Araştırma Makalesi
BibTex RIS Kaynak Göster

Agro-morphological and enzymatic responses of onion to salinity stress under deficit irrigation conditions

Yıl 2025, Cilt: 14 Sayı: 2, 49 - 62, 10.12.2025
https://doi.org/10.21657/soilst.1839289

Öz

In this study, the responses of onion to drought and salinity stress were investigated. In the research, a total of 15 treatments were designed including water stress levels (I1: non-stress, I2: %25 water stress, I3: %50 water stress) and different NaCl concentrations (S1: 0.3 dS/m-control, S2: 2.5 dS/m, S3: 5.0 dS/m, S4: 7.5 dS/m, S5: 10.0 dS/m). During the experiment, 9.25, 7.66 and 6.07 L/pot irrigation water was applied to I1, I2 and I3 treatments, respectively. As a result of the study, both drought and salinity stress showed destructive effects on the agro-morphological parameters of onion. Especially salinity levels above 7.5 dS/m triggered significant decreases in yield and yield components in onion. Onion yield decreased by 17.3% in S2, 30.3% in S3, 37.5% in S4 and 56.2% in S5 compared to the control group (S1) according to salinity levels. When the effects of water stress and salinity stress were evaluated separately, the highest membrane damage (58.4%) was determined in severe water stress treatment (I3), and the highest H2O2 content was determined in severe salinity stress treatment S5. On the other hand, antioxidant enzymes such as catalase (CAT), peroxidase (POD) and superoxide dismutase undertook more significant tasks under salinity stress compared to water stress and these enzymes reached maximum values especially under severe salinity stress. Increasing salinity stress decreased the water productivity (WP) of onion, whereas increasing water stress provided significant increases in WP values. According to the obtained data; the use of water with electrical conductivity above 2.5 dS/m in irrigation shows that there will be significant yield decreases in onion. On the other hand, it was clearly understood from the results of this study that 25% to 50% water saving can be achieved by deficit irrigation in onion cultivation in water stressed environments.

Kaynakça

  • Al-Harbi, A.R., Hegazi, H.H., Alsadon, A.A., & El-Adgham, F. (2002). Growth and yield of onion (Allium cepa L.) cultivars under different levels of irrigation water salinity. J. King Saud Univ 14(1), 23-32.
  • Al-Sammarraie, O.N., Alsharafa, K.Y., Al-Limoun, M.O., Khleifat, K.M., Al-Sarayreh, S.A., Al-Shuneigat, J.M., & Kalaji, H.M. (2020). Effect of various abiotic stressors on some biochemical indices of Lepidium sativum plants. Scientific Reports 10 (1), 21131. https://doi.org/10.1038/s41598-020-78330-1
  • Arıkan, Ş., İpek, M., Eşitken, A., & Pırlak, L. (2018). Morphological and Physiological Responses to Salt Stress of Blackberry (Rubus fruticocus L.) Cultivar “Jumbo”. 4th International symposium on environment and morals 27-29 June 2018 (ISEM2018 Sarajevo / Bosnia and Herzegovina). 410-415
  • Arora, D., & Bhatla, S.C. (2017). Melatonin and nitric oxide regulate sunflower seedling growth under salt stress accompanying differential expression of Cu/Zn SOD and Mn SOD. Free Radical Biology and Medicine, 106, 315-328. https://doi.org/10.1016/j.freeradbiomed.2017.02.042
  • Ashraf, M., & Harris, P.J.C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science J., 166(1), 3-16. https://doi.org/10.1016/j.plantsci.2003.10.024
  • Asraf, M., & Foolad, M.R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59, 206-216. https://doi.org/10.1016/j.envexpbot.2005.12.006
  • Basahi, J.M., Ismail, I.M., & Hassan, I.A. (2014). Effects of enhanced UV-B radiation and drought stress on photosynthetic performance of lettuce (Lactuca sativa L. Romaine) plants. Annual Research & Review in Biology, 4(11), 1739-1756 DOI: 10.9734/ARRB/2014/6638
  • Bates, L.S., Waldren, R.P., & Teare, I. (1973). Rapid determination of free proline for water-stress studies. Plant Soil, 39 (1), 205-207. https://doi.org/10.1007/BF00018060
  • Bekheet, S. A., Taha, H. S., & Solliman, M. E. (2006). Salt tolerance in tissue culture of onion (Allium cepa L.). Arab Journal Biotech, 9(3), 467-476.Bergmeyer, H. U., Bergmeyer, J., & Graßl, M. (1983). Samples, reagents, assessment of results. Methods Enzymol 2, 211-213.
  • Bergmeyer, H. U., Bergmeyer, J., & Grassl, M. (Eds.). (1983). Methods of enzymatic analysis. Vol. I. Fundamentals.
  • Beyer Jr, W. F., & Fridovich, I. (1987). Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Analytical biochemistry, 161(2), 559-566. https://doi.org/10.1016/0003-2697(87)90489-1
  • Blum, A. (2009). Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field crops research, 112(2-3), 119-123. https://doi.org/10.1016/j.fcr.2009.03.009
  • Borromeo, I., Domenici, F., Del Gallo, M., & Forni, C. (2023). Role of polyamines in the response to salt stress of tomato. Plants, 12(9), 1855. https://doi.org/10.3390/plants12091855
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  • Castellanos, M. T., Cartagena, M. C., Requejo, M. I., Arce, A., Cabello, M. J., Ribas, F., & Tarquis, A. M. (2016). Agronomic concepts in water footprint assessment: A case of study in a fertirrigated melon crop under semiarid conditions. Agricultural Water Management, 170, 81-90.https://doi.org/10.1016/j.agwat.2016.01.014
  • Chaudhry, U. K., Öztürk, Z. N., & Gökçe, A. F. (2024). Assessment of salt and drought stress on the biochemical and molecular functioning of onion cultivars. Molecular Biology Reports, 51(1), 37. https://doi.org/10.1007/s11033-023-08923-2
  • Chen, Y. E., Zhang, C. M., Su, Y. Q., Ma, J., Zhang, Z. W., Yuan, M., ... & Yuan, S. (2017). Responses of photosystem II and antioxidative systems to high light and high temperature co-stress in wheat. Environmental and experimental botany, 135, 45-55.https://doi.org/10.1016/j.envexpbot.2016.12.001
  • Cruz, M. H. C., Leal, C. L. V., Cruz, J. F. D., Tan, D. X., & Reiter, R. J. (2014). Essential actions of melatonin in protecting the ovary from oxidative damage. Theriogenology, 82(7), 925-932. https://doi.org/10.1016/j.theriogenology.2014.07.011
  • Çebi, Ü. K., Özer, S., Altıntaș, S., Öztürk, O., & Yurtseven, E. (2018). Effect of different irrigation levels and irrigation water salinity on water use efficiency and yield of tomato grown in greenhouse. Harran Journal Agriculture Food Science, 22(1), 33-46
  • El Balla, M. D., Hamid, A. A., & Abdelmageed, A. H. A. (2013). Effects of time of water stress on flowering, seed yield and seed quality of common onion (Allium cepa L.) under the arid tropical conditions of Sudan. Agricultural Water Management, 121, 149-157. https://doi.org/10.1016/j.agwat.2013.02.002
  • Erişmiş, M. (2023). Standartlaştırılmış yağış buharlaşma indeksine göre Meriç Nehri Havzasında uzun dönem kuraklık analizi. International Journal of Geography and Geography Education, (50), 313-328. https://doi.org/10.32003/igge.1297107
  • Fernández-Cirelli, A., Arumí, J. L., Rivera, D., & Boochs, P. W. (2009). Environmental effects of irrigation in arid and semi-arid regions. Chilean Journal of Agricultural Research 69 (2009), Nr. SUPPL. 1,69 (SUPPL. 1), 27-40. https://doi.org/10.4067/S0718-58392009000500004
  • Foyer, C. H., & Shigeoka, S. (2011). Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant physiology, 155(1), 93-100. https://doi.org/10.1104/pp.110.166181
  • Geries, L. S. M., El-Shahawy, T. A., & Moursi, E. A. (2021). Cut-off irrigation as an effective tool to increase water-use efficiency, enhance productivity, quality and storability of some onion cultivars. Agricultural Water Management, 244, 106589. https://doi.org/10.1016/j.agwat.2020.106589
  • Ghodke, P., Khandagale, K., Thangasamy, A., Kulkarni, A., Narwade, N., Shirsat, D., ... & Singh, M. (2020). Comparative transcriptome analyses in contrasting onion (Allium cepa L.) genotypes for drought stress. PLoS One, 15(8), e0237457. https://doi.org/10.1371/journal.pone.0237457
  • Giordano, M., Petropoulos, S. A., & Rouphael, Y. (2021). Response and defence mechanisms of vegeFFFcrops against drought, heat and salinity stress. Agriculture, 11(5), 463. https://doi.org/10.3390/agriculture11050463
  • Gondim, F. A., Gomes-Filho, E., Costa, J. H., Alencar, N. L. M., & Prisco, J. T. (2012). Catalase plays a key role in salt stress acclimation induced by hydrogen peroxide pretreatment in maize. Plant Physiology and Biochemistry, 56, 62-71. https://doi.org/10.1016/j.plaphy.2012.04.012
  • Corpas, F. J., Gupta, D. K., & Palma, J. M. (2015). Production sites of reactive oxygen species (ROS) in organelles from plant cells. In Reactive oxygen species and oxidative damage in plants under stress (pp. 1-22). Cham: Springer International Publishing.
  • Havir, E. A., & McHale, N. A. (1987). Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant physiology, 84(2), 450-455. https://doi.org/10.1104/pp.84.2.450
  • Jebara, S., Jebara, M., Limam, F., & Aouani, M. E. (2005). Changes in ascorbate peroxidase, catalase, guaiacol peroxidase and superoxide dismutase activities in common bean (Phaseolus vulgaris) nodules under salt stress. Journal of plant physiology, 162(8), 929-936. https://doi.org/10.1016/j.jplph.2004.10.005
  • Ji, W., Cong, R., Li, S., Li, R., Qin, Z., Li, Y., ... & Li, J. (2016). Comparative proteomic analysis of soybean leaves and roots by iTRAQ provides insights into response mechanisms to short-term salt stress. Frontiers in Plant Science, 7, 573. https://doi.org/10.3389/fpls.2016.00573
  • Kahraman, N.D., & Topal, A. (2024). Differences in physiological indicators of seed germination in durum wheat cultivars subjected to salinity stress. Mustafa Kemal University Journal of Agricultural Sciences 29(1), 148-157. https://doi.org/10.37908/mkutbd.1385772
  • Kal, Ü., Dal, Y., Kayak, N., Yavuz, D., Türkmen, Ö., & Seymen, M. (2023). Application of nitrogen for mitigating the adverse effects of flooding stress in lettuce. Journal of Plant Nutrition, 46(20), 4664-4678. https://doi.org/10.1080/01904167.2023.2240831
  • Keyvan, S. (2010). The effects of drought stress on yield, relative water content, proline, soluble carbohydrates and chlorophyll of bread wheat cultivars. Journal of Animal & Plant Sciences,8(3), 1051-1060
  • Khandagale, K., Roylawar, P., Kulkarni, O., Khambalkar, P., Ade, A., Kulkarni, A., ... & Gawande, S. (2022). Comparative transcriptome analysis of onion in response to infection by Alternaria porri (Ellis) cifferi. Frontiers in Plant Science, 13, 857306. https://doi.org/10.3389/fpls.2022.857306
  • Kirecci, O. A. (2018). Enzymatic and Non-Enzymatic Antioxidants in Plants. Bitlis Eren University Journal of Science 7(2), 473-483. https://doi.org/10.17798/bitlisfen.463251
  • Kostopoulou, Z., Therios, I., Roumeliotis, E., Kanellis, A. K., & Molassiotis, A. (2015). Melatonin combined with ascorbic acid provides salt adaptation in Citrus aurantium L. seedlings. Plant Physiology and Biochemistry, 86, 155-165.
  • Kotuby, J., Koenig, R., & Kitchen, B. (1997). Salinity and Plant Tolerance. Utah State University Extension. AG-SO-03. Utah
  • Krasensky, J., & Jonak, C. (2012). Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of experimental botany, 63(4), 1593-1608. https://doi.org/10.1093/jxb/err460
  • Li, H., Chang, J., Chen, H., Wang, Z., Gu, X., Wei, C., ... & Zhang, X. (2017). Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis. Frontiers in plant science, 8, 295. https://doi.org/10.3389/fpls.2017.00295
  • Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In Methods in enzymology. 148, 350-382. Academic Press.https://doi.org/10.1016/0076-6879(87)48036-1
  • Liu, E. K., Mei, X. R., Yan, C. R., Gong, D. Z., & Zhang, Y. Q. (2016). Effects of water stress on photosynthetic characteristics, dry matter translocation and WUE in two winter wheat genotypes. Agricultural Water Management, 167, 75-85. https://doi.org/10.1016/j.agwat.2015.12.026
  • Lutts, S., Kinet, J. M., & Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativaL.) cultivars differing in salinity resistance. Annals of botany, 78(3), 389-398.https://doi.org/10.1006/anbo.1996.0134
  • Machado, R. M. A., & Serralheiro, R. P. (2017). Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae, 3(2), 30. https://doi.org/10.3390/horticulturae3020030
  • Mishra, P., & Sharma, P. (2019). Superoxide Dismutases (SODs) and their role in regulating abiotic stress induced oxidative stress in plants. Reactive oxygen, nitrogen and sulfur species in plants: production, metabolism, signaling and defense mechanisms, 53-88.
  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in plant science, 7(9), 405-410. DOI: 10.1016/S1360-1385(02)02312-9
  • Mukherjee, S., David, A., Yadav, S., Baluška, F., & Bhatla, S. C. (2014). Salt stress‐induced seedling growth inhibition coincides with differential distribution of serotonin and melatonin in sunflower seedling roots and cotyledons. Physiologia plantarum, 152(4), 714-728. https://doi.org/10.1111/ppl.12218
  • Munoz-Perea, C. G., Allen, R. G., Westermann, D. T., Wright, J. L., & Singh, S. P. (2007). Water use efficiency among dry bean landraces and cultivars in drought-stressed and non-stressed environments. Euphytica, 155(3), 393-402.https://doi.org/10.1007/s10681-006-9340-z
  • Oh, M. M., Carey, E. E., & Rajashekar, C. B. (2009). Environmental stresses induce health-promoting phytochemicals in lettuce. Plant Physiology and Biochemistry, 47(7), 578-583. https://doi.org/10.1016/j.plaphy.2009.02.008
  • Ozturk, H. I., Nas, H., Ekinci, M., Turan, M., Ercisli, S., Narmanlioglu, H. K., ... & Peluso, I. (2022). Antioxidant activity, phenolic composition, and hormone content of wild edible vegetables. Horticulturae, 8(5), 427. https://doi.org/10.3390/horticulturae8050427
  • Özüpekçe, S. (2021). Drought analysis and relationship with water resources of western mediterrenean basins closed area. International Journal of Geography and Geography Education, (43), 317-337. https://doi.org/10.32003/igge.790949
  • Reddy, A. R., Chaitanya, K. V., & Vivekanandan, M. (2004). Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of plant physiology, 161(11), 1189-1202. https://doi.org/10.1016/j.jplph.2004.01.013
  • Sachdev, S., Ansari, S. A., Ansari, M. I., Fujita, M., & Hasanuzzaman, M. (2021). Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antioxidants, 10(2), 277. https://doi.org/10.3390/antiox10020277
  • Scandalios, J. G., Guan, L., & Polidoros, A. N. (1997). Catalases in plants: gene structure, properties, regulation, and expression. cold Spring Harbor monograph series, 34, 343-406.
  • Seymen, M., Yavuz, D., Can, H., Kıymacı, G., Türkmen, Ö., Paksoy, M., ... & Kurtar, E. S. (2024). Molecular and physiological responses to exogenously applied melatonin in spinach under deficit irrigation conditions. Journal of Plant Growth Regulation, 43(6), 1858-1874.https://doi.org/10.1007/s00344-023-11226-2
  • Seymen, M. (2021). How does the flooding stress occurring in different harvest times affect the morpho-physiological and biochemical characteristics of spinach? Scientia Horticulturae, 275, 109713. https://doi.org/10.1016/j.scienta.2020.109713
  • Shawon, R. A., Kang, B. S., Lee, S. G., Kim, S. K., Lee, H. J., Katrich, E., ... & Ku, Y. G. (2020). Influence of drought stress on bioactive compounds, antioxidant enzymes and glucosinolate contents of Chinese cabbage (Brassica rapa). Food chemistry, 308, 125657. https://doi.org/10.1016/j.foodchem.2019.125657
  • Smedema, L. K., & Shiati, K. (2002). Irrigation and salinity: a perspective review of the salinity hazards of irrigation development in the arid zone. Irrigation and drainage systems, 16(2), 161-174. https://doi.org/10.1023/A:1016008417327
  • Smirnoff, N. (2005). Antioxidants and reactive oxygen species in plants. 169-177 Oxford: Blackwell. https://doi.org/10.1002/9780470988565
  • Partigöç, N.S., Soğanci, S. (2019). An Inevitable Consequence of Global Climate Change: Drought. Resilience 3(2), 287-299. https://doi.org/10.32569/resilience.619219
  • Sönmez, F. K., Kömüscü, A. Ü., Erkan, A., & Turgu, E. (2005). An analysis of spatial and temporal dimension of drought vulnerability in Turkey using the standardized precipitation index. Natural hazards, 35(2), 243-264. https://doi.org/10.1007/s11069-004-5704-7
  • Türkeş, M. (2014). Impacts of the Climate Change on Agricultural Food Security, Traditional Knowledge and Agroecology. Turkish Journal of Agriculture - Food Science and Technology 2(2), 71. https://doi.org/10.24925/turjaf.v2i2.71-85.60
  • Wang, Q., Dodd, I. C., Belimov, A. A., & Jiang, F. (2016). Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase growth and photosynthesis of pea plants under salt stress by limiting Na+ accumulation. Functional Plant Biology, 43(2), 161-172. https://doi.org/10.1071/FP15200
  • Yakar, S., & Tuna, A.L. (2023). Effects of Some Common Insecticides on Lipid Peroxidation and Antioxidative System in Tomato (S. lycopersicon L.). Anadolu Journal Agriculture Science, 38(1), 81-98. https://doi.org/10.7161/omuanajas.1092843
  • Yasar, F., Yıldırım, Ö., & Üzal, Ö. (2020). Investigation of the Effect of Calcium Applications on Antioxidative Enzyme Activities in Pepper Plant Under Salt Stress. Ispec Journal of Agricultural Sciences 4(2), 346-357. https://doi.org/10.46291/ispecjasvol4iss2pp211-222
  • Yavuz, D., Kılıç, E., Seymen, M., Dal, Y., Kayak, N., Kal, Ü., & Yavuz, N. (2022). The effect of irrigation water salinity on the morph-physiological and biochemical properties of spinach under deficit irrigation conditions. Scientia Horticulturae, 304, 111272. https://doi.org/10.1016/j.scienta.2022.111272
  • Yavuz, D., Rashid, B. A. R., & Seymen, M. (2023). The influence of NaCl salinity on evapotranspiration, yield traits, antioxidant status, and mineral composition of lettuce grown under deficit irrigation. Scientia Horticulturae, 310, 111776. https://doi.org/10.1016/j.scienta.2022.111776
  • Yavuz, N., Seymen, M., & Kal, Ü. (2021). Impacts of water stress and harvest time on physio-biochemical characteristics of lettuce. International Journal of Agricultural and Natural Sciences, 14(2), 61-77. Yetişsin, F., & Karakaya, A. (2022). Investigation of the effects of acetone o-(4 chlorophenylsulfonyl) oxime pre-application on biochemical parameters of maize seedlings under salt stress. Artvin Coruh University Journal of Forestry Faculty 23(1), 74-83. https://doi.org/10.17474/artvinofd.980327
  • Zhang, J. L., & Shi, H. (2013). Physiological and molecular mechanisms of plant salt tolerance. Photosynthesis research, 115(1), 1-22. https://doi.org/10.1007/s11120-013-9813-6
  • Zhang, L., Zhang, C., Wu, P., Chen, Y., Li, M., Jiang, H., & Wu, G. (2014). Global analysis of gene expression profiles in physic nut (Jatropha curcas L.) seedlings exposed to salt stress. Plos one, 9(5), e97878. https://doi.org/10.1371/journal.pone.0097878
  • Zulfiqar, F., & Ashraf, M. (2021). Bioregulators: unlocking their potential role in regulation of the plant oxidative defense system. Plant Molecular Biology, 105, 11-41.

Yıl 2025, Cilt: 14 Sayı: 2, 49 - 62, 10.12.2025
https://doi.org/10.21657/soilst.1839289

Öz

Kaynakça

  • Al-Harbi, A.R., Hegazi, H.H., Alsadon, A.A., & El-Adgham, F. (2002). Growth and yield of onion (Allium cepa L.) cultivars under different levels of irrigation water salinity. J. King Saud Univ 14(1), 23-32.
  • Al-Sammarraie, O.N., Alsharafa, K.Y., Al-Limoun, M.O., Khleifat, K.M., Al-Sarayreh, S.A., Al-Shuneigat, J.M., & Kalaji, H.M. (2020). Effect of various abiotic stressors on some biochemical indices of Lepidium sativum plants. Scientific Reports 10 (1), 21131. https://doi.org/10.1038/s41598-020-78330-1
  • Arıkan, Ş., İpek, M., Eşitken, A., & Pırlak, L. (2018). Morphological and Physiological Responses to Salt Stress of Blackberry (Rubus fruticocus L.) Cultivar “Jumbo”. 4th International symposium on environment and morals 27-29 June 2018 (ISEM2018 Sarajevo / Bosnia and Herzegovina). 410-415
  • Arora, D., & Bhatla, S.C. (2017). Melatonin and nitric oxide regulate sunflower seedling growth under salt stress accompanying differential expression of Cu/Zn SOD and Mn SOD. Free Radical Biology and Medicine, 106, 315-328. https://doi.org/10.1016/j.freeradbiomed.2017.02.042
  • Ashraf, M., & Harris, P.J.C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science J., 166(1), 3-16. https://doi.org/10.1016/j.plantsci.2003.10.024
  • Asraf, M., & Foolad, M.R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59, 206-216. https://doi.org/10.1016/j.envexpbot.2005.12.006
  • Basahi, J.M., Ismail, I.M., & Hassan, I.A. (2014). Effects of enhanced UV-B radiation and drought stress on photosynthetic performance of lettuce (Lactuca sativa L. Romaine) plants. Annual Research & Review in Biology, 4(11), 1739-1756 DOI: 10.9734/ARRB/2014/6638
  • Bates, L.S., Waldren, R.P., & Teare, I. (1973). Rapid determination of free proline for water-stress studies. Plant Soil, 39 (1), 205-207. https://doi.org/10.1007/BF00018060
  • Bekheet, S. A., Taha, H. S., & Solliman, M. E. (2006). Salt tolerance in tissue culture of onion (Allium cepa L.). Arab Journal Biotech, 9(3), 467-476.Bergmeyer, H. U., Bergmeyer, J., & Graßl, M. (1983). Samples, reagents, assessment of results. Methods Enzymol 2, 211-213.
  • Bergmeyer, H. U., Bergmeyer, J., & Grassl, M. (Eds.). (1983). Methods of enzymatic analysis. Vol. I. Fundamentals.
  • Beyer Jr, W. F., & Fridovich, I. (1987). Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Analytical biochemistry, 161(2), 559-566. https://doi.org/10.1016/0003-2697(87)90489-1
  • Blum, A. (2009). Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field crops research, 112(2-3), 119-123. https://doi.org/10.1016/j.fcr.2009.03.009
  • Borromeo, I., Domenici, F., Del Gallo, M., & Forni, C. (2023). Role of polyamines in the response to salt stress of tomato. Plants, 12(9), 1855. https://doi.org/10.3390/plants12091855
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  • Castellanos, M. T., Cartagena, M. C., Requejo, M. I., Arce, A., Cabello, M. J., Ribas, F., & Tarquis, A. M. (2016). Agronomic concepts in water footprint assessment: A case of study in a fertirrigated melon crop under semiarid conditions. Agricultural Water Management, 170, 81-90.https://doi.org/10.1016/j.agwat.2016.01.014
  • Chaudhry, U. K., Öztürk, Z. N., & Gökçe, A. F. (2024). Assessment of salt and drought stress on the biochemical and molecular functioning of onion cultivars. Molecular Biology Reports, 51(1), 37. https://doi.org/10.1007/s11033-023-08923-2
  • Chen, Y. E., Zhang, C. M., Su, Y. Q., Ma, J., Zhang, Z. W., Yuan, M., ... & Yuan, S. (2017). Responses of photosystem II and antioxidative systems to high light and high temperature co-stress in wheat. Environmental and experimental botany, 135, 45-55.https://doi.org/10.1016/j.envexpbot.2016.12.001
  • Cruz, M. H. C., Leal, C. L. V., Cruz, J. F. D., Tan, D. X., & Reiter, R. J. (2014). Essential actions of melatonin in protecting the ovary from oxidative damage. Theriogenology, 82(7), 925-932. https://doi.org/10.1016/j.theriogenology.2014.07.011
  • Çebi, Ü. K., Özer, S., Altıntaș, S., Öztürk, O., & Yurtseven, E. (2018). Effect of different irrigation levels and irrigation water salinity on water use efficiency and yield of tomato grown in greenhouse. Harran Journal Agriculture Food Science, 22(1), 33-46
  • El Balla, M. D., Hamid, A. A., & Abdelmageed, A. H. A. (2013). Effects of time of water stress on flowering, seed yield and seed quality of common onion (Allium cepa L.) under the arid tropical conditions of Sudan. Agricultural Water Management, 121, 149-157. https://doi.org/10.1016/j.agwat.2013.02.002
  • Erişmiş, M. (2023). Standartlaştırılmış yağış buharlaşma indeksine göre Meriç Nehri Havzasında uzun dönem kuraklık analizi. International Journal of Geography and Geography Education, (50), 313-328. https://doi.org/10.32003/igge.1297107
  • Fernández-Cirelli, A., Arumí, J. L., Rivera, D., & Boochs, P. W. (2009). Environmental effects of irrigation in arid and semi-arid regions. Chilean Journal of Agricultural Research 69 (2009), Nr. SUPPL. 1,69 (SUPPL. 1), 27-40. https://doi.org/10.4067/S0718-58392009000500004
  • Foyer, C. H., & Shigeoka, S. (2011). Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant physiology, 155(1), 93-100. https://doi.org/10.1104/pp.110.166181
  • Geries, L. S. M., El-Shahawy, T. A., & Moursi, E. A. (2021). Cut-off irrigation as an effective tool to increase water-use efficiency, enhance productivity, quality and storability of some onion cultivars. Agricultural Water Management, 244, 106589. https://doi.org/10.1016/j.agwat.2020.106589
  • Ghodke, P., Khandagale, K., Thangasamy, A., Kulkarni, A., Narwade, N., Shirsat, D., ... & Singh, M. (2020). Comparative transcriptome analyses in contrasting onion (Allium cepa L.) genotypes for drought stress. PLoS One, 15(8), e0237457. https://doi.org/10.1371/journal.pone.0237457
  • Giordano, M., Petropoulos, S. A., & Rouphael, Y. (2021). Response and defence mechanisms of vegeFFFcrops against drought, heat and salinity stress. Agriculture, 11(5), 463. https://doi.org/10.3390/agriculture11050463
  • Gondim, F. A., Gomes-Filho, E., Costa, J. H., Alencar, N. L. M., & Prisco, J. T. (2012). Catalase plays a key role in salt stress acclimation induced by hydrogen peroxide pretreatment in maize. Plant Physiology and Biochemistry, 56, 62-71. https://doi.org/10.1016/j.plaphy.2012.04.012
  • Corpas, F. J., Gupta, D. K., & Palma, J. M. (2015). Production sites of reactive oxygen species (ROS) in organelles from plant cells. In Reactive oxygen species and oxidative damage in plants under stress (pp. 1-22). Cham: Springer International Publishing.
  • Havir, E. A., & McHale, N. A. (1987). Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant physiology, 84(2), 450-455. https://doi.org/10.1104/pp.84.2.450
  • Jebara, S., Jebara, M., Limam, F., & Aouani, M. E. (2005). Changes in ascorbate peroxidase, catalase, guaiacol peroxidase and superoxide dismutase activities in common bean (Phaseolus vulgaris) nodules under salt stress. Journal of plant physiology, 162(8), 929-936. https://doi.org/10.1016/j.jplph.2004.10.005
  • Ji, W., Cong, R., Li, S., Li, R., Qin, Z., Li, Y., ... & Li, J. (2016). Comparative proteomic analysis of soybean leaves and roots by iTRAQ provides insights into response mechanisms to short-term salt stress. Frontiers in Plant Science, 7, 573. https://doi.org/10.3389/fpls.2016.00573
  • Kahraman, N.D., & Topal, A. (2024). Differences in physiological indicators of seed germination in durum wheat cultivars subjected to salinity stress. Mustafa Kemal University Journal of Agricultural Sciences 29(1), 148-157. https://doi.org/10.37908/mkutbd.1385772
  • Kal, Ü., Dal, Y., Kayak, N., Yavuz, D., Türkmen, Ö., & Seymen, M. (2023). Application of nitrogen for mitigating the adverse effects of flooding stress in lettuce. Journal of Plant Nutrition, 46(20), 4664-4678. https://doi.org/10.1080/01904167.2023.2240831
  • Keyvan, S. (2010). The effects of drought stress on yield, relative water content, proline, soluble carbohydrates and chlorophyll of bread wheat cultivars. Journal of Animal & Plant Sciences,8(3), 1051-1060
  • Khandagale, K., Roylawar, P., Kulkarni, O., Khambalkar, P., Ade, A., Kulkarni, A., ... & Gawande, S. (2022). Comparative transcriptome analysis of onion in response to infection by Alternaria porri (Ellis) cifferi. Frontiers in Plant Science, 13, 857306. https://doi.org/10.3389/fpls.2022.857306
  • Kirecci, O. A. (2018). Enzymatic and Non-Enzymatic Antioxidants in Plants. Bitlis Eren University Journal of Science 7(2), 473-483. https://doi.org/10.17798/bitlisfen.463251
  • Kostopoulou, Z., Therios, I., Roumeliotis, E., Kanellis, A. K., & Molassiotis, A. (2015). Melatonin combined with ascorbic acid provides salt adaptation in Citrus aurantium L. seedlings. Plant Physiology and Biochemistry, 86, 155-165.
  • Kotuby, J., Koenig, R., & Kitchen, B. (1997). Salinity and Plant Tolerance. Utah State University Extension. AG-SO-03. Utah
  • Krasensky, J., & Jonak, C. (2012). Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of experimental botany, 63(4), 1593-1608. https://doi.org/10.1093/jxb/err460
  • Li, H., Chang, J., Chen, H., Wang, Z., Gu, X., Wei, C., ... & Zhang, X. (2017). Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis. Frontiers in plant science, 8, 295. https://doi.org/10.3389/fpls.2017.00295
  • Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In Methods in enzymology. 148, 350-382. Academic Press.https://doi.org/10.1016/0076-6879(87)48036-1
  • Liu, E. K., Mei, X. R., Yan, C. R., Gong, D. Z., & Zhang, Y. Q. (2016). Effects of water stress on photosynthetic characteristics, dry matter translocation and WUE in two winter wheat genotypes. Agricultural Water Management, 167, 75-85. https://doi.org/10.1016/j.agwat.2015.12.026
  • Lutts, S., Kinet, J. M., & Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativaL.) cultivars differing in salinity resistance. Annals of botany, 78(3), 389-398.https://doi.org/10.1006/anbo.1996.0134
  • Machado, R. M. A., & Serralheiro, R. P. (2017). Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae, 3(2), 30. https://doi.org/10.3390/horticulturae3020030
  • Mishra, P., & Sharma, P. (2019). Superoxide Dismutases (SODs) and their role in regulating abiotic stress induced oxidative stress in plants. Reactive oxygen, nitrogen and sulfur species in plants: production, metabolism, signaling and defense mechanisms, 53-88.
  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in plant science, 7(9), 405-410. DOI: 10.1016/S1360-1385(02)02312-9
  • Mukherjee, S., David, A., Yadav, S., Baluška, F., & Bhatla, S. C. (2014). Salt stress‐induced seedling growth inhibition coincides with differential distribution of serotonin and melatonin in sunflower seedling roots and cotyledons. Physiologia plantarum, 152(4), 714-728. https://doi.org/10.1111/ppl.12218
  • Munoz-Perea, C. G., Allen, R. G., Westermann, D. T., Wright, J. L., & Singh, S. P. (2007). Water use efficiency among dry bean landraces and cultivars in drought-stressed and non-stressed environments. Euphytica, 155(3), 393-402.https://doi.org/10.1007/s10681-006-9340-z
  • Oh, M. M., Carey, E. E., & Rajashekar, C. B. (2009). Environmental stresses induce health-promoting phytochemicals in lettuce. Plant Physiology and Biochemistry, 47(7), 578-583. https://doi.org/10.1016/j.plaphy.2009.02.008
  • Ozturk, H. I., Nas, H., Ekinci, M., Turan, M., Ercisli, S., Narmanlioglu, H. K., ... & Peluso, I. (2022). Antioxidant activity, phenolic composition, and hormone content of wild edible vegetables. Horticulturae, 8(5), 427. https://doi.org/10.3390/horticulturae8050427
  • Özüpekçe, S. (2021). Drought analysis and relationship with water resources of western mediterrenean basins closed area. International Journal of Geography and Geography Education, (43), 317-337. https://doi.org/10.32003/igge.790949
  • Reddy, A. R., Chaitanya, K. V., & Vivekanandan, M. (2004). Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of plant physiology, 161(11), 1189-1202. https://doi.org/10.1016/j.jplph.2004.01.013
  • Sachdev, S., Ansari, S. A., Ansari, M. I., Fujita, M., & Hasanuzzaman, M. (2021). Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antioxidants, 10(2), 277. https://doi.org/10.3390/antiox10020277
  • Scandalios, J. G., Guan, L., & Polidoros, A. N. (1997). Catalases in plants: gene structure, properties, regulation, and expression. cold Spring Harbor monograph series, 34, 343-406.
  • Seymen, M., Yavuz, D., Can, H., Kıymacı, G., Türkmen, Ö., Paksoy, M., ... & Kurtar, E. S. (2024). Molecular and physiological responses to exogenously applied melatonin in spinach under deficit irrigation conditions. Journal of Plant Growth Regulation, 43(6), 1858-1874.https://doi.org/10.1007/s00344-023-11226-2
  • Seymen, M. (2021). How does the flooding stress occurring in different harvest times affect the morpho-physiological and biochemical characteristics of spinach? Scientia Horticulturae, 275, 109713. https://doi.org/10.1016/j.scienta.2020.109713
  • Shawon, R. A., Kang, B. S., Lee, S. G., Kim, S. K., Lee, H. J., Katrich, E., ... & Ku, Y. G. (2020). Influence of drought stress on bioactive compounds, antioxidant enzymes and glucosinolate contents of Chinese cabbage (Brassica rapa). Food chemistry, 308, 125657. https://doi.org/10.1016/j.foodchem.2019.125657
  • Smedema, L. K., & Shiati, K. (2002). Irrigation and salinity: a perspective review of the salinity hazards of irrigation development in the arid zone. Irrigation and drainage systems, 16(2), 161-174. https://doi.org/10.1023/A:1016008417327
  • Smirnoff, N. (2005). Antioxidants and reactive oxygen species in plants. 169-177 Oxford: Blackwell. https://doi.org/10.1002/9780470988565
  • Partigöç, N.S., Soğanci, S. (2019). An Inevitable Consequence of Global Climate Change: Drought. Resilience 3(2), 287-299. https://doi.org/10.32569/resilience.619219
  • Sönmez, F. K., Kömüscü, A. Ü., Erkan, A., & Turgu, E. (2005). An analysis of spatial and temporal dimension of drought vulnerability in Turkey using the standardized precipitation index. Natural hazards, 35(2), 243-264. https://doi.org/10.1007/s11069-004-5704-7
  • Türkeş, M. (2014). Impacts of the Climate Change on Agricultural Food Security, Traditional Knowledge and Agroecology. Turkish Journal of Agriculture - Food Science and Technology 2(2), 71. https://doi.org/10.24925/turjaf.v2i2.71-85.60
  • Wang, Q., Dodd, I. C., Belimov, A. A., & Jiang, F. (2016). Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase growth and photosynthesis of pea plants under salt stress by limiting Na+ accumulation. Functional Plant Biology, 43(2), 161-172. https://doi.org/10.1071/FP15200
  • Yakar, S., & Tuna, A.L. (2023). Effects of Some Common Insecticides on Lipid Peroxidation and Antioxidative System in Tomato (S. lycopersicon L.). Anadolu Journal Agriculture Science, 38(1), 81-98. https://doi.org/10.7161/omuanajas.1092843
  • Yasar, F., Yıldırım, Ö., & Üzal, Ö. (2020). Investigation of the Effect of Calcium Applications on Antioxidative Enzyme Activities in Pepper Plant Under Salt Stress. Ispec Journal of Agricultural Sciences 4(2), 346-357. https://doi.org/10.46291/ispecjasvol4iss2pp211-222
  • Yavuz, D., Kılıç, E., Seymen, M., Dal, Y., Kayak, N., Kal, Ü., & Yavuz, N. (2022). The effect of irrigation water salinity on the morph-physiological and biochemical properties of spinach under deficit irrigation conditions. Scientia Horticulturae, 304, 111272. https://doi.org/10.1016/j.scienta.2022.111272
  • Yavuz, D., Rashid, B. A. R., & Seymen, M. (2023). The influence of NaCl salinity on evapotranspiration, yield traits, antioxidant status, and mineral composition of lettuce grown under deficit irrigation. Scientia Horticulturae, 310, 111776. https://doi.org/10.1016/j.scienta.2022.111776
  • Yavuz, N., Seymen, M., & Kal, Ü. (2021). Impacts of water stress and harvest time on physio-biochemical characteristics of lettuce. International Journal of Agricultural and Natural Sciences, 14(2), 61-77. Yetişsin, F., & Karakaya, A. (2022). Investigation of the effects of acetone o-(4 chlorophenylsulfonyl) oxime pre-application on biochemical parameters of maize seedlings under salt stress. Artvin Coruh University Journal of Forestry Faculty 23(1), 74-83. https://doi.org/10.17474/artvinofd.980327
  • Zhang, J. L., & Shi, H. (2013). Physiological and molecular mechanisms of plant salt tolerance. Photosynthesis research, 115(1), 1-22. https://doi.org/10.1007/s11120-013-9813-6
  • Zhang, L., Zhang, C., Wu, P., Chen, Y., Li, M., Jiang, H., & Wu, G. (2014). Global analysis of gene expression profiles in physic nut (Jatropha curcas L.) seedlings exposed to salt stress. Plos one, 9(5), e97878. https://doi.org/10.1371/journal.pone.0097878
  • Zulfiqar, F., & Ashraf, M. (2021). Bioregulators: unlocking their potential role in regulation of the plant oxidative defense system. Plant Molecular Biology, 105, 11-41.
Toplam 71 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ziraat Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Esra Altın Bu kişi benim 0000-0003-3954-6214

Duran Yavuz 0000-0001-9574-6929

Songül Kal Bu kişi benim 0009-0008-8741-5706

Nurcan Yavuz 0000-0003-1833-0668

Mahmut Sami Çiftci Bu kişi benim 0000-0001-8832-2781

Yayımlanma Tarihi 10 Aralık 2025
Gönderilme Tarihi 13 Ağustos 2025
Kabul Tarihi 27 Ekim 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 14 Sayı: 2

Kaynak Göster

APA Altın, E., Yavuz, D., Kal, S., … Yavuz, N. (2025). Agro-morphological and enzymatic responses of onion to salinity stress under deficit irrigation conditions. Soil Studies, 14(2), 49-62. https://doi.org/10.21657/soilst.1839289