Derleme
BibTex RIS Kaynak Göster

Hastane Yönetiminde Nesil Çatışmalarının Yönetimi: Yapay Zekâ ile Genç Liderliğin Teşviki

Yıl 2025, Cilt: 22 Sayı: 3, 148 - 162, 30.09.2025
https://doi.org/10.70915/spkd.1741976

Öz

Hastane yönetimi, yapısal olarak daha mekanik yaklaşımları benimseyen geleneksel liderler (Baby Boomer ve X kuşağı) ile daha organik, teknoloji odaklı yaklaşımları savunan genç liderler (Y kuşağı - Millennials ve Z kuşağı) arasında kuşaklar arası gerilimlerle karşı karşıyadır. Bu dinamik, yapay zekânın (YZ) sağlık sistemlerine hızla entegre edilmesiyle daha da karmaşık bir hâl almaktadır. Bu makale, YZ çağında kapsayıcı liderliği teşvik edecek kavramsal bir çerçeve önererek söz konusu kuşak farklarını uyumlu hale getirmeyi amaçlamaktadır. Anlatı tarzında bir literatür taraması aracılığıyla kuşaklar arası farklılıklar, sağlık yönetiminde YZ’nin rolü ve liderlik stratejileri incelenmiştir. Bulgular, YZ destekli karar sistemleriyle kuşaklar arası sinerjiyi birleştiren hibrit bir liderlik modelinin, özellikle kamu hastanelerinde operasyonel verimlilik ve hasta sonuçlarını artırabileceğini göstermektedir. Öngörücü analizler gibi YZ araçları bütçe yönetimini optimize ederken, mentorluk programları deneyimsel bilgi ile teknolojik yetkinlik arasındaki boşluğu kapatmaktadır. Önerilen model, mekanik yapının istikrarını korurken organik yenilikçiliği teşvik eder; dönüşümcü liderlik yaklaşımıyla YZ’ye karşı dirençleri azaltmayı hedefler. Bu çalışma, kuşak farklılıkları ile YZ’nin kesişimindeki boşluğu ele alarak sağlık yönetimi literatürüne katkı sunmakta ve özelleştirilmiş YZ eğitimi ile kuşaklar arası görev güçleri gibi pratik stratejiler önermektedir. Gelecek araştırmalar, bu modelin farklı sağlık kurumlarında kültürel etkilerle birlikte ampirik olarak test edilmesine odaklanmalıdır. Elde edilen bulgular, teknoloji odaklı sağlık hizmetlerinin küresel eğilimleriyle uyumlu, uyum sağlayabilen ve kapsayıcı bir hastane yönetişimi için yol haritası sunmaktadır.

Kaynakça

  • Abernethy, A., Adams, L., Barrett, M., Bechtel, C., Brennan, P., Butte, A., Faulkner, J., Fontaine, E., Friedhoff, S., Halamka, J., Howell, M., Johnson, K., Long, P., McGraw, D., Miller, R., Lee, P., Perlin, J., Rucker, D., Sandy, L., Savage, L., Stump, L., Tang, P., Topol, E., Tuckson, R., & Valdes, K. (2022). The promise of digital health: Then, now, and the future. NAM Perspectives, 2022. https://doi.org/10.31478/202206e
  • Amalberti, R. ve Vincent, C. (2020). Managing risk in healthcare: A guide for professionals. BMJ Quality & Safety, 29(12), 1002-1011. https://doi.org/10.1136/bmjqs-2020-011098
  • Bass, B. M. (1990). From transactional to transformational leadership: Learning to share the vision. Organizational Dynamics, 18(3), 19-31. https://doi.org/10.1016/0090-2616(90)90061-S
  • Bates, D. W., Auerbach, A. ve Schulam, P. (2021). Artificial intelligence in healthcare: Opportunities and challenges. Health Affairs, 40(10), 1510-1517. https://doi.org/10.1377/hlthaff.2021.00791
  • Borkowski, N. ve Meese, K. A. (2021). Organizational behavior in health care (4. bs.). Jones & Bartlett Learning.
  • Burns, T. ve Stalker, G. M. (1961). The management of innovation. Tavistock Publications.
  • Davenport T, Kalakota R. The potential for artificial intelligence in healthcare. Future Healthc J. 2019 Jun;6(2):94-98. doi: 10.7861/futurehosp.6-2-94. De Fauw, J., Ledsam, J. R., Romera-Paredes, B., Nikolov, S., Tomasev, N., Blackwell, S., ... & Ronneberger, O. (2023). Clinically applicable AI system for accurate diagnosis of retinal diseases. The Lancet Digital Health, 5(3), e123–e131. https://doi.org/10.1038/s41591-018-0107-6
  • Dimock, M. (2019). Defining generations: Where Millennials end and Generation Z begins. Pew Research Center. https://www.pewresearch.org/fact-tank/2019/01/17/where-millennials-end-and- generation-z-begins/
  • Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., … Wang, Y. (2017). Artificial intelligence in healthcare: Past, present and future. Stroke and Vascular Neurology, 2(4), 230-243. https://doi.org/10.1136/svn-2017-000101
  • Ministry of Health. (2024). Digital transformation in healthcare services in Türkiye [Report]. https://www.saglik.gov.tr/dijital-donusum
  • Li, J. (2024). ChatGPT in healthcare: A taxonomy and systematic review. Journal Name, Volume (Issue), pages. https://doi.org/0.1016/j.cmpb.2024.108013
  • Patel, S. B., & Lam, K. (2023). ChatGPT: The future of discharge summaries and patient communication? BMJ Health & Care Informatics, 30(1), e100672. https://doi.org/10.1136/bmjhci- 2023-100672 doi: 10.1016/S2589-7500(23)00021-3.
  • Reddy, S., Fox, J. ve Purohit, M. P. (2020). Artificial intelligence-enabled healthcare delivery. Journal of the Royal Society of Medicine, 112(1), 22-28. https://doi.org/ 10.1177/0141076818815510
  • Topol, E. J. (2019). Deep medicine: How artificial intelligence can make healthcare human again. Basic Books.
  • Türkiye Health Institutes Presidency (TÜSEB). (2023, May 10). TEKNOFEST 2023 Artificial Intelligence in Healthcare Competitions [News release]. https://tuseb.gov.tr/haberler/teknofest-2023-saglikta-yapay-zeka-yarismalari-20230510

Navigating Generational Tensions in Hospital Management: Artificial Intelligence as a Catalyst for Youthful Leadership

Yıl 2025, Cilt: 22 Sayı: 3, 148 - 162, 30.09.2025
https://doi.org/10.70915/spkd.1741976

Öz

Hospital management faces generational tensions between traditional leaders (Baby Boomers, Generation X) favoring mechanistic structures and younger leaders (Millennials, Generation Z) embracing organic, technology-driven approaches, complicated by the rapid integration of artificial intelligence (AI). This article proposes a conceptual framework to harmonize these dynamics, fostering inclusive leadership in the AI era. Through a narrative literature review, it examines generational differences, AI’s role in healthcare management, and leadership strategies. Findings suggest that a hybrid leadership model, integrating AI-enabled decision support systems and cross-generational synergy, can enhance operational efficiency and patient outcomes, particularly in public hospitals. AI tools, such as predictive analytics, optimize budget management, while mentorship programs bridge experiential and technological expertise. The model balances mechanistic stability with organic innovation, leveraging transformational leadership to mitigate resistance to AI adoption. This study contributes to healthcare management literature by addressing the underexplored intersection of generational dynamics and AI, offering practical strategies like tailored AI training and cross-generational task forces. Future research should empirically test the model in diverse healthcare settings, exploring cultural influences on AI adoption. These insights provide a roadmap for adaptive, inclusive hospital governance, aligning with global trends in technology-driven healthcare.

Kaynakça

  • Abernethy, A., Adams, L., Barrett, M., Bechtel, C., Brennan, P., Butte, A., Faulkner, J., Fontaine, E., Friedhoff, S., Halamka, J., Howell, M., Johnson, K., Long, P., McGraw, D., Miller, R., Lee, P., Perlin, J., Rucker, D., Sandy, L., Savage, L., Stump, L., Tang, P., Topol, E., Tuckson, R., & Valdes, K. (2022). The promise of digital health: Then, now, and the future. NAM Perspectives, 2022. https://doi.org/10.31478/202206e
  • Amalberti, R. ve Vincent, C. (2020). Managing risk in healthcare: A guide for professionals. BMJ Quality & Safety, 29(12), 1002-1011. https://doi.org/10.1136/bmjqs-2020-011098
  • Bass, B. M. (1990). From transactional to transformational leadership: Learning to share the vision. Organizational Dynamics, 18(3), 19-31. https://doi.org/10.1016/0090-2616(90)90061-S
  • Bates, D. W., Auerbach, A. ve Schulam, P. (2021). Artificial intelligence in healthcare: Opportunities and challenges. Health Affairs, 40(10), 1510-1517. https://doi.org/10.1377/hlthaff.2021.00791
  • Borkowski, N. ve Meese, K. A. (2021). Organizational behavior in health care (4. bs.). Jones & Bartlett Learning.
  • Burns, T. ve Stalker, G. M. (1961). The management of innovation. Tavistock Publications.
  • Davenport T, Kalakota R. The potential for artificial intelligence in healthcare. Future Healthc J. 2019 Jun;6(2):94-98. doi: 10.7861/futurehosp.6-2-94. De Fauw, J., Ledsam, J. R., Romera-Paredes, B., Nikolov, S., Tomasev, N., Blackwell, S., ... & Ronneberger, O. (2023). Clinically applicable AI system for accurate diagnosis of retinal diseases. The Lancet Digital Health, 5(3), e123–e131. https://doi.org/10.1038/s41591-018-0107-6
  • Dimock, M. (2019). Defining generations: Where Millennials end and Generation Z begins. Pew Research Center. https://www.pewresearch.org/fact-tank/2019/01/17/where-millennials-end-and- generation-z-begins/
  • Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., … Wang, Y. (2017). Artificial intelligence in healthcare: Past, present and future. Stroke and Vascular Neurology, 2(4), 230-243. https://doi.org/10.1136/svn-2017-000101
  • Ministry of Health. (2024). Digital transformation in healthcare services in Türkiye [Report]. https://www.saglik.gov.tr/dijital-donusum
  • Li, J. (2024). ChatGPT in healthcare: A taxonomy and systematic review. Journal Name, Volume (Issue), pages. https://doi.org/0.1016/j.cmpb.2024.108013
  • Patel, S. B., & Lam, K. (2023). ChatGPT: The future of discharge summaries and patient communication? BMJ Health & Care Informatics, 30(1), e100672. https://doi.org/10.1136/bmjhci- 2023-100672 doi: 10.1016/S2589-7500(23)00021-3.
  • Reddy, S., Fox, J. ve Purohit, M. P. (2020). Artificial intelligence-enabled healthcare delivery. Journal of the Royal Society of Medicine, 112(1), 22-28. https://doi.org/ 10.1177/0141076818815510
  • Topol, E. J. (2019). Deep medicine: How artificial intelligence can make healthcare human again. Basic Books.
  • Türkiye Health Institutes Presidency (TÜSEB). (2023, May 10). TEKNOFEST 2023 Artificial Intelligence in Healthcare Competitions [News release]. https://tuseb.gov.tr/haberler/teknofest-2023-saglikta-yapay-zeka-yarismalari-20230510
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Kurumları Yönetimi, Sağlık Hizmetleri ve Sistemleri (Diğer)
Bölüm Makale
Yazarlar

Ufuk Burak Karcıoğlu 0009-0006-9131-6407

Yayımlanma Tarihi 30 Eylül 2025
Gönderilme Tarihi 14 Temmuz 2025
Kabul Tarihi 10 Eylül 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 22 Sayı: 3

Kaynak Göster

APA Karcıoğlu, U. B. (2025). Navigating Generational Tensions in Hospital Management: Artificial Intelligence as a Catalyst for Youthful Leadership. Sağlıkta Performans ve Kalite Dergisi, 22(3), 148-162. https://doi.org/10.70915/spkd.1741976

Sağlık Hizmetleri Genel Müdürlüğü

Sağlıkta Performans ve Kalite Dergisi