Araştırma Makalesi
BibTex RIS Kaynak Göster

Psychometric Properties of the Turkish Version of the ChatGPT Usage Scale

Yıl 2025, Cilt: 4 Sayı: 2, 47 - 60, 31.12.2025

Öz

Artificial Intelligence (AI) tools are actively used by academics and students. ChatGPT stands out among the AI tools most used by undergraduate and graduate students. ChatGPT offers students idea development and academic writing support for their assignments and research. This study examined the validity and reliability of the ChatGPT Usage Scale in Turkish culture. The ChatGPT Usage Scale consists of three subscales: Academic Writing Aid, Academic Task Support, and Reliance and Trust. The study participants consisted of 332 undergraduate and graduate students. Reliability analyses conducted on the ChatGPT Usage Scale show that Cronbach's alpha and McDonald's omega values ranged from .87 to .96. According to the results of the study's Confirmatory Factor Analysis (CFA), the fit indices of the ChatGPT Usage Scale were determined to be good. The results of the scale's item discriminant analysis and item-total correlation values were found to be at acceptable levels. Furthermore, the scale's high item factor loadings and convergent validity demonstrate its construct validity. All research findings demonstrate that the Turkish version of the ChatGPT Usage Scale is reliable and valid. Therefore, this scale is expected to make significant contributions to future studies on the integration of AI and ChatGPT into the Turkish education system.

Kaynakça

  • Araujo, T., Helberger, N., Kruikemeier, S., and De Vreese, C. H. (2020). In AI we trust? Perceptions about automated decision-making by artificial intelligence. AI & Society. 35, 611–623. https://doi.org/10.1007/s00146-019-00931-w
  • Athanassopoulos, S., Manoli, P., Gouvi, M., Lavidas, K., & Komis, V. (2023). The use of ChatGPT as a learning tool to improve foreign language writing in a multilingual and multicultural classroom. Advances in Mobile Learning Educational Research, 3(2), 818-824.
  • Banh, L., & Strobel, G. (2023). Generative artificial intelligence. Electron Markets, 33, 63. https://doi.org/10.1007/s12525-023-00680-1
  • Batuk, B. Aktu, Y., & Türk, N. (2025). Yapay Zeka Kabul Ölçeği Kısa Formu’nun Psikometrik Özelliklerinin İncelenmesi. Çukurova Sosyal Bilimler Enstitüsü Dergisi, 34(Uygarlığın Dönüşümü-Sosyal Bilimlerin Bakışıyla Yapay Zekâ), 438-451. https://doi.org/10.35379/cusosbil.1695975
  • Bayram. N. (2013). Yapısal eşitlik modellemesine giriş (3.baskı). Ezgi Kitapevi.
  • Brislin, R. W., Lonner, W. J., & Thorndike, R. M. (1973). Cross-cultural research methods. JohnWiley & Sons
  • Büyüköztürk, Ş. (2018). Faktör analizi: Temel kavramlar ve ölçek geliştirmede kullanımı. Kuram ve Uygulamada Eğitim Yönetimi, 32(32), 470-483.
  • Büyüköztürk, Ş., Çakmak, E. K., Akgün, Ö. E., Karadeniz, Ş., Demirel, F. (2014). Bilimsel araştırma yöntemleri (18th ed.). Pegem Akademi Publications.
  • Can, A. (2020). Spss ile Bilimsel Araştırma Sürecinde Nicel Veri Analizi (9th Ed.). Ankara: Pegem Akademi.
  • Carolus, A., Koch, M. J., Straka, S., Latoschik, M. E., & Wienrich, C. (2023). MAILS-Meta AI literacy scale: Development and testing of an AI literacy questionnaire based on well-founded competency models and psychological change-and meta-competencies. Computers in Human Behavior: Artificial Humans, 1(2), 100014. https://doi.org/10.1016/j.chbah.2023.100014
  • Chen, F. F. (2007). Sensitivity of goodness of fit indexes to lack of measurement invariance. Structural Equation Modeling: A Multidisciplinary Journal, 14(3),464–504. https://doi.org/10.1080/10705510701301834
  • Chen, L. (2017). International competitiveness and the fourth industrial revolution. Entrepreneurial Business and Economics Review, 5(4), 111-133. https://doi.org/10.15678/eber.2017.050405
  • Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling, 9(2), 233–255. https://doi.org/10.1207/S15328007SEM0902_5
  • Creswell, J. W., & Creswell, J. D. (2017). Research design: Qualitative, quantitative, and mixed methods approaches. Sage publications.
  • Çobanoğulları, F., & Özbek, Ö. (2025). AI-powered language learning: Developing the chatGPT usage scale for foreign language learners. Education and Information Technologies, 1-18. https://doi.org/10.1007/s10639-025-13342-w
  • Denecke, K., Abd-Alrazaq, A., & Househ, M. (2021). Artificial Intelligence for Chatbots in Mental Health: Opportunities and Challenges. In: M. Househ, E. Borycki, & A. Kushniruk (Eds.), Multiple Perspectives on Arti ficial Intelligence in Healthcare: Opportunities and Challenges (pp. 115 128). Cham: Springer International Publishing.
  • F. S. (2023). Challenges and Opportunities of Generative AI for Higher Education as Explained by ChatGPT. Education Sciences, 13(9), 856. https://doi.org/10.3390/educsci13090856
  • Farrokhnia, M., Banihashem, S. K., Noroozi, O., & Wals, A. (2023). A SWOT analysis of ChatGPT: Implications for educational practice and research. Innovations in Education and Teaching International, 61(3), 460–474. https://doi.org/10.1080/14703297.2023.2195846
  • Fornell, C., & Larcker, D. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.1177/002224378101800104
  • Ghahramani, Z. (2015). Probabilistic machine learning and artificial intelligence. Nature, 521(7553), 452–459. https://doi.org/10.1038/nature14541
  • Hair, J.F., Black, W.C., Babin, B.J., & Anderson, R.E. (2014). Exploratory factor analysis. Multivariate data analysis. Prentice Hall.
  • Hartley, K., Hayak, M., & Ko, U. H. (2024). Artificial intelligence supporting independent student learning: An evaluative case study of ChatGPT and learning to code. Education Sciences, 14(2), 120.  https://doi.org/10.3390/educsci14020120
  • Huallpa, J. J. (2023). Exploring the ethical considerations of using Chat GPT in university education. Periodicals of Engineering and Natural Sciences, 11(4), 105-115. https://doi.org/10.21533/pen.v11.i4.200
  • Jackson, P. C. (2019). Introduction to artificial intelligence. Courier Dover Publications. https://doi.org/10.1007/s00146-016-0646-7
  • Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets, 31(3), 685–695. https://doi.org/10.1007/s12525-021-00475-2
  • Karagöz, Y. (2021). Bilimsel araştırma yöntemleri ve yayın etiği (3.Baskı). Nobel.
  • Karasar, N. (2012). Bilimsel araştırma yöntemi. Nobel Yayınevi.
  • Kline, R. B. (2011). Principles and practice of structural equation modeling. NY: The Guilford Press.
  • Lester, J., Branting, K., & Mott, B. (2004). Conversational agents. The Practical Handbook of Internet Computing, 220–240.
  • Luger, G. F., & Chakrabarti, C. (2017). From Alan Turing to modern AI: practical solutions and an implicit epistemic stance. AI & Society, 32(3), 321-338.
  • Maral, S., Naycı, N., Bilmez, H., Erdemir, E. İ., & Satici, S. A. (2025). Problematic ChatGPT Use Scale: AI-Human Collaboration or Unraveling the Dark Side of ChatGPT. International Journal of Mental Health and Addiction, 1-27. https://doi.org/10.1007/s11469-025-01509-y
  • Mazı, A. (2025). Developing a primary school teacher attitude scale for the use of ChatGPT in mathematics education. Acta Psychologica, 261, 105729. https://doi.org/10.1016/j.actpsy.2025.105729
  • Mitchell, M. (2019). Artificial intelligence: A guide for thinking humans. Penguin UK
  • Michel-Villarreal, R., Vilalta-Perdomo, E., Salinas-Navarro, D. E., Thierry-Aguilera, R., & Gerardou, F. S. (2023). Challenges and opportunities of generative AI for higher education as explained by ChatGPT. Education sciences, 13(9), 856.
  • Nemt-Allah, M., Khalifa, W., Badawy, M., Elbably, Y., & Ibrahim, A. (2024). Validating the ChatGPT Usage Scale: psychometric properties and factor structures among postgraduate students. BMC psychology, 12(1), 497. https://doi.org/10.1186/s40359-024-01983-4
  • O’Shaughnessy, M. R., Schiff, D. S., Varshney, L. R., Rozell, C. J., & Davenport, M. A. (2023). What governs attitudes toward artificial intelligence adoption and governance? Science and Public Policy, 50(2), 161-176. https://doi.org/10.1093/scipol/scac056
  • Rahman, M. M., & Watanobe, Y. (2023). ChatGPT for Education and Research: Opportunities, Threats, and Strategies. Applied Sciences, 13(9), 5783. https://doi.org/10.3390/app13095783
  • Schwab, K. (2017). The Fourth Industrial Revolution. World Economic Forum.
  • Shrestha, N. (2021). Factor analysis as a tool for survey analysis. American Journal of Applied Mathematics and Statistics, 9(1), 4-11
  • Su, J., & Yang, W. (2023). Unlocking the power of ChatGPT: A framework for applying generative AI in education. ECNU Review of Education, 6(3), 355-366. https://doi.org/10.1177/20965311231168423
  • Tabachnick, B. G., & Fidell, L. S. (2007). Using Multivariate Statistics. Allyn and Bacon
  • Taktak, M. & Bafrali, G. (2025). ChatGPT usage scale in education: Validity and reliability study. International Journal of Technology in Education (IJTE), 8(1), 193-207. https://doi.org/10.46328/ijte.1024
  • TheTab. (202, November, 23). These are the Russell Group unis that have banned students from using ChatGPT. Retrieved Novemver 23, 2025, https://thetab.com/uk/2023/03/03/these-are-the-russell-group-unis-that-have-banned-students-from-using-chatgpt-297148
  • Türk, N., Batuk, B., Kaya, A., & Yıldırım, O. (2025). What Makes University Students Accept Generative Artificial Intelligence? A Moderated Mediation Model. BMC Psychology, 13, 1257. https://doi.org/10.1186/s40359-025-03559-2
  • UCL. (2025). Engaging with AI in your education and assessment. Retrieved Novemver 23, 2025, from https://www.ucl.ac.uk/students/exams-and-assessments/assessment-success-guide/engaging-ai-your-education-and-assessment
  • Velastegui, D., Pérez, M. L. R., & Garcés, L. F. S. (2023). Impact of Artificial Intelligence on learning behaviors and psychological well-being of college students. Salud, Ciencia y Tecnologia-Serie de Conferencias, 2, 343.
  • Wang, B., Rau, P.-L. P., & Yuan, T. (2022). Measuring user competence in using artificial intelligence: validity and reliability of artificial intelligence literacy scale. Behaviour & Information Technology, 42(9), 1324–1337. https://doi.org/10.1080/0144929X.2022.2072768
  • Yilmaz, F. G. K., Yilmaz, R., & Ceylan, M. (2023). Generative artificial intelligence acceptance scale: A validity and reliability study. International Journal of Human–Computer Interaction, 1-13. https://doi.org/10.1080/10447318.2023.2288730
  • YOK. (2024). Üretken yapay zekânın bilimsel araştırma ve yayınlarda kullanımının etik boyut. Retrieved Novemver 23, 2025, from https://proje.yok.gov.tr/documentFiles/17539645334.Y%C3%BCksek%C3%B6%C4%9Fretimde%20%C3%BCretken%20yapay%20zeka%20kullan%C4%B1m%C4%B1-tr.pdf
  • Zhang, B. & Dafoe, A. (2019). Artificial intelligence: American attitudes and trends. Available at SSRN 3312874. https://doi.org/10.2139/ssrn.3312874

ChatGPT Kullanım Ölçeği'nin Türkçe Versiyonunun Psikometrik Özellikleri

Yıl 2025, Cilt: 4 Sayı: 2, 47 - 60, 31.12.2025

Öz

Yapay Zeka (YZ) araçları, akademisyenler ve öğrenciler tarafından aktif olarak kullanılmaktadır. Lisans ve lisansüstü öğrencilerinin en çok kullandığı AI araçları arasında ChatGPT ön plana çıkmaktadır. ChatGPT, öğrencilere ödevlerinde ve araştırmalarında fikir geliştirme ve akademik yazım desteği sunmaktadır. Bu çalışmada, ChatGPT Kullanım Ölçeği'nin Türk kültüründe geçerlilik ve güvenilirliği incelenmiştir. ChatGPT Kullanım Ölçeği, Akademik Yazım Yardımı, Akademik Ödev Desteği ile Bağlılık ve Güven olmak üzere üç alt boyuttan oluşmaktadır. Araştırmanın katılımcıları, 332 lisans ve lisansüstü öğreciden oluşmaktadır. ChatGPT Kullanım Ölçeği üzerinde yürütülen güvenirlik analizleri, sonuçları Cronbach alfa ve McDonald's omega değerlerinin .87-.96 arasında değiştiğini göstermektedir. Çalışmanın Doğrulayıcı Faktör Analizi (DFA) sonuçlarına göre, ChatGPT Kullanım Ölçeği'nin uyum indekslerinin iyi düzeyde olduğu saptanmıştır. Ölçeğin madde ayırt edicilik analizi sonuçları ve madde toplam korelasyon değerlerinin kabul edilebilir seviyede olduğu görülmüştür. Ayrıca ölçeğin madde faktör yüklerinin yüksek olması ve benzeşim geçerliliğini sağlaması, yapı geçerliliğini sağladığını göstermektedir. Araştırmanın tüm bulguları, ChatGPT Kullanım Ölçeği'nin Türkçe formunun güvenilir ve geçerli olduğunu göstermektedir. Dolayısla, bu ölçeğin Türk eğitim sistemine AI ve ChatGPT’nin entagrasyonu konusunda yapılacak çalışmalara önemli katkılarda bulunması beklenmektedir.

Kaynakça

  • Araujo, T., Helberger, N., Kruikemeier, S., and De Vreese, C. H. (2020). In AI we trust? Perceptions about automated decision-making by artificial intelligence. AI & Society. 35, 611–623. https://doi.org/10.1007/s00146-019-00931-w
  • Athanassopoulos, S., Manoli, P., Gouvi, M., Lavidas, K., & Komis, V. (2023). The use of ChatGPT as a learning tool to improve foreign language writing in a multilingual and multicultural classroom. Advances in Mobile Learning Educational Research, 3(2), 818-824.
  • Banh, L., & Strobel, G. (2023). Generative artificial intelligence. Electron Markets, 33, 63. https://doi.org/10.1007/s12525-023-00680-1
  • Batuk, B. Aktu, Y., & Türk, N. (2025). Yapay Zeka Kabul Ölçeği Kısa Formu’nun Psikometrik Özelliklerinin İncelenmesi. Çukurova Sosyal Bilimler Enstitüsü Dergisi, 34(Uygarlığın Dönüşümü-Sosyal Bilimlerin Bakışıyla Yapay Zekâ), 438-451. https://doi.org/10.35379/cusosbil.1695975
  • Bayram. N. (2013). Yapısal eşitlik modellemesine giriş (3.baskı). Ezgi Kitapevi.
  • Brislin, R. W., Lonner, W. J., & Thorndike, R. M. (1973). Cross-cultural research methods. JohnWiley & Sons
  • Büyüköztürk, Ş. (2018). Faktör analizi: Temel kavramlar ve ölçek geliştirmede kullanımı. Kuram ve Uygulamada Eğitim Yönetimi, 32(32), 470-483.
  • Büyüköztürk, Ş., Çakmak, E. K., Akgün, Ö. E., Karadeniz, Ş., Demirel, F. (2014). Bilimsel araştırma yöntemleri (18th ed.). Pegem Akademi Publications.
  • Can, A. (2020). Spss ile Bilimsel Araştırma Sürecinde Nicel Veri Analizi (9th Ed.). Ankara: Pegem Akademi.
  • Carolus, A., Koch, M. J., Straka, S., Latoschik, M. E., & Wienrich, C. (2023). MAILS-Meta AI literacy scale: Development and testing of an AI literacy questionnaire based on well-founded competency models and psychological change-and meta-competencies. Computers in Human Behavior: Artificial Humans, 1(2), 100014. https://doi.org/10.1016/j.chbah.2023.100014
  • Chen, F. F. (2007). Sensitivity of goodness of fit indexes to lack of measurement invariance. Structural Equation Modeling: A Multidisciplinary Journal, 14(3),464–504. https://doi.org/10.1080/10705510701301834
  • Chen, L. (2017). International competitiveness and the fourth industrial revolution. Entrepreneurial Business and Economics Review, 5(4), 111-133. https://doi.org/10.15678/eber.2017.050405
  • Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling, 9(2), 233–255. https://doi.org/10.1207/S15328007SEM0902_5
  • Creswell, J. W., & Creswell, J. D. (2017). Research design: Qualitative, quantitative, and mixed methods approaches. Sage publications.
  • Çobanoğulları, F., & Özbek, Ö. (2025). AI-powered language learning: Developing the chatGPT usage scale for foreign language learners. Education and Information Technologies, 1-18. https://doi.org/10.1007/s10639-025-13342-w
  • Denecke, K., Abd-Alrazaq, A., & Househ, M. (2021). Artificial Intelligence for Chatbots in Mental Health: Opportunities and Challenges. In: M. Househ, E. Borycki, & A. Kushniruk (Eds.), Multiple Perspectives on Arti ficial Intelligence in Healthcare: Opportunities and Challenges (pp. 115 128). Cham: Springer International Publishing.
  • F. S. (2023). Challenges and Opportunities of Generative AI for Higher Education as Explained by ChatGPT. Education Sciences, 13(9), 856. https://doi.org/10.3390/educsci13090856
  • Farrokhnia, M., Banihashem, S. K., Noroozi, O., & Wals, A. (2023). A SWOT analysis of ChatGPT: Implications for educational practice and research. Innovations in Education and Teaching International, 61(3), 460–474. https://doi.org/10.1080/14703297.2023.2195846
  • Fornell, C., & Larcker, D. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.1177/002224378101800104
  • Ghahramani, Z. (2015). Probabilistic machine learning and artificial intelligence. Nature, 521(7553), 452–459. https://doi.org/10.1038/nature14541
  • Hair, J.F., Black, W.C., Babin, B.J., & Anderson, R.E. (2014). Exploratory factor analysis. Multivariate data analysis. Prentice Hall.
  • Hartley, K., Hayak, M., & Ko, U. H. (2024). Artificial intelligence supporting independent student learning: An evaluative case study of ChatGPT and learning to code. Education Sciences, 14(2), 120.  https://doi.org/10.3390/educsci14020120
  • Huallpa, J. J. (2023). Exploring the ethical considerations of using Chat GPT in university education. Periodicals of Engineering and Natural Sciences, 11(4), 105-115. https://doi.org/10.21533/pen.v11.i4.200
  • Jackson, P. C. (2019). Introduction to artificial intelligence. Courier Dover Publications. https://doi.org/10.1007/s00146-016-0646-7
  • Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets, 31(3), 685–695. https://doi.org/10.1007/s12525-021-00475-2
  • Karagöz, Y. (2021). Bilimsel araştırma yöntemleri ve yayın etiği (3.Baskı). Nobel.
  • Karasar, N. (2012). Bilimsel araştırma yöntemi. Nobel Yayınevi.
  • Kline, R. B. (2011). Principles and practice of structural equation modeling. NY: The Guilford Press.
  • Lester, J., Branting, K., & Mott, B. (2004). Conversational agents. The Practical Handbook of Internet Computing, 220–240.
  • Luger, G. F., & Chakrabarti, C. (2017). From Alan Turing to modern AI: practical solutions and an implicit epistemic stance. AI & Society, 32(3), 321-338.
  • Maral, S., Naycı, N., Bilmez, H., Erdemir, E. İ., & Satici, S. A. (2025). Problematic ChatGPT Use Scale: AI-Human Collaboration or Unraveling the Dark Side of ChatGPT. International Journal of Mental Health and Addiction, 1-27. https://doi.org/10.1007/s11469-025-01509-y
  • Mazı, A. (2025). Developing a primary school teacher attitude scale for the use of ChatGPT in mathematics education. Acta Psychologica, 261, 105729. https://doi.org/10.1016/j.actpsy.2025.105729
  • Mitchell, M. (2019). Artificial intelligence: A guide for thinking humans. Penguin UK
  • Michel-Villarreal, R., Vilalta-Perdomo, E., Salinas-Navarro, D. E., Thierry-Aguilera, R., & Gerardou, F. S. (2023). Challenges and opportunities of generative AI for higher education as explained by ChatGPT. Education sciences, 13(9), 856.
  • Nemt-Allah, M., Khalifa, W., Badawy, M., Elbably, Y., & Ibrahim, A. (2024). Validating the ChatGPT Usage Scale: psychometric properties and factor structures among postgraduate students. BMC psychology, 12(1), 497. https://doi.org/10.1186/s40359-024-01983-4
  • O’Shaughnessy, M. R., Schiff, D. S., Varshney, L. R., Rozell, C. J., & Davenport, M. A. (2023). What governs attitudes toward artificial intelligence adoption and governance? Science and Public Policy, 50(2), 161-176. https://doi.org/10.1093/scipol/scac056
  • Rahman, M. M., & Watanobe, Y. (2023). ChatGPT for Education and Research: Opportunities, Threats, and Strategies. Applied Sciences, 13(9), 5783. https://doi.org/10.3390/app13095783
  • Schwab, K. (2017). The Fourth Industrial Revolution. World Economic Forum.
  • Shrestha, N. (2021). Factor analysis as a tool for survey analysis. American Journal of Applied Mathematics and Statistics, 9(1), 4-11
  • Su, J., & Yang, W. (2023). Unlocking the power of ChatGPT: A framework for applying generative AI in education. ECNU Review of Education, 6(3), 355-366. https://doi.org/10.1177/20965311231168423
  • Tabachnick, B. G., & Fidell, L. S. (2007). Using Multivariate Statistics. Allyn and Bacon
  • Taktak, M. & Bafrali, G. (2025). ChatGPT usage scale in education: Validity and reliability study. International Journal of Technology in Education (IJTE), 8(1), 193-207. https://doi.org/10.46328/ijte.1024
  • TheTab. (202, November, 23). These are the Russell Group unis that have banned students from using ChatGPT. Retrieved Novemver 23, 2025, https://thetab.com/uk/2023/03/03/these-are-the-russell-group-unis-that-have-banned-students-from-using-chatgpt-297148
  • Türk, N., Batuk, B., Kaya, A., & Yıldırım, O. (2025). What Makes University Students Accept Generative Artificial Intelligence? A Moderated Mediation Model. BMC Psychology, 13, 1257. https://doi.org/10.1186/s40359-025-03559-2
  • UCL. (2025). Engaging with AI in your education and assessment. Retrieved Novemver 23, 2025, from https://www.ucl.ac.uk/students/exams-and-assessments/assessment-success-guide/engaging-ai-your-education-and-assessment
  • Velastegui, D., Pérez, M. L. R., & Garcés, L. F. S. (2023). Impact of Artificial Intelligence on learning behaviors and psychological well-being of college students. Salud, Ciencia y Tecnologia-Serie de Conferencias, 2, 343.
  • Wang, B., Rau, P.-L. P., & Yuan, T. (2022). Measuring user competence in using artificial intelligence: validity and reliability of artificial intelligence literacy scale. Behaviour & Information Technology, 42(9), 1324–1337. https://doi.org/10.1080/0144929X.2022.2072768
  • Yilmaz, F. G. K., Yilmaz, R., & Ceylan, M. (2023). Generative artificial intelligence acceptance scale: A validity and reliability study. International Journal of Human–Computer Interaction, 1-13. https://doi.org/10.1080/10447318.2023.2288730
  • YOK. (2024). Üretken yapay zekânın bilimsel araştırma ve yayınlarda kullanımının etik boyut. Retrieved Novemver 23, 2025, from https://proje.yok.gov.tr/documentFiles/17539645334.Y%C3%BCksek%C3%B6%C4%9Fretimde%20%C3%BCretken%20yapay%20zeka%20kullan%C4%B1m%C4%B1-tr.pdf
  • Zhang, B. & Dafoe, A. (2019). Artificial intelligence: American attitudes and trends. Available at SSRN 3312874. https://doi.org/10.2139/ssrn.3312874
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eğitimin Psikolojik Temelleri
Bölüm Araştırma Makalesi
Yazarlar

Barzan Batuk 0000-0002-1393-2814

Nuri Türk 0000-0002-7059-9528

Mustafa Özmen 0000-0001-9621-7498

Gönderilme Tarihi 28 Kasım 2025
Kabul Tarihi 29 Aralık 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 4 Sayı: 2

Kaynak Göster

APA Batuk, B., Türk, N., & Özmen, M. (2025). Psychometric Properties of the Turkish Version of the ChatGPT Usage Scale. Siirt Sosyal Araştırmalar Dergisi, 4(2), 47-60.

33994

Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.