Araştırma Makalesi
BibTex RIS Kaynak Göster

Does azelaic acid priming increase the germination ability of cucumber (Cucumis sativus L.) seeds under salt stress?

Yıl 2025, Cilt: 14 Sayı: 2, 63 - 72, 10.12.2025
https://doi.org/10.21657/soilst.1839451

Öz

The aim of this study was to evaluate the effects of Azelaic Acid (AzA) pretreatment on germination of cucumber seeds under salt stress conditions. The experiment was conducted according to a complete randomized experimental design with five different salinity levels (0 mM NaCl; (Control: distilled water), 20 mM, 40 mM, 60 mM and 80 mM NaCl) and 3 different doses of AzA (0 mM, 0.25 mM, 0.5 mM) with 3 replicates. Cucumber variety Beith Alpha was used as plant material. Germination and growth parameters (germination rate, radicle length, wet weight, dry weight, salt tolerance index, root length, shoot length) were determined. According to the results of analysis of variance, the effect of AzA pretreatment on germination rate, salt tolerance index and shoot length of cucumber was found to be insignificant, while it affected radicle length, wet weight, dry weight and root length (p ≤ 0.01, ≤ 0.05). NaCl levels significantly affected all parameters except germination rate and dry weight. When AzA × NaCl effects were evaluated together, salt tolerance index was affected at different levels of significance, while there was no significant effect on other parameters. AzA pretreatment at the dose of 0.25 mM was significant for many parameters. Consequently, under salt stress conditions, we can say that AzA, when used at appropriate doses, has a positive effect on germination ability. For various plants grown in areas experiencing salinity problems, priming or foliar application is recommended to determine the role of AzA in stress physiology.

Kaynakça

  • Altuner, F., Oral, E., Tunctürk, R. & Baran, İ., (2020). Giberellik asit (GA3) ön uygulamasına tabi tutulmuş kinoa (Chenopodium quinoa Willd.) tohumunda tuz (NaCl) stresinin çimlenme özellikleri üzerine etkisi, Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 23 (2), 350-357.
  • Anwar, A., Xianchang, Y. & Yansu, L., (2020). Seed priming as a promising technique to improve growth, chlorophyll, photosynthesis and nutrient contents in cucumber seedlings, Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48 (1), 116-127.
  • Bartels, D. & Sunkar, R., (2005). Drought and salt tolerance in plants. Critical reviews in plant sciences, 24 (1), 23-58.
  • Borges, A. A., Jiménez-Arias, D., Expósito-Rodríguez, M., Sandalio, L. M. & Pérez, J. A., (2014). Priming crops against biotic and abiotic stresses: MSB as a tool for studying mechanisms, Frontiers Media SA. 5: 642.
  • Cecchini, N. M., Roychoudhry, S., Speed, D. J., Steffes, K., Tambe, A., Zodrow, K., Konstantinoff, K., Jung, H. W., Engle, N. L. & Tschaplinski, T. J., (2019). Underground azelaic acid–conferred resistance to Pseudomonas syringae in Arabidopsis. Molecular Plant-Microbe Interactions, 32 (1), 86-94.
  • Dinler, B. S. & Cetinkaya, H., (2024). An overview on Azelaic Acid: Biosynthesis, signalling and the action under stress conditions in plants. Journal of Plant Stress Physiology, 10, 8-12.
  • Er, H., Meral, R. & Kuşlu, Y., (2021). Evaluatıon of possibilities for improvement of saline soils by phytoremediation method using halophyte plants, Turk J Sci Rev, 14 (2), 101-110.
  • Güleç, A., Yavuz, N., & Yavuz, D. (2025). Tuzluluk Stresi Şartlarında Mısır (Zea mays L.) Tohumlarına Azelaik Asit Ön Uygulamasının Çimlenme ve Erken Fide Dönemine Etkisi. International Journal of Advanced Natural Sciences and Engineering Researches, 9(3), 296–303.
  • Haghighi, M. & Sheibanirad, A., (2018). Evaluating of Azealic Acid on Tomato Vegetative and Photosynthetic Parameters under Salinity Stress. Journal of Horticultural Science, 32 (2), 287-300.
  • Huang, C., Zong, L., Buonanno, M., Xue, X., Wang, T. & Tedeschi, A., (2012). Impact of saline water irrigation on yield and quality of melon (Cucumis melo cv. Huanghemi) in northwest China. European Journal of Agronomy, 43, 68-76.
  • Irik, H. A. V& Bikmaz, G., (2024). Effect of different salinity on seed germination, growth parameters and biochemical contents of pumpkin (Cucurbita pepo L.) seeds cultivars. Scientific Reports, 14 (1), 6929.
  • Jung, H. W., Tschaplinski, T. J., Wang, L., Glazebrook, J. & Greenberg, J. T., (2009). Priming in systemic plant immunity. Science, 324 (5923), 89-91.
  • Kusvuran, A., Nazli, R. & Kusvuran, S., (2015). The effects of salinity on seed germination in perennial ryegrass (Lolium perenne L.) varieties. Turkish Journal of Agriculture and Natural Science, 2 (1), 78-84.
  • Läuchli, A. & Epstein, E., (1990). Plant responses to saline and sodic conditions. Agricultural salinity assessment and management, 71, 113-137.
  • Li, C., Lu, X., Liu, Y., Xu, J. & Yu, W., (2023). Strigolactone alleviates the adverse effects of salt stress on seed germination in cucumber by enhancing antioxidant capacity. Antioxidants, 12 (5), 1043.
  • Lindberg, S. & Premkumar, A., (2023). Ion changes and signaling under salt stress in wheat and other important crops. Plants, 13 (1), 46.
  • Liu, D., Dong, S., Bo, K., Miao, H., Li, C., Zhang, Y., Zhang, S. & Gu, X., (2021). Identification of QTLs controlling salt tolerance in cucumber (Cucumis sativus L.) seedlings. Plants, 10 (1), 85.
  • Mahdy, A. M., Sherif, F. K., Elkhatib, E. A., Fathi, N. O. & Ahmed, M. H., (2020). Seed priming in nanoparticles of water treatment residual can increase the germination and growth of cucumber seedling under salinity stress. Journal of Plant Nutrition, 43 (12), 1862-1874.
  • Masuda, M. S., Azad, M. A. K., Hasanuzzaman, M. & Arifuzzaman, M., 2021, Evaluation of salt tolerance in maize (Zea mays L.) at seedling stage through morphological characters and salt tolerance index. Plant Physiology Reports, 26 (3), 419-427.
  • Mukhtarova, L. S., Mukhitova, F. K., Gogolev, Y. V. & Grechkin, A. N., (2011). Hydroperoxide lyase cascade in pea seedlings: Non-volatile oxylipins and their age and stress dependent alterations. Phytochemistry, 72 (4-5), 356-364.
  • Munns, R., (2011). Plant adaptations to salt and water stress: differences and commonalities. Advances in botanical research, 57, 1-32.
  • Naseer, M. N., Rahman, F. U., Hussain, Z., Khan, I. A., Aslam, M. M., Aslam, A., Waheed, H., Khan, A. U. & Iqbal, S., (2022). Effect of salinity stress on germination, seedling growth, mineral uptake and chlorophyll contents of three Cucurbitaceae species. Brazilian Archives of Biology and Technology, 65, e22210213.
  • Ostaci, Ș., Slabu, C., Marta, A. E. & Jităreanu, C. D., (2024). Evaluation of the Resistance of Bitter Cucumber (Momordica charantia) to Saline Stress through Physical, Biochemical, and Physiological Analysis. Horticulturae, 10 (9), 893.
  • Özkorkmaz, F., Yılmaz, N. & Öner, F., (2020). Researching germination properties of bean (Phaseolus vulgaris L.) under polyethylene glycol osmotic stress and saline conditions. Akademik Ziraat Dergisi, 9 (2), 251-258.
  • Pandey, P., Bhanuprakash, K. & Umesh, U., (2017). Effect of Seed Priming on Seed Germination and Vigour in Fresh and Aged Seeds of Cucumber, International Journal of Environment. Agriculture and Biotechnology, 2 (4), 238900.
  • Pinheiro, D. T., Delazari, F., Nick, C., Mattiello, E. M. & dos Santos Dias, D. C. F., 2019, Emergence and vegetative development of melon in function of the soil salinity. Australian Journal of Crop Science, 13 (3), 458-464.
  • Pour, A. H., Tosun, M. & Haliloğlu, K., (2021). Buğdayda (Triticum aestivum L.) farklı süre ve dozlarda uygulanan etil metansülfonat (EMS)’ın çimlenme ve fide ile ilgili bazı karakterler üzerine etkileri. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 52 (2), 190-200.
  • Rezvani, R., Kamkar, B. & Jabbari Badkhor, Z., (2025). Investigating the role of priming with humic acid on modulating the effect of salinity stress on the germination and growth indices of cucumber (Cucumis sativus L. cv. Saba hybrid) seed. Iranian Journal of Seed Science and Technology.
  • Slabu, C., Zörb, C., Steffens, D. & Schubert, S., (2009). Is salt stress of faba bean (Vicia faba) caused by Na+ or Cl–toxicity? Journal of Plant Nutrition and Soil Science, 172 (5), 644-651.
  • Süheri, S., Yaylalı, İ. K., Yavuz, D. & Yavuz, N., (2019). The effect of sodium chloride salinity on coated and uncoated alfalfa seeds germination. Harran Journal of Agricultural and Food Science Dergisi, 23 (1), 31-38.
  • Topçu, G. D. & Özkan, Ş. S., (2017). Farklı tuz (NaCl) konsantrasyonlarının bazı arpa (Hordeum vulgare L.) çeşitlerinin çimlenme özelliklerine etkisinin belirlenmesi. ÇOMÜ Ziraat Fakültesi Dergisi, 5 (2), 37-43.
  • Wang, X., Lan, Z., Tian, L., Li, J., Yang, G., Gao, Y. & Zhang, X., (2021). Change of physiological properties and ion distribution by synergistic effect of Ca2+ and grafting under salt stress on cucumber seedlings. Agronomy, 11 (5), 848.
  • Yavuz, D., Kılıç, E., Seymen, M., Dal, Y., Kayak, N., Kal, Ü. & Yavuz, N., (2022). The effect of irrigation water salinity on the morph-physiological and biochemical properties of spinach under deficit irrigation conditions. Scientia Horticulturae, 304, 111272.
  • Yavuz, D., Rashid, B. A. R. & Seymen, M., (2023). The influence of NaCl salinity on evapotranspiration, yield traits, antioxidant status, and mineral composition of lettuce grown under deficit irrigation. Scientia Horticulturae, 310, 111776.
  • Yu, K., Soares, J. M., Mandal, M. K., Wang, C., Chanda, B., Gifford, A. N., Fowler, J. S., Navarre, D., Kachroo, A. & Kachroo, P., (2013). A feedback regulatory loop between G3P and lipid transfer proteins DIR1 and AZI1 mediates azelaic-acid-induced systemic immunity. Cell Reports, 3 (4), 1266-1278.

Yıl 2025, Cilt: 14 Sayı: 2, 63 - 72, 10.12.2025
https://doi.org/10.21657/soilst.1839451

Öz

Kaynakça

  • Altuner, F., Oral, E., Tunctürk, R. & Baran, İ., (2020). Giberellik asit (GA3) ön uygulamasına tabi tutulmuş kinoa (Chenopodium quinoa Willd.) tohumunda tuz (NaCl) stresinin çimlenme özellikleri üzerine etkisi, Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 23 (2), 350-357.
  • Anwar, A., Xianchang, Y. & Yansu, L., (2020). Seed priming as a promising technique to improve growth, chlorophyll, photosynthesis and nutrient contents in cucumber seedlings, Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48 (1), 116-127.
  • Bartels, D. & Sunkar, R., (2005). Drought and salt tolerance in plants. Critical reviews in plant sciences, 24 (1), 23-58.
  • Borges, A. A., Jiménez-Arias, D., Expósito-Rodríguez, M., Sandalio, L. M. & Pérez, J. A., (2014). Priming crops against biotic and abiotic stresses: MSB as a tool for studying mechanisms, Frontiers Media SA. 5: 642.
  • Cecchini, N. M., Roychoudhry, S., Speed, D. J., Steffes, K., Tambe, A., Zodrow, K., Konstantinoff, K., Jung, H. W., Engle, N. L. & Tschaplinski, T. J., (2019). Underground azelaic acid–conferred resistance to Pseudomonas syringae in Arabidopsis. Molecular Plant-Microbe Interactions, 32 (1), 86-94.
  • Dinler, B. S. & Cetinkaya, H., (2024). An overview on Azelaic Acid: Biosynthesis, signalling and the action under stress conditions in plants. Journal of Plant Stress Physiology, 10, 8-12.
  • Er, H., Meral, R. & Kuşlu, Y., (2021). Evaluatıon of possibilities for improvement of saline soils by phytoremediation method using halophyte plants, Turk J Sci Rev, 14 (2), 101-110.
  • Güleç, A., Yavuz, N., & Yavuz, D. (2025). Tuzluluk Stresi Şartlarında Mısır (Zea mays L.) Tohumlarına Azelaik Asit Ön Uygulamasının Çimlenme ve Erken Fide Dönemine Etkisi. International Journal of Advanced Natural Sciences and Engineering Researches, 9(3), 296–303.
  • Haghighi, M. & Sheibanirad, A., (2018). Evaluating of Azealic Acid on Tomato Vegetative and Photosynthetic Parameters under Salinity Stress. Journal of Horticultural Science, 32 (2), 287-300.
  • Huang, C., Zong, L., Buonanno, M., Xue, X., Wang, T. & Tedeschi, A., (2012). Impact of saline water irrigation on yield and quality of melon (Cucumis melo cv. Huanghemi) in northwest China. European Journal of Agronomy, 43, 68-76.
  • Irik, H. A. V& Bikmaz, G., (2024). Effect of different salinity on seed germination, growth parameters and biochemical contents of pumpkin (Cucurbita pepo L.) seeds cultivars. Scientific Reports, 14 (1), 6929.
  • Jung, H. W., Tschaplinski, T. J., Wang, L., Glazebrook, J. & Greenberg, J. T., (2009). Priming in systemic plant immunity. Science, 324 (5923), 89-91.
  • Kusvuran, A., Nazli, R. & Kusvuran, S., (2015). The effects of salinity on seed germination in perennial ryegrass (Lolium perenne L.) varieties. Turkish Journal of Agriculture and Natural Science, 2 (1), 78-84.
  • Läuchli, A. & Epstein, E., (1990). Plant responses to saline and sodic conditions. Agricultural salinity assessment and management, 71, 113-137.
  • Li, C., Lu, X., Liu, Y., Xu, J. & Yu, W., (2023). Strigolactone alleviates the adverse effects of salt stress on seed germination in cucumber by enhancing antioxidant capacity. Antioxidants, 12 (5), 1043.
  • Lindberg, S. & Premkumar, A., (2023). Ion changes and signaling under salt stress in wheat and other important crops. Plants, 13 (1), 46.
  • Liu, D., Dong, S., Bo, K., Miao, H., Li, C., Zhang, Y., Zhang, S. & Gu, X., (2021). Identification of QTLs controlling salt tolerance in cucumber (Cucumis sativus L.) seedlings. Plants, 10 (1), 85.
  • Mahdy, A. M., Sherif, F. K., Elkhatib, E. A., Fathi, N. O. & Ahmed, M. H., (2020). Seed priming in nanoparticles of water treatment residual can increase the germination and growth of cucumber seedling under salinity stress. Journal of Plant Nutrition, 43 (12), 1862-1874.
  • Masuda, M. S., Azad, M. A. K., Hasanuzzaman, M. & Arifuzzaman, M., 2021, Evaluation of salt tolerance in maize (Zea mays L.) at seedling stage through morphological characters and salt tolerance index. Plant Physiology Reports, 26 (3), 419-427.
  • Mukhtarova, L. S., Mukhitova, F. K., Gogolev, Y. V. & Grechkin, A. N., (2011). Hydroperoxide lyase cascade in pea seedlings: Non-volatile oxylipins and their age and stress dependent alterations. Phytochemistry, 72 (4-5), 356-364.
  • Munns, R., (2011). Plant adaptations to salt and water stress: differences and commonalities. Advances in botanical research, 57, 1-32.
  • Naseer, M. N., Rahman, F. U., Hussain, Z., Khan, I. A., Aslam, M. M., Aslam, A., Waheed, H., Khan, A. U. & Iqbal, S., (2022). Effect of salinity stress on germination, seedling growth, mineral uptake and chlorophyll contents of three Cucurbitaceae species. Brazilian Archives of Biology and Technology, 65, e22210213.
  • Ostaci, Ș., Slabu, C., Marta, A. E. & Jităreanu, C. D., (2024). Evaluation of the Resistance of Bitter Cucumber (Momordica charantia) to Saline Stress through Physical, Biochemical, and Physiological Analysis. Horticulturae, 10 (9), 893.
  • Özkorkmaz, F., Yılmaz, N. & Öner, F., (2020). Researching germination properties of bean (Phaseolus vulgaris L.) under polyethylene glycol osmotic stress and saline conditions. Akademik Ziraat Dergisi, 9 (2), 251-258.
  • Pandey, P., Bhanuprakash, K. & Umesh, U., (2017). Effect of Seed Priming on Seed Germination and Vigour in Fresh and Aged Seeds of Cucumber, International Journal of Environment. Agriculture and Biotechnology, 2 (4), 238900.
  • Pinheiro, D. T., Delazari, F., Nick, C., Mattiello, E. M. & dos Santos Dias, D. C. F., 2019, Emergence and vegetative development of melon in function of the soil salinity. Australian Journal of Crop Science, 13 (3), 458-464.
  • Pour, A. H., Tosun, M. & Haliloğlu, K., (2021). Buğdayda (Triticum aestivum L.) farklı süre ve dozlarda uygulanan etil metansülfonat (EMS)’ın çimlenme ve fide ile ilgili bazı karakterler üzerine etkileri. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 52 (2), 190-200.
  • Rezvani, R., Kamkar, B. & Jabbari Badkhor, Z., (2025). Investigating the role of priming with humic acid on modulating the effect of salinity stress on the germination and growth indices of cucumber (Cucumis sativus L. cv. Saba hybrid) seed. Iranian Journal of Seed Science and Technology.
  • Slabu, C., Zörb, C., Steffens, D. & Schubert, S., (2009). Is salt stress of faba bean (Vicia faba) caused by Na+ or Cl–toxicity? Journal of Plant Nutrition and Soil Science, 172 (5), 644-651.
  • Süheri, S., Yaylalı, İ. K., Yavuz, D. & Yavuz, N., (2019). The effect of sodium chloride salinity on coated and uncoated alfalfa seeds germination. Harran Journal of Agricultural and Food Science Dergisi, 23 (1), 31-38.
  • Topçu, G. D. & Özkan, Ş. S., (2017). Farklı tuz (NaCl) konsantrasyonlarının bazı arpa (Hordeum vulgare L.) çeşitlerinin çimlenme özelliklerine etkisinin belirlenmesi. ÇOMÜ Ziraat Fakültesi Dergisi, 5 (2), 37-43.
  • Wang, X., Lan, Z., Tian, L., Li, J., Yang, G., Gao, Y. & Zhang, X., (2021). Change of physiological properties and ion distribution by synergistic effect of Ca2+ and grafting under salt stress on cucumber seedlings. Agronomy, 11 (5), 848.
  • Yavuz, D., Kılıç, E., Seymen, M., Dal, Y., Kayak, N., Kal, Ü. & Yavuz, N., (2022). The effect of irrigation water salinity on the morph-physiological and biochemical properties of spinach under deficit irrigation conditions. Scientia Horticulturae, 304, 111272.
  • Yavuz, D., Rashid, B. A. R. & Seymen, M., (2023). The influence of NaCl salinity on evapotranspiration, yield traits, antioxidant status, and mineral composition of lettuce grown under deficit irrigation. Scientia Horticulturae, 310, 111776.
  • Yu, K., Soares, J. M., Mandal, M. K., Wang, C., Chanda, B., Gifford, A. N., Fowler, J. S., Navarre, D., Kachroo, A. & Kachroo, P., (2013). A feedback regulatory loop between G3P and lipid transfer proteins DIR1 and AZI1 mediates azelaic-acid-induced systemic immunity. Cell Reports, 3 (4), 1266-1278.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ziraat Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Aslı Güleç 0009-0004-8435-7038

Nurcan Yavuz 0000-0003-1833-0668

Duran Yavuz 0000-0001-9574-6929

Yayımlanma Tarihi 10 Aralık 2025
Gönderilme Tarihi 15 Ağustos 2025
Kabul Tarihi 24 Kasım 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 14 Sayı: 2

Kaynak Göster

APA Güleç, A., Yavuz, N., & Yavuz, D. (2025). Does azelaic acid priming increase the germination ability of cucumber (Cucumis sativus L.) seeds under salt stress? Soil Studies, 14(2), 63-72. https://doi.org/10.21657/soilst.1839451