Araştırma Makalesi
BibTex RIS Kaynak Göster

AKILLI KENTSEL ATIK YÖNETİMİ İÇİN DİJİTAL İKİZ TEKNOLOJİSİ

Yıl 2025, Cilt: 2 Sayı: 40, 41 - 53, 31.12.2025
https://doi.org/10.47118/somatbd.1836379

Öz

Hızlı kentleşme ve nüfus artışı, kentsel katı atık (KKA) sorunlarını artırmış, geleneksel, reaktif yönetim sistemlerini verimsiz ve çevresel açıdan sürdürülemez hale getirmiştir. Fiziksel sistemlerin dinamik sanal kopyaları olarak tanımlanan Dijital İkiz (Dİ) teknolojisi, gerçek zamanlı izleme ve simülasyon ile dönüştürücü bir çözüm sunmaktadır; ancak KKA alanındaki uygulaması henüz başlangıç aşamasındadır. Bu çalışma, verimliliği ve sürdürülebilirliği artırmak amacıyla Dİ teknolojisini kentsel atık operasyonlarına entegre etmek için kapsamlı bir kavramsal çerçeve önermektedir. Metodoloji, tüm atık yaşam döngüsünü optimize etmek için IoT sensörlerini, yapay zeka güdümlü tahminsel modellemeyi ve simülasyon araçlarını entegre eden dört katmanlı bir mimarinin ana hatlarını çizmektedir. Önerilen çerçeve; optimize edilmiş güzergâh planlaması, kestirimci bakım ve enerji analizini kolaylaştırmaktadır. Sonuçlar, bu modelin uygulanmasının, senaryo testleri ve veriye dayalı karar verme yoluyla işletme maliyetlerini önemli ölçüde düşürebileceğini, sera gazı emisyonlarını azaltabileceğini ve döngüsel ekonomi ilkelerini destekleyebileceğini göstermektedir. Mevcut teknik ve ekonomik engellere rağmen, çalışma, Dİ'lerin dayanıklı, akıllı kentsel atık sistemlerine doğru hayati bir yol sağladığı sonucuna varmaktadır. Bunun yanında nicel çevresel ve ekonomik faydaları doğrulamak için gerçek dünya pilot çalışmaları yapılmasını önermektedir.

Kaynakça

  • Akçacı, T., & Matyar Tanır, Y. (2025). Digital twin applications in logistics sector. Econder International Academic Journal, 9(1), 96–115.
  • Alay, D. (2024). The digital twin for personalised medicine: A systematic review. Journal of Health Professional Research, 6(1), 28–43.
  • Aynacı, İ. (2020). Digital twin and health applications. İzmir Kâtip Çelebi Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 3(1), 70–82.
  • Barth, L., Schweiger, L., Benedech, R., & Ehrat, M. (2023). From data to value in smart waste management: Optimizing solid waste collection with a digital twin-based decision support system. Decision Analytics Journal, 9, 100347. https://doi.org/10.1016/j.dajour.2023.100347
  • Başköy Bektaş, C., & Turan, N. G. (2023). Municipal solid waste management and evaluation of zero waste strategy in Ordu. The Black Sea Journal of Sciences, 13(4), 1906–1917. https://doi.org/10.31466/kfbd.1373887
  • Callcut, M., Cerceau Agliozzo, J.-P., Varga, L., & McMillan, L. (2021). Digital twins in civil infrastructure systems. Sustainability, 13, 11549. https://doi.org/10.3390/su132011549
  • Campana, P., Censi, R., Tarola, A. M., & Ruggieri, R. (2025). Artificial intelligence and digital twins for sustainable waste management: A bibliometric and thematic review. Applied Sciences, 15, 6337. https://doi.org/10.3390/app15116337
  • Cárdenas-León, I., Koeva, M., Nourian, P., & Davey, C. (2024). Urban digital twin-based solution using geospatial information for solid waste management. Sustainable Cities and Society, 115, 105798. https://doi.org/10.1016/j.scs.2024.105798
  • Çevik, M., & Diambu, A. N. (2024). Advancing sustainable development goals through the use of biocomposites for a greener future. In M. Çevik (Ed.), Scientific Research Reports (pp. 1–13). Duvar Publications.
  • Dai, C., Li, Y. P., & Huang, G. H. (2011). A two-stage support-vector-regression optimization model for municipal solid waste management: A case study of Beijing, China. Journal of Environmental Management, 92, 3023–3037. https://doi.org/10.1016/j.jenvman.2011.06.038
  • Gökkuş, G. (2021). Digital twin concept for renewable energy sources. Konya Journal of Engineering Sciences, 9(3), 836–844. https://doi.org/10.36306/konjes.969989
  • Güleç Solak, S., & Pekküçükşen, Ş. (2018). Municipal solid waste management in Turkey: A comparative analysis. MANAS Journal of Social Studies, 7(3), 653–683.
  • Güllü, G. (2022). Kentsel dönüşümde sıfır atık yönetimi. İstanbul Sabahattin Zaim University Journal of the Institute of Science and Technology, 4(2), 112–120. https://doi.org/10.47769/izufbed.1131056
  • Gürcan, C., & Açıksöz, S. (2023). Smart waste management and sample applications. Urban Academy, 16(1), 577–594. https://doi.org/10.35674/kent.881639
  • Gürkan, S., & Aytav, E. (2022). Using digital twin in photovoltaic panel emulator design. Iğdır University Journal of the Institute of Science and Technology, 12(1), 194–206. https://doi.org/10.21597/jist.1008632
  • Höke, M. C., & Yalcinkaya, S. (2021). Municipal solid waste transfer station planning through vehicle routing problem-based scenario analysis. Waste Management & Research, 39(1), 185–196. https://doi.org/10.1177/0734242X20966643
  • Johansen, S. T., Unal, P., Albayrak, Ö., Ikonen, E., Linnestad, K. J., Jawahery, S., Srivastava, A. K., & Løvfall, B. T. (2023). Hybrid and cognitive digital twins for the process industry. Open Engineering, 13, 20220418. https://doi.org/10.1515/eng-2022-0418
  • Khan, T. H., Noh, C., & Han, S. (2023). Correspondence measure: A review for the digital twin standardization. The International Journal of Advanced Manufacturing Technology, 128, 1907–1927. https://doi.org/10.1007/s00170-023-12019-3
  • Kılıç, C., Çetin, K., & Özbek, M. E. (2024). An industrial application of digital twin for a smart factory model using CoppeliaSim. International Journal of 3D Printing Technologies and Digital Industry, 8(3), 316–325. https://doi.org/10.46519/ij3dptdi.1452734
  • Koçak, A., & Yıldız, A. (2022). Using digital twin technology in production planning and control process: An application in textile industry. Gazi University Journal of Science Part C: Design and Technology, 10(4), 711–732. https://doi.org/10.29109/gujsc.1170021
  • Lim, K. Y. H., Zheng, P., & Chen, C.-H. (2020). A state-of-the-art survey of digital twin: Techniques, engineering product lifecycle management and business innovation perspectives. Journal of Intelligent Manufacturing, 31, 1313–1337. https://doi.org/10.1007/s10845-019-01512-w
  • Liu, X., Zhi, W., & Akhundzada, A. (2025). Enhancing performance prediction of municipal solid waste generation: A strategic management. Frontiers in Environmental Science, 13, 1553121. https://doi.org/10.3389/fenvs.2025.1553121
  • Lukić, I., Köhler, M., Krpić, Z., & Švarcmajer, M. (2025). Advancing smart city sustainability through artificial intelligence, digital twin and blockchain solutions. Technologies, 13, 300. https://doi.org/10.3390/technologies13070300
  • Melesse, T. Y., Peer, M. S., Ramasamy, S., Sivasubramaniyam, V., Braggio, M., & Orrù, P. F. (2025). Digital twin for energy-intelligent bakery operations: Concepts and applications. Energies, 18, 3660. https://doi.org/10.3390/en18143660
  • Mendi, A. F. (2022). A digital twin case study on automotive production line. Sensors, 22, 6963. https://doi.org/10.3390/s22186963
  • Mısır, A., & Arıkan, O. A. (2022). Avrupa ve Türkiye’de sıfır atık yönetimi ve döngüsel ekonomi. Çevre, İklim ve Sürdürülebilirlik, 1(1), 69–78.
  • Musungate, B. N., & Ercan, A. T. (2023). A simple Node-Red implementation for digital twins in the area of manufacturing. International Journal of Advanced Natural Sciences and Engineering Researches, 7(9), 24–30.
  • Nacak, A. (2024). Digital twin applications in aviation. Journal of Aerospace Science and Management, 2(1), 58–80.
  • Naseri, F., Gil, S., Barbu, C., Cetkin, E., Yarimca, G., Jensen, A. C., Larsen, P. G., & Gomes, C. (2023). Digital twin of electric vehicle battery systems: Comprehensive review of the use cases, requirements, and platforms. Renewable and Sustainable Energy Reviews, 179, 113280. https://doi.org/10.1016/j.rser.2023.113280
  • Öztekin, E. (2024). Water and waste management in eco-cities in the context of sustainable urban development. Karaelmas Fen ve Mühendislik Dergisi, 14(1), 92–100. https://doi.org/10.7212/karaelmasfen.1383715
  • Padovano, A., Sammarco, C., Balakera, N., & Konstantinidis, F. (2024). Towards sustainable cognitive digital twins: A portfolio management tool for waste mitigation. Computers & Industrial Engineering, 198, 110715. https://doi.org/10.1016/j.cie.2024.110715
  • Shaban, A., Zaki, F.-E., Afefy, I. H., Di Gravio, G., Falegnami, A., & Patriarca, R. (2022). An optimization model for the design of a sustainable municipal solid waste management system. Sustainability, 14(10), 6345. https://doi.org/10.3390/su14106345
  • Shah, K. B., Visalakshi, S., Guragain, D. P., & Panigrahi, R. (2025). Advancing smart city sustainability with Internet of Things and artificial intelligence aided low-cost digital twin systems for waste management. Microsystem Technologies, 31, 2783–2796. https://doi.org/10.1007/s00542-024-05827-4
  • Turan, E., Konuşkan, Y., Yıldırım, N., Tunçalp, D., İnan, M., Yasin, O., Turan, B., & Kerimoğlu, V. (2022). Digital twin modelling for optimizing the material consumption: A case study on sustainability improvement of thermoforming process. Sustainable Computing: Informatics and Systems, 35, 100655. https://doi.org/10.1016/j.suscom.2022.100655
  • Turgay, S., & Akar, N. (2023). Digital twin modeling and simulation of computer aided design and manufacturing structure: Case study. Digital Manufacturing and Process Management, 3(1), 1–10. https://doi.org/10.23977/dmpm.2023.030101
  • Ünal, A. K., & Toraman, A. (2023). Evaluation of digital twin technology. SDU Healthcare Management Journal, 5(1), 1–25.
  • Vargas, J. M., Castrillon, O. D., & Giraldo, J. A. (2025). Implementation and field validation of a digital twin methodology to enhance production and service systems in waste management. Applied Sciences, 15(12), 6733. https://doi.org/10.3390/app15126733
  • Yalcinkaya, S., & Yucel, O. (2025). Enhancing biogas production from municipal wastewater sludge and grease trap waste: Explainable machine learning models for prediction and parameter identification. Fuel, 391, 134787. https://doi.org/10.1016/j.fuel.2025.134787
  • Yalçınkaya, S. (2020). Calculation of solid waste collection induced air pollutant emissions through spatial analysis for different vehicle capacities: A case study in Çiğli, İzmir. Journal of Natural Hazards and Environment, 6(2), 366–376. https://doi.org/10.21324/dacd.675605

DIGITAL TWIN TECHNOLOGY FOR SMART URBAN WASTE MANAGEMENT

Yıl 2025, Cilt: 2 Sayı: 40, 41 - 53, 31.12.2025
https://doi.org/10.47118/somatbd.1836379

Öz

Rapid urbanization and population growth have escalated municipal solid waste (MSW) challenges, rendering traditional, reactive management systems inefficient and environmentally unsustainable. Digital Twin (DT) technology—dynamic virtual replicas of physical systems—offers a transformative solution for real-time monitoring and simulation, yet its application in MSW management remains nascent. This study proposes a comprehensive conceptual framework for integrating DT technology into municipal waste operations to enhance efficiency and sustainability. The methodology outlines a four-layer architecture integrating IoT sensors, AI-driven predictive modeling, and simulation tools to optimize the entire waste lifecycle. The proposed framework facilitates optimized routing, predictive maintenance, and energy analysis. The results suggest that implementing this model can significantly lower operational costs, mitigate greenhouse gas emissions, and support circular economy principles by enabling scenario testing and data-driven decision-making. Despite existing technical and economic barriers, the study concludes that DTs provide a vital pathway toward resilient, smart urban waste systems and recommends future real-world pilot studies to validate quantitative environmental and economic benefits.

Kaynakça

  • Akçacı, T., & Matyar Tanır, Y. (2025). Digital twin applications in logistics sector. Econder International Academic Journal, 9(1), 96–115.
  • Alay, D. (2024). The digital twin for personalised medicine: A systematic review. Journal of Health Professional Research, 6(1), 28–43.
  • Aynacı, İ. (2020). Digital twin and health applications. İzmir Kâtip Çelebi Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 3(1), 70–82.
  • Barth, L., Schweiger, L., Benedech, R., & Ehrat, M. (2023). From data to value in smart waste management: Optimizing solid waste collection with a digital twin-based decision support system. Decision Analytics Journal, 9, 100347. https://doi.org/10.1016/j.dajour.2023.100347
  • Başköy Bektaş, C., & Turan, N. G. (2023). Municipal solid waste management and evaluation of zero waste strategy in Ordu. The Black Sea Journal of Sciences, 13(4), 1906–1917. https://doi.org/10.31466/kfbd.1373887
  • Callcut, M., Cerceau Agliozzo, J.-P., Varga, L., & McMillan, L. (2021). Digital twins in civil infrastructure systems. Sustainability, 13, 11549. https://doi.org/10.3390/su132011549
  • Campana, P., Censi, R., Tarola, A. M., & Ruggieri, R. (2025). Artificial intelligence and digital twins for sustainable waste management: A bibliometric and thematic review. Applied Sciences, 15, 6337. https://doi.org/10.3390/app15116337
  • Cárdenas-León, I., Koeva, M., Nourian, P., & Davey, C. (2024). Urban digital twin-based solution using geospatial information for solid waste management. Sustainable Cities and Society, 115, 105798. https://doi.org/10.1016/j.scs.2024.105798
  • Çevik, M., & Diambu, A. N. (2024). Advancing sustainable development goals through the use of biocomposites for a greener future. In M. Çevik (Ed.), Scientific Research Reports (pp. 1–13). Duvar Publications.
  • Dai, C., Li, Y. P., & Huang, G. H. (2011). A two-stage support-vector-regression optimization model for municipal solid waste management: A case study of Beijing, China. Journal of Environmental Management, 92, 3023–3037. https://doi.org/10.1016/j.jenvman.2011.06.038
  • Gökkuş, G. (2021). Digital twin concept for renewable energy sources. Konya Journal of Engineering Sciences, 9(3), 836–844. https://doi.org/10.36306/konjes.969989
  • Güleç Solak, S., & Pekküçükşen, Ş. (2018). Municipal solid waste management in Turkey: A comparative analysis. MANAS Journal of Social Studies, 7(3), 653–683.
  • Güllü, G. (2022). Kentsel dönüşümde sıfır atık yönetimi. İstanbul Sabahattin Zaim University Journal of the Institute of Science and Technology, 4(2), 112–120. https://doi.org/10.47769/izufbed.1131056
  • Gürcan, C., & Açıksöz, S. (2023). Smart waste management and sample applications. Urban Academy, 16(1), 577–594. https://doi.org/10.35674/kent.881639
  • Gürkan, S., & Aytav, E. (2022). Using digital twin in photovoltaic panel emulator design. Iğdır University Journal of the Institute of Science and Technology, 12(1), 194–206. https://doi.org/10.21597/jist.1008632
  • Höke, M. C., & Yalcinkaya, S. (2021). Municipal solid waste transfer station planning through vehicle routing problem-based scenario analysis. Waste Management & Research, 39(1), 185–196. https://doi.org/10.1177/0734242X20966643
  • Johansen, S. T., Unal, P., Albayrak, Ö., Ikonen, E., Linnestad, K. J., Jawahery, S., Srivastava, A. K., & Løvfall, B. T. (2023). Hybrid and cognitive digital twins for the process industry. Open Engineering, 13, 20220418. https://doi.org/10.1515/eng-2022-0418
  • Khan, T. H., Noh, C., & Han, S. (2023). Correspondence measure: A review for the digital twin standardization. The International Journal of Advanced Manufacturing Technology, 128, 1907–1927. https://doi.org/10.1007/s00170-023-12019-3
  • Kılıç, C., Çetin, K., & Özbek, M. E. (2024). An industrial application of digital twin for a smart factory model using CoppeliaSim. International Journal of 3D Printing Technologies and Digital Industry, 8(3), 316–325. https://doi.org/10.46519/ij3dptdi.1452734
  • Koçak, A., & Yıldız, A. (2022). Using digital twin technology in production planning and control process: An application in textile industry. Gazi University Journal of Science Part C: Design and Technology, 10(4), 711–732. https://doi.org/10.29109/gujsc.1170021
  • Lim, K. Y. H., Zheng, P., & Chen, C.-H. (2020). A state-of-the-art survey of digital twin: Techniques, engineering product lifecycle management and business innovation perspectives. Journal of Intelligent Manufacturing, 31, 1313–1337. https://doi.org/10.1007/s10845-019-01512-w
  • Liu, X., Zhi, W., & Akhundzada, A. (2025). Enhancing performance prediction of municipal solid waste generation: A strategic management. Frontiers in Environmental Science, 13, 1553121. https://doi.org/10.3389/fenvs.2025.1553121
  • Lukić, I., Köhler, M., Krpić, Z., & Švarcmajer, M. (2025). Advancing smart city sustainability through artificial intelligence, digital twin and blockchain solutions. Technologies, 13, 300. https://doi.org/10.3390/technologies13070300
  • Melesse, T. Y., Peer, M. S., Ramasamy, S., Sivasubramaniyam, V., Braggio, M., & Orrù, P. F. (2025). Digital twin for energy-intelligent bakery operations: Concepts and applications. Energies, 18, 3660. https://doi.org/10.3390/en18143660
  • Mendi, A. F. (2022). A digital twin case study on automotive production line. Sensors, 22, 6963. https://doi.org/10.3390/s22186963
  • Mısır, A., & Arıkan, O. A. (2022). Avrupa ve Türkiye’de sıfır atık yönetimi ve döngüsel ekonomi. Çevre, İklim ve Sürdürülebilirlik, 1(1), 69–78.
  • Musungate, B. N., & Ercan, A. T. (2023). A simple Node-Red implementation for digital twins in the area of manufacturing. International Journal of Advanced Natural Sciences and Engineering Researches, 7(9), 24–30.
  • Nacak, A. (2024). Digital twin applications in aviation. Journal of Aerospace Science and Management, 2(1), 58–80.
  • Naseri, F., Gil, S., Barbu, C., Cetkin, E., Yarimca, G., Jensen, A. C., Larsen, P. G., & Gomes, C. (2023). Digital twin of electric vehicle battery systems: Comprehensive review of the use cases, requirements, and platforms. Renewable and Sustainable Energy Reviews, 179, 113280. https://doi.org/10.1016/j.rser.2023.113280
  • Öztekin, E. (2024). Water and waste management in eco-cities in the context of sustainable urban development. Karaelmas Fen ve Mühendislik Dergisi, 14(1), 92–100. https://doi.org/10.7212/karaelmasfen.1383715
  • Padovano, A., Sammarco, C., Balakera, N., & Konstantinidis, F. (2024). Towards sustainable cognitive digital twins: A portfolio management tool for waste mitigation. Computers & Industrial Engineering, 198, 110715. https://doi.org/10.1016/j.cie.2024.110715
  • Shaban, A., Zaki, F.-E., Afefy, I. H., Di Gravio, G., Falegnami, A., & Patriarca, R. (2022). An optimization model for the design of a sustainable municipal solid waste management system. Sustainability, 14(10), 6345. https://doi.org/10.3390/su14106345
  • Shah, K. B., Visalakshi, S., Guragain, D. P., & Panigrahi, R. (2025). Advancing smart city sustainability with Internet of Things and artificial intelligence aided low-cost digital twin systems for waste management. Microsystem Technologies, 31, 2783–2796. https://doi.org/10.1007/s00542-024-05827-4
  • Turan, E., Konuşkan, Y., Yıldırım, N., Tunçalp, D., İnan, M., Yasin, O., Turan, B., & Kerimoğlu, V. (2022). Digital twin modelling for optimizing the material consumption: A case study on sustainability improvement of thermoforming process. Sustainable Computing: Informatics and Systems, 35, 100655. https://doi.org/10.1016/j.suscom.2022.100655
  • Turgay, S., & Akar, N. (2023). Digital twin modeling and simulation of computer aided design and manufacturing structure: Case study. Digital Manufacturing and Process Management, 3(1), 1–10. https://doi.org/10.23977/dmpm.2023.030101
  • Ünal, A. K., & Toraman, A. (2023). Evaluation of digital twin technology. SDU Healthcare Management Journal, 5(1), 1–25.
  • Vargas, J. M., Castrillon, O. D., & Giraldo, J. A. (2025). Implementation and field validation of a digital twin methodology to enhance production and service systems in waste management. Applied Sciences, 15(12), 6733. https://doi.org/10.3390/app15126733
  • Yalcinkaya, S., & Yucel, O. (2025). Enhancing biogas production from municipal wastewater sludge and grease trap waste: Explainable machine learning models for prediction and parameter identification. Fuel, 391, 134787. https://doi.org/10.1016/j.fuel.2025.134787
  • Yalçınkaya, S. (2020). Calculation of solid waste collection induced air pollutant emissions through spatial analysis for different vehicle capacities: A case study in Çiğli, İzmir. Journal of Natural Hazards and Environment, 6(2), 366–376. https://doi.org/10.21324/dacd.675605
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevre Mühendisliği (Diğer), Makine Mühendisliğinde Optimizasyon Teknikleri, Sistem Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Mehmet Çevik

Gönderilme Tarihi 5 Aralık 2025
Kabul Tarihi 22 Aralık 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 2 Sayı: 40

Kaynak Göster

APA Çevik, M. (2025). DIGITAL TWIN TECHNOLOGY FOR SMART URBAN WASTE MANAGEMENT. Soma Meslek Yüksekokulu Teknik Bilimler Dergisi, 2(40), 41-53. https://doi.org/10.47118/somatbd.1836379
AMA Çevik M. DIGITAL TWIN TECHNOLOGY FOR SMART URBAN WASTE MANAGEMENT. Soma MYO Teknik Bilimler Dergisi. Aralık 2025;2(40):41-53. doi:10.47118/somatbd.1836379
Chicago Çevik, Mehmet. “DIGITAL TWIN TECHNOLOGY FOR SMART URBAN WASTE MANAGEMENT”. Soma Meslek Yüksekokulu Teknik Bilimler Dergisi 2, sy. 40 (Aralık 2025): 41-53. https://doi.org/10.47118/somatbd.1836379.
EndNote Çevik M (01 Aralık 2025) DIGITAL TWIN TECHNOLOGY FOR SMART URBAN WASTE MANAGEMENT. Soma Meslek Yüksekokulu Teknik Bilimler Dergisi 2 40 41–53.
IEEE M. Çevik, “DIGITAL TWIN TECHNOLOGY FOR SMART URBAN WASTE MANAGEMENT”, Soma MYO Teknik Bilimler Dergisi, c. 2, sy. 40, ss. 41–53, 2025, doi: 10.47118/somatbd.1836379.
ISNAD Çevik, Mehmet. “DIGITAL TWIN TECHNOLOGY FOR SMART URBAN WASTE MANAGEMENT”. Soma Meslek Yüksekokulu Teknik Bilimler Dergisi 2/40 (Aralık2025), 41-53. https://doi.org/10.47118/somatbd.1836379.
JAMA Çevik M. DIGITAL TWIN TECHNOLOGY FOR SMART URBAN WASTE MANAGEMENT. Soma MYO Teknik Bilimler Dergisi. 2025;2:41–53.
MLA Çevik, Mehmet. “DIGITAL TWIN TECHNOLOGY FOR SMART URBAN WASTE MANAGEMENT”. Soma Meslek Yüksekokulu Teknik Bilimler Dergisi, c. 2, sy. 40, 2025, ss. 41-53, doi:10.47118/somatbd.1836379.
Vancouver Çevik M. DIGITAL TWIN TECHNOLOGY FOR SMART URBAN WASTE MANAGEMENT. Soma MYO Teknik Bilimler Dergisi. 2025;2(40):41-53.