Altın önemli bir ödeme, yatırım ve birikim aracı olduğundan fiyatının belirlenmesi ülkeler ve yatırımcılar için önemlidir. Bu nedenle bu çalışmada altın fiyatının kestirimi amaçlanmıştır. Bu amaçla altın fiyatı üzerinde etkili olduğu düşünülen gümüş fiyatı, ham petrol WTI vadeli işlemleri fiyatı, ABD Doları endeksi, S&P500 endeksi, ABD federal fonlar bileşik faiz oranı, ABD TÜFE değişkenleri oluşturulan modellerde girdi olarak kullanılmıştır. Kullanılan veriler Ocak 2015 – Haziran 2020 dönemine aittir. Altın fiyatı doğrusal olmayan bir seridir, bunun yanında durağandışıdır. Altın fiyatının bu özellikleri fiyat kestirimlerin elde edilmesini zorlaştırmaktadır. Bu nedenle klasik yöntemlerin yanında makine öğrenmesi yöntemlerinin ve parametrik olmayan yöntemlerin altın fiyatının kestiriminde kullanılması uygun olmaktadır. Bu çalışmada, kestirimlerin elde edilmesinde XGBoost, MARS ve lineer regresyon modelleri kullanılmıştır. Elde edilen sonuçlar modellere ait performans değerlendirme kriterleri kullanılarak karşılaştırılmış, XGBoost ve MARS modelleri için girdi değişkenlerin altın fiyatı üzerindeki etkileri belirlenmiştir. Kullanılan modeller arasında XGBoost modeli %99,6 başarılı kestirim oranı ile en başarılı sonuçların elde edilmesini sağlamıştır. MARS modeli için ise bu oran %97,8’dir. Bu oranlar kullanılan değişkenlerin altın fiyatı üzerinde önemli etkiye sahip olduğunu göstermektedir. Kullanılan değişkenler arasında altın fiyatı üzerinde en önemli etkiye sahip değişken ABD TÜFE değişkenidir. Ayrıca elde edilen bulgular XGBoost ve MARS yöntemlerinin altın fiyatı ve benzer seriler için kestirimlerin elde edilmesinde tercih edilebilecek yöntemler olduğunu göstermektedir.
Altın Fiyatı Kestirim Makine Öğrenmesi Parametrik Olmayan Regresyon XGBoost MARS
Birincil Dil | Türkçe |
---|---|
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 30 Eylül 2020 |
Yayımlandığı Sayı | Yıl 2020 Sayı: 83 |