). Biostimulants in plant science: a global perspective. Frontiers in Plant Science, 7; 204. https://doi.org/10.3389/fpls.2016.02049
  • Yasmeen, A., Nouman, W., Basra, S. M. A., Wahid, A., Rehman, H., Hussain, N. & Afzal, I. (2014). Morphological and physiological response of tomato (Solanum lycopersicum L.) to natural and synthetic cytokinin sources: a comparative study. Acta Physiologiae Plantarum, 36(12); 3147-3155. https://doi.org/10.1007/s11738-014-1662-1
Toplam 105 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ziraat Mühendisliği (Diğer)
Bölüm Reviews
Yazarlar

Nurbaki Akdağ 0000-0002-2610-2799

Cengiz Sancak

Cansu Telci Kahramanoğulları Bu kişi benim

Yayımlanma Tarihi 28 Aralık 2024
Gönderilme Tarihi 22 Ağustos 2024
Kabul Tarihi 6 Kasım 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Akdağ, N., Sancak, C., & Telci Kahramanoğulları, C. (2024). Biostimulants for sustainable agriculture in forage crops. Soil Studies, 13(2), 119-130. https://doi.org/10.21657/soilst.1601789