Araştırma Makalesi
BibTex RIS Kaynak Göster

FARELERDE OLUŞTURULAN DENEYSEL DEPRESYON MODELİNDE EPİGALLOKATEŞİN-GALLAT’IN ETKİLERİNİN İNCELENMESİ

Yıl 2025, Cilt: 7 Sayı: 3, 176 - 187, 26.12.2025
https://doi.org/10.55895/sshs.1804132

Öz

Depresyon, yaygın bir hastalıktır. Depresyonun patofizyolojisinde monoamin eksikliği, kortizol düzeylerinde artış, Beyin Kaynaklı Nörotrofik Faktör (BDNF) eksikliği, glutamat artışı ve inflamasyonun rol oynadığı bildirilmektedir. Epigallocatechin gallate (EGCG), yeşil çayda doğal olarak bulunan, antienflamatuvar, antioksidan ve anksiyolitik etkileri bulunan bir flavonoid türevidir. Bu çalışma, EGCG'nin anti inflamatuvar mekanizmalar yoluyla potansiyel antidepresan etkisini araştırmak amacıyla gerçekleştirilmiştir. Bu amaçla, fareler yedi gruba (n=10) ayrılmış ve EGCG'nin klasik antidepresan ilaçlar (paroksetin, venlafaksin, moklobemid) ile etkilerini karşılaştırmak için “Porsolt'un zorlu yüzme testi” uygulanmıştır. Ayrıca, etkili EGCG dozu (100 mg/kg) ile tedaviden önce ve sonra farelerde kortizol ve IL-6 düzeyleri ölçülmüştür. Geleneksel antidepresanlarla gözlenen etkilerin aksine, 25 mg/kg ve 50 mg/kg EGCG dozları önemli bir etki göstermezken, 100 mg/kg dozunda önemli bir antidepresan etki gözlenmiştir. Kontrol ve EGCG 100 mg/kg grupları arasında kortikosteron düzeylerinin karşılaştırılması (sırasıyla 9387,7 pg/ml ve 6147,0 pg/ml) EGCG 100 grubunda kortikosteron düzeylerinde önemli (p<0,05) bir azalma olduğunu ortaya koymuştur. Benzer şekilde, kontrol ve EGCG 100 grupları arasındaki IL-6 düzeylerinin karşılaştırılması (sırasıyla 159,0 pg/ml ve 128,3 pg/ml) EGCG 100 mg/kg grubunda IL-6 düzeylerinde önemli (p<0,05) bir azalma olduğunu ortaya koymuştur. Sonuç olarak, EGCG'nin Porsolt'un zorla yüzme testinde kortikosteron ve IL-6 düzeyleri üzerindeki inhibe edici etkisi, antidepresan etki olarak yorumlanabilir. Potansiyel antidepresan etki, antienflamatuvar mekanizmalar aracılığıyla ortaya çıkabilir. Bu alanda daha fazla çalışma yapılması gerekmektedir.

Etik Beyan

Bu çalışma, Karadeniz Teknik Üniversitesi Hayvan Deneyleri Yerel Etik Kurulu'nun 8 Şubat 2017 tarihli ve 53488718-162 numaralı onayı ile gerçekleştirilmiştir.

Destekleyen Kurum

Destekleyen bir kurum yoktur.

Kaynakça

  • Abdelmeguid, N. E., Hammad, T. M., Abdel-Moneim, A. M., & Salam, S. A. (2022). Effect of epigallocatechin-3-gallate on stress-induced depression in a mouse model: Role of interleukin-1β and brain-derived neurotrophic factor. Neurochemical research, 47(11), 3464- 3475. https://doi.org/10.1007/s11064-022- 03707-9.
  • Ahmed, S., Marotte, H., Kwan, K., Ruth, J. H., Campbell, P. L., Rabquer, B. J., ... & Koch, A. E. (2008). Epigallocatechin-3-gallate inhibits IL-6 synthesis and suppresses transsignaling by enhancing soluble gp130 production. Proceedings of the National Academy of Sciences, 105(38), 14692-14697. https://doi.org/10.1073/pnas.0802675105
  • Assad, M., Ashaolu, T. J., Khalifa, I., Baky, M. H., & Farag, M. A. (2023). Dissecting the role of microorganisms in tea production of different fermentation levels: a multifaceted review of their action mechanisms, quality attributes and future perspectives. World Journal of Microbiology and Biotechnology, 39(10), 265. https://doi.org/10.1007/s11274-023-03701-5
  • Balogh, R., Gadeyne, S., Jonsson, J., Sarkar, S., Van Aerden, K., Warhurst, C., & Vanroelen, C. (2023). Employment trajectories and mental healthrelated disability in Belgium. International Archives of Occupational and Environmental Health, 96(2), 285-302. https://doi.org/10.1007/s00420-022-01923-y
  • Berk, M., Köhler‐Forsberg, O., Turner, M., Penninx, B. W., Wrobel, A., Firth, J., ... & Marx, W. (2023). Comorbidity between major depressive disorder and physical diseases: a comprehensive review of epidemiology, mechanisms and management. World Psychiatry, 22(3), 366-387. https://doi.org/10.1002/wps.21110
  • Bhattacharya, T. K., Pence, B. D., Ossyra, J. M., Gibbons, T. E., Perez, S., McCusker, R. H., Kelley, K. W., Johnson, R. W., Woods, J. A., & Rhodes, J. S. (2015). Exercise but not (-)-epigallocatechin-3- gallate or beta-alanine enhances physical fitness, brain plasticity, and behavioral performance in mice. Physiology & Behavior, 145, 29–37. https://doi.org/10.1016/j.physbeh.2015.03.02 3
  • Can, A., Dao, D. T., Arad, M., Terrillion, C. E., Piantadosi, S. C., & Gould, T. D. (2012). The mouse forced swim test. Journal of Visualized Experiments, (59), e3638. DOI: 10.3791/3638
  • Connor, T. J., & Leonard, B. E. (1998). Depression, stress and immunological activation: the role of cytokines in depressive disorders. Life sciences, 62(7),583-606. https://doi.org/10.1016/S00243205(97)0099 0-9
  • Cui, L., Li, S., Wang, S., Wu, X., Liu, Y., Yu, W., ... & Li, B. (2024). Major depressive disorder: hypothesis, mechanism, prevention and treatment. Signal transduction and targeted therapy, 9(1), 30. https://doi.org/10.1038/s41392-024-01738-y
  • Cutler, A. J., Keyloun, K. R., Higa, S., Park, J., Bonafede, M., Gillard, P., & Jain, R. (2022). Annual costs among patients with majör depressive disorder and the impact of key clinical events. Journal of Managed Care & Specialty Pharmacy, 28(12), 1335-1343. https://doi.org/10.18553/jmcp.2022.28.12.13 35
  • Defar, S., Abraham, Y., Reta, Y., Deribe, B., Jisso, M., Yeheyis, T., ... & Ayalew, M. (2023). Health related quality of life among people with mental illness: The role of socio-clinical characteristics and level of functional disability. Frontiers in public health, 11, 1134032. https://doi.org/10.3389/fpubh.2023.1134032
  • Elgellaie, A., Thomas, S. J., Kaelle, J., Bartschi, J., & Larkin, T. (2023). Pro‐inflammatory cytokines IL‐1α, IL‐6 and TNF‐α in major depressive disorder: Sex‐specific associations with psychological symptoms. European Journal of Neuroscience, 57(11), 1913-1928. https://doi.org/10.1111/ejn.15992
  • Ferland, C. L., Hawley, W. R., Puckett, R. E., Wineberg, K., Lubin, F. D., Dohanich, G. P., & Schrader, L. A. (2013). Sirtuin activity in dentate gyrus contributes to chronic stressinduced behavior and extracellular signalregulated protein kinases 1 and 2 cascade changes in the hippocampus. Biological Psychiatry, 74(12), 927–935. https://doi.org/10.1016/j.biopsych.2013.07.02 9
  • Gallagher, P., Watson, S., Smith, M. S., Young, A. H., & Ferrier, I. N. (2007). Plasma cortisoldehydroepiandrosterone (DHEA) ratios in schizophrenia and bipolar disorder. Schizophrenia research, 90(1), 258-265. https://doi.org/10.1016/j.schres.2006.11.020
  • García-García, M. L., Tovilla-Zárate, C. A., VillarSoto, M., Juárez-Rojop, I. E., González-Castro, T. B., Genis-Mendoza, A. D., ... & Martinez-Magaña, J. J. (2022). Fluoxetine modulates the proinflammatory process of IL-6, IL-1β and TNF-α levels in individuals with depression: a systematic review and meta-analysis. Psychiatry Research, 307, 114317. https://doi.org/10.1016/j.psychres.2021.1143 17
  • Gold, P. W., & Chrousos, G. P. (1999). The endocrinology of melancholic and atypical depression: relation to neurocircuitry and somatic consequences. Proceedings of the Association of American Physicians, 111(1), 22- 34. https://doi.org/10.1046/j.1525- 1381.1999.09423.x
  • Greenberg, P., Chitnis, A., Louie, D., Suthoff, E., Chen, S. Y., Maitland, J., ... & Kessler, R. C. (2023). The economic burden of adults with major depressive disorder in the United States (2019). Advances in Therapy, 40(10), 4460-4479. https://doi.org/10.1007/s12325-023-02622-x
  • Harsanyi, S., Kupcova, I., Danisovic, L., & Klein, M. (2022). Selected biomarkers of depression: what are the effects of cytokines and inflammation? International journal of molecular sciences, 24(1), 578. https://doi.org/10.3390/ijms24010578
  • Hwang, S., Kang, S. W., Kim, S. J., Han, K., Kim, B. S., Jung, W., ... & Shin, D. W. (2023). Impact of agerelated macular degeneration and related visual disability on the risk of depression: a nationwide cohort study. Ophthalmology, 130(6), 615-623. https://doi.org/10.1016/j.ophtha.2023.01.014
  • Jia, W., Ma, Q., Xing, R., Yang, X., Liu, D., Zeng, H., ... & Wu, W. (2024). Jianghua Kucha black tea containing theacrine attenuates depression-like behavior in CUMS mice by regulating gut microbiota-brain neurochemicals and cytokines. Food Research International, 198, 115306. https://doi.org/10.1016/j.foodres.2024.11530 6
  • Lee, B., Sur, B., Kwon, S., Yeom, M., Shim, I., Lee, H., & Hahm, D. H. (2013). Chronic administration of catechin decreases depression and anxietylike behaviors in a rat model using chronic corticosterone injections. Biomolecules & Therapeutics, 21(4), 312–322. https://doi.org/10.4062/biomolther.2013.004
  • Liu, Y., Jia, G., Gou, L., Sun, L., Fu, X., Lan, N., ... & Yin, X. (2013). Antidepressant-like effects of tea polyphenols on mouse model of chronic unpredictable mild stress. Pharmacology Biochemistry and Behavior, 104, 27-32. https://doi.org/10.1016/j.pbb.2012.12.024
  • Marx, W., Penninx, B. W., Solmi, M., Furukawa, T. A., Firth, J., Carvalho, A. F., & Berk, M. (2023). Major depressive disorder. Nature Reviews Disease Primers, 9(1), 44. Mazzio, E. A., Harris, N., & Soliman, K. F. (1998). Food constituents attenuate monoamine oxidase activity and peroxide levels in C6 astrocyte cells. Planta medica, 64(07), 603-606. https://doi.org/10.1055/s-2006-957530
  • Nair, A. B., & Jacob, S. (2016). A simple practice guide for dose conversion between animals and humans. Journal of Basic and Clinical Pharmacy, 7(2), 27–31. DOI: 10.4103/0976-0105.177703
  • Nakadate, K., Kawakami, K., & Yamazaki, N. (2023). Anti-obesity and anti-inflammatory synergistic effects of green tea catechins and citrus βcryptoxanthin ingestion in obese mice. International Journal of Molecular Sciences, 24(8), 7054. https://doi.org/10.3390/ijms24087054
  • Nierenberg, A. A., Agustini, B., Köhler-Forsberg, O., Cusin, C., Katz, D., Sylvia, L. G., ... & Berk, M. (2023). Diagnosis and treatment of bipolar disorder: a review. Jama, 330(14), 1370-1380. doi:10.1001/jama.2023.18588
  • Ogłodek, E. (2022). Changes in the serum levels of cytokines: IL-1β, IL-4, IL-8 and IL-10 in depression with and without posttraumatic stress disorder. Brain Sciences, 12(3), 387. https://doi.org/10.3390/brainsci12030387
  • Ortiz-López, L., Márquez-Valadez, B., GómezSánchez, A., Silva-Lucero, M. D. C., Torres-Pérez, M., Téllez-Ballesteros, R. I., ... & RamírezRodríguez, G. B. (2016). Green tea compound epigallo-catechin-3-gallate (EGCG) increases neuronal survival in adult hippocampal neurogenesis in vivo and in vitro. Neuroscience, 322, 208-220. https://doi.org/10.1016/j.neuroscience.2016.0 2.040
  • Raposo, D., Morgado, C., Pereira-Terra, P., & Tavares, I. (2015). Nociceptive spinal cord neurons of laminae I–III exhibit oxidative stress damage during diabetic neuropathy which is prevented by early antioxidant treatment with epigallocatechin-gallate (EGCG). Brain Research Bulletin, 110, 68–75. https://doi.org/10.1016/j.lfs.2015.06.008
  • Rezaeezade_Roukerd, M., Dogani, M., Motaghi, S., & Abbasnejad, M. (2025). Abscisic Acid Regulates Immune-inflammatory Responses to Induce Neuroprotection in Spinal Cord Injury: Insights from Gene Expression and Network Analysis. Iranian Journal of Allergy, Asthma and Immunology, 1-16. https://ijaai.tums.ac.ir/index.php/ijaai/article/ view/4329
  • Rong, Y., Yan, W., Gao, Z., Yang, Y., Xu, C., & Zhang, C. (2025). NRXN3-NLGN1 complex influences the development of depression induced by maternal separation in rats. Brain Research, 149659. https://doi.org/10.1016/j.brainres.2025.14965 9
  • Sachdeva, A. K., Kuhad, A., & Chopra, K. (2011). Epigallocatechin gallate ameliorates behavioral and biochemical deficits in rat model of loadinduced chronic fatigue syndrome. Brain Research Bulletin, 86(3–4), 165–172. https://doi.org/10.1016/j.brainresbull.2011.06 .007
  • Sharma, R., Sharma, A., Kumari, A., Kulurkar, P. M., Raj, R., Gulati, A., & Padwad, Y. S. (2017). Consumption of green tea epigallocatechin-3- gallate enhances systemic immune response, antioxidative capacity and HPA axis functions in aged male swiss albino mice. Biogerontology, 18(3), 367-382. https://doi.org/10.1007/s10522-017-9696-6
  • Sharma, S., Chawla, S., Kumar, P., Ahmad, R., & Verma, P. K. (2024). The chronic unpredictable mild stress (CUMS) paradigm: Bridging the gap in depression research from bench to bedside. Brain Research, 149123. https://doi.org/10.1016/j.brainres.2024.14912 3
  • Shi, J., Yang, G., You, Q., Sun, S., Chen, R., Lin, Z., ... & Lv, H. (2023). Updates on the chemistry, processing characteristics, and utilization of tea flavonoids in last two decades (2001-2021). Critical Reviews in Food Science and Nutrition, 63(20), 4757-4784. https://doi.org/10.1080/10408398.2021.2007 353
  • Sigvardsen, P. E., Fosbøl, E., Jørgensen, A., TorpPedersen, C., Køber, L., & Kofoed, K. F. (2025). Medical conditions and the risk of subsequent major depressive disorder: a nationwide, register-based, retrospective cohort study. The Lancet Public Health, 10(6), e503-e511. DOI: 10.1016/S2468-2667(25)00073-8
  • Skosnik, P. D., Sloshower, J., Safi-Aghdam, H., Pathania, S., Syed, S., Pittman, B., & D’Souza, D. C. (2023). Sub-acute effects of psilocybin on EEG correlates of neural plasticity in major depression: relationship to symptoms. Journal of Psychopharmacology, 37(7), 687-697. https://doi.org/10.1177/02698811231179800 Stoeva,
  • S., Hvarchanova, N., Georgiev, K. D., & Radeva-Ilieva, M. (2025). Green tea: Antioxidant vs. Pro-oxidant activity. Beverages, 11(3), 64. https://doi.org/10.3390/beverages11030064
  • Wang, Y., Li, M., Xu, X., Song, M., Tao, H., & Bai, Y. (2012). Green tea epigallocatechin-3-gallate (EGCG) promotes neural progenitor cell proliferation and sonic hedgehog pathway activation during adult hippocampal neurogenesis. Molecular Nutrition & Food Research, 56, 1292–1303. https://doi.org/10.1002/mnfr.201200035
  • Vanhee, C., Deconinck, E., George, M., Hansen, A., Hackl, A., Wollein, U., … & Miquel, M. (2025). The occurrence of illicit smart drugs or nootropics in Europe and Australia and their associated dangers: Results from a market surveillance study by 12 official medicines control laboratories. Journal of Xenobiotics, 15(3), 88. https://doi.org/10.3390/jox15030088
  • Yang, Z., Liu, T., Kong, X., & Wei, J. (2025). Neuroprotective effect of abscisic acid on MPTP‐induced Parkinson's disease in mice. Molecular Nutrition & Food Research, e70111. https://doi.org/10.1002/mnfr.70111
  • Yankelevitch-Yahav, R., Franko, M., Huly, A., & Doron, R. (2015). The forced swim test as a model of depressive-like behavior. Journal of Visualized Experiments: JoVE, (97). Young, E. A., Haskett, R. F., Murphy-Weinberg, V.,
  • Watson, S. J., & Akil, H. (1991). Loss of glucocorticoid fast feedback in depression. Archives of General Psychiatry, 48(8), 693–699. https://doi.org/10.1001/archpsyc.1991.01810 320017003
  • Zhang, Y., Liu, C., Zhu, Q., Wu, H., Liu, Z., & Zeng, L. (2025). Relationship between depression and epigallocatechin gallate from the perspective of gut microbiota: A systematic review. Nutrients, 17(2), 259. https://doi.org/10.1002/fsn3.3761
  • Zhang, P. F., You, W. Y., Gao, Y. J., & Wu, X. B. (2024). Activation of pyramidal neurons in the infralimbic cortex alleviates LPS-induced depressive-like behavior in mice. Brain Research Bulletin, 214, 111008. https://doi.org/10.1016/j.brainresbull.2024.11 1008
  • Zhou, F., Deng, S., Luo, Y., Liu, Z., & Liu, C. (2025). Research progress on the protective effect of green tea polyphenol (-)-epigallocatechin-3- gallate (EGCG) on the liver. Nutrients, 17(7), 1101. https://doi.org/10.3390/nu17071101
  • Zhu, W. L., Shi, H. S., Wei, Y. M., Wang, S. J., Sun, C. Y., Ding, Z. B., & Lu, L. (2012). Green tea polyphenols produce antidepressant-like effects in adult mice. Pharmacological Research, 65(1), 74–80. https://doi.org/10.1016/j.phrs.2011.09.007

EXAMINATION OF THE EFFECTS OF EPIGALLOCATECHIN GALLATE IN EXPERIMENTAL DEPRESSION MODEL OF MICE

Yıl 2025, Cilt: 7 Sayı: 3, 176 - 187, 26.12.2025
https://doi.org/10.55895/sshs.1804132

Öz

Depression has a prevalence of approximately 5%. The pathophysiology of depression is reported to involve monoamine deficiency, elevated cortisol levels, Brain-Derived Neurotrophic Factor (BDNF) deficiency, increased glutamate, and inflammation. To date, no effective treatment protocol has been developed for cortisol elevation and inflammatory factors, which are proposed to play a role in the pathophysiology of depression. Epigallocatechin gallate (EGCG) is a flavonoid derivative that occurs
naturally in green tea. Numerous studies have shown that the substance possesses both antiinflammatory and antioxidant properties. It has also been demonstrated to possess anxiolytic properties. The present study was conducted to investigate the potential antidepressant effect of
EGCG through anti-inflammatory mechanisms. To this end, the mice were divided into seven groups (n=10) and the "Porsolt's forced swimming test" was administered to compare the effects of EGCG with those of classic antidepressant drugs (paroxetine, venlafaxine, moclobemide). Furthermore, cortisol and IL-6 levels were measured in mice before and after treatment with the effective EGCG dose (100 mg kg⁻¹). In contrast to the effects observed with conventional antidepressants, EGCG doses of 25 mg kg⁻¹ and 50 mg kg⁻¹ did not demonstrate a significant impact, while the 100 mg/kg dose exhibited a substantial antidepressant effect. A subsequent comparison of corticosterone levels between the control and EGCG 100 mg/kg groups (9387.7 pg mL⁻¹ and 6147.0 pg mL⁻¹ respectively) revealed a significant (p<0.05) decrease in corticosterone levels in the EGCG 100 mg kg⁻¹group. In a similar manner, a comparison of IL-6 levels between the control and EGCG 100 mg kg⁻¹ groups (159.0 pg mL⁻¹ and
128.3 pg mL⁻¹, respectively) revealed a significant (p<0.05) reduction in IL-6 levels in the EGCG 100
mg kg⁻¹ group. In conclusion, the inhibitory effect of EGCG on corticosterone and IL-6 levels in Porsolt's forced swimming test can be interpreted as an antidepressant effect. The potential antidepressant effect may be mediated by anti-inflammatory mechanisms. Further studies in this area are required.

Etik Beyan

This study was conducted with the approval of the Local Ethics Committee for Animal Experiments at Karadeniz Technical University, dated February 8, 2017, and numbered 53488718-162.

Destekleyen Kurum

This research received no specific grant from any funding agency, commercial or not-for-profit sectors.”

Kaynakça

  • Abdelmeguid, N. E., Hammad, T. M., Abdel-Moneim, A. M., & Salam, S. A. (2022). Effect of epigallocatechin-3-gallate on stress-induced depression in a mouse model: Role of interleukin-1β and brain-derived neurotrophic factor. Neurochemical research, 47(11), 3464- 3475. https://doi.org/10.1007/s11064-022- 03707-9.
  • Ahmed, S., Marotte, H., Kwan, K., Ruth, J. H., Campbell, P. L., Rabquer, B. J., ... & Koch, A. E. (2008). Epigallocatechin-3-gallate inhibits IL-6 synthesis and suppresses transsignaling by enhancing soluble gp130 production. Proceedings of the National Academy of Sciences, 105(38), 14692-14697. https://doi.org/10.1073/pnas.0802675105
  • Assad, M., Ashaolu, T. J., Khalifa, I., Baky, M. H., & Farag, M. A. (2023). Dissecting the role of microorganisms in tea production of different fermentation levels: a multifaceted review of their action mechanisms, quality attributes and future perspectives. World Journal of Microbiology and Biotechnology, 39(10), 265. https://doi.org/10.1007/s11274-023-03701-5
  • Balogh, R., Gadeyne, S., Jonsson, J., Sarkar, S., Van Aerden, K., Warhurst, C., & Vanroelen, C. (2023). Employment trajectories and mental healthrelated disability in Belgium. International Archives of Occupational and Environmental Health, 96(2), 285-302. https://doi.org/10.1007/s00420-022-01923-y
  • Berk, M., Köhler‐Forsberg, O., Turner, M., Penninx, B. W., Wrobel, A., Firth, J., ... & Marx, W. (2023). Comorbidity between major depressive disorder and physical diseases: a comprehensive review of epidemiology, mechanisms and management. World Psychiatry, 22(3), 366-387. https://doi.org/10.1002/wps.21110
  • Bhattacharya, T. K., Pence, B. D., Ossyra, J. M., Gibbons, T. E., Perez, S., McCusker, R. H., Kelley, K. W., Johnson, R. W., Woods, J. A., & Rhodes, J. S. (2015). Exercise but not (-)-epigallocatechin-3- gallate or beta-alanine enhances physical fitness, brain plasticity, and behavioral performance in mice. Physiology & Behavior, 145, 29–37. https://doi.org/10.1016/j.physbeh.2015.03.02 3
  • Can, A., Dao, D. T., Arad, M., Terrillion, C. E., Piantadosi, S. C., & Gould, T. D. (2012). The mouse forced swim test. Journal of Visualized Experiments, (59), e3638. DOI: 10.3791/3638
  • Connor, T. J., & Leonard, B. E. (1998). Depression, stress and immunological activation: the role of cytokines in depressive disorders. Life sciences, 62(7),583-606. https://doi.org/10.1016/S00243205(97)0099 0-9
  • Cui, L., Li, S., Wang, S., Wu, X., Liu, Y., Yu, W., ... & Li, B. (2024). Major depressive disorder: hypothesis, mechanism, prevention and treatment. Signal transduction and targeted therapy, 9(1), 30. https://doi.org/10.1038/s41392-024-01738-y
  • Cutler, A. J., Keyloun, K. R., Higa, S., Park, J., Bonafede, M., Gillard, P., & Jain, R. (2022). Annual costs among patients with majör depressive disorder and the impact of key clinical events. Journal of Managed Care & Specialty Pharmacy, 28(12), 1335-1343. https://doi.org/10.18553/jmcp.2022.28.12.13 35
  • Defar, S., Abraham, Y., Reta, Y., Deribe, B., Jisso, M., Yeheyis, T., ... & Ayalew, M. (2023). Health related quality of life among people with mental illness: The role of socio-clinical characteristics and level of functional disability. Frontiers in public health, 11, 1134032. https://doi.org/10.3389/fpubh.2023.1134032
  • Elgellaie, A., Thomas, S. J., Kaelle, J., Bartschi, J., & Larkin, T. (2023). Pro‐inflammatory cytokines IL‐1α, IL‐6 and TNF‐α in major depressive disorder: Sex‐specific associations with psychological symptoms. European Journal of Neuroscience, 57(11), 1913-1928. https://doi.org/10.1111/ejn.15992
  • Ferland, C. L., Hawley, W. R., Puckett, R. E., Wineberg, K., Lubin, F. D., Dohanich, G. P., & Schrader, L. A. (2013). Sirtuin activity in dentate gyrus contributes to chronic stressinduced behavior and extracellular signalregulated protein kinases 1 and 2 cascade changes in the hippocampus. Biological Psychiatry, 74(12), 927–935. https://doi.org/10.1016/j.biopsych.2013.07.02 9
  • Gallagher, P., Watson, S., Smith, M. S., Young, A. H., & Ferrier, I. N. (2007). Plasma cortisoldehydroepiandrosterone (DHEA) ratios in schizophrenia and bipolar disorder. Schizophrenia research, 90(1), 258-265. https://doi.org/10.1016/j.schres.2006.11.020
  • García-García, M. L., Tovilla-Zárate, C. A., VillarSoto, M., Juárez-Rojop, I. E., González-Castro, T. B., Genis-Mendoza, A. D., ... & Martinez-Magaña, J. J. (2022). Fluoxetine modulates the proinflammatory process of IL-6, IL-1β and TNF-α levels in individuals with depression: a systematic review and meta-analysis. Psychiatry Research, 307, 114317. https://doi.org/10.1016/j.psychres.2021.1143 17
  • Gold, P. W., & Chrousos, G. P. (1999). The endocrinology of melancholic and atypical depression: relation to neurocircuitry and somatic consequences. Proceedings of the Association of American Physicians, 111(1), 22- 34. https://doi.org/10.1046/j.1525- 1381.1999.09423.x
  • Greenberg, P., Chitnis, A., Louie, D., Suthoff, E., Chen, S. Y., Maitland, J., ... & Kessler, R. C. (2023). The economic burden of adults with major depressive disorder in the United States (2019). Advances in Therapy, 40(10), 4460-4479. https://doi.org/10.1007/s12325-023-02622-x
  • Harsanyi, S., Kupcova, I., Danisovic, L., & Klein, M. (2022). Selected biomarkers of depression: what are the effects of cytokines and inflammation? International journal of molecular sciences, 24(1), 578. https://doi.org/10.3390/ijms24010578
  • Hwang, S., Kang, S. W., Kim, S. J., Han, K., Kim, B. S., Jung, W., ... & Shin, D. W. (2023). Impact of agerelated macular degeneration and related visual disability on the risk of depression: a nationwide cohort study. Ophthalmology, 130(6), 615-623. https://doi.org/10.1016/j.ophtha.2023.01.014
  • Jia, W., Ma, Q., Xing, R., Yang, X., Liu, D., Zeng, H., ... & Wu, W. (2024). Jianghua Kucha black tea containing theacrine attenuates depression-like behavior in CUMS mice by regulating gut microbiota-brain neurochemicals and cytokines. Food Research International, 198, 115306. https://doi.org/10.1016/j.foodres.2024.11530 6
  • Lee, B., Sur, B., Kwon, S., Yeom, M., Shim, I., Lee, H., & Hahm, D. H. (2013). Chronic administration of catechin decreases depression and anxietylike behaviors in a rat model using chronic corticosterone injections. Biomolecules & Therapeutics, 21(4), 312–322. https://doi.org/10.4062/biomolther.2013.004
  • Liu, Y., Jia, G., Gou, L., Sun, L., Fu, X., Lan, N., ... & Yin, X. (2013). Antidepressant-like effects of tea polyphenols on mouse model of chronic unpredictable mild stress. Pharmacology Biochemistry and Behavior, 104, 27-32. https://doi.org/10.1016/j.pbb.2012.12.024
  • Marx, W., Penninx, B. W., Solmi, M., Furukawa, T. A., Firth, J., Carvalho, A. F., & Berk, M. (2023). Major depressive disorder. Nature Reviews Disease Primers, 9(1), 44. Mazzio, E. A., Harris, N., & Soliman, K. F. (1998). Food constituents attenuate monoamine oxidase activity and peroxide levels in C6 astrocyte cells. Planta medica, 64(07), 603-606. https://doi.org/10.1055/s-2006-957530
  • Nair, A. B., & Jacob, S. (2016). A simple practice guide for dose conversion between animals and humans. Journal of Basic and Clinical Pharmacy, 7(2), 27–31. DOI: 10.4103/0976-0105.177703
  • Nakadate, K., Kawakami, K., & Yamazaki, N. (2023). Anti-obesity and anti-inflammatory synergistic effects of green tea catechins and citrus βcryptoxanthin ingestion in obese mice. International Journal of Molecular Sciences, 24(8), 7054. https://doi.org/10.3390/ijms24087054
  • Nierenberg, A. A., Agustini, B., Köhler-Forsberg, O., Cusin, C., Katz, D., Sylvia, L. G., ... & Berk, M. (2023). Diagnosis and treatment of bipolar disorder: a review. Jama, 330(14), 1370-1380. doi:10.1001/jama.2023.18588
  • Ogłodek, E. (2022). Changes in the serum levels of cytokines: IL-1β, IL-4, IL-8 and IL-10 in depression with and without posttraumatic stress disorder. Brain Sciences, 12(3), 387. https://doi.org/10.3390/brainsci12030387
  • Ortiz-López, L., Márquez-Valadez, B., GómezSánchez, A., Silva-Lucero, M. D. C., Torres-Pérez, M., Téllez-Ballesteros, R. I., ... & RamírezRodríguez, G. B. (2016). Green tea compound epigallo-catechin-3-gallate (EGCG) increases neuronal survival in adult hippocampal neurogenesis in vivo and in vitro. Neuroscience, 322, 208-220. https://doi.org/10.1016/j.neuroscience.2016.0 2.040
  • Raposo, D., Morgado, C., Pereira-Terra, P., & Tavares, I. (2015). Nociceptive spinal cord neurons of laminae I–III exhibit oxidative stress damage during diabetic neuropathy which is prevented by early antioxidant treatment with epigallocatechin-gallate (EGCG). Brain Research Bulletin, 110, 68–75. https://doi.org/10.1016/j.lfs.2015.06.008
  • Rezaeezade_Roukerd, M., Dogani, M., Motaghi, S., & Abbasnejad, M. (2025). Abscisic Acid Regulates Immune-inflammatory Responses to Induce Neuroprotection in Spinal Cord Injury: Insights from Gene Expression and Network Analysis. Iranian Journal of Allergy, Asthma and Immunology, 1-16. https://ijaai.tums.ac.ir/index.php/ijaai/article/ view/4329
  • Rong, Y., Yan, W., Gao, Z., Yang, Y., Xu, C., & Zhang, C. (2025). NRXN3-NLGN1 complex influences the development of depression induced by maternal separation in rats. Brain Research, 149659. https://doi.org/10.1016/j.brainres.2025.14965 9
  • Sachdeva, A. K., Kuhad, A., & Chopra, K. (2011). Epigallocatechin gallate ameliorates behavioral and biochemical deficits in rat model of loadinduced chronic fatigue syndrome. Brain Research Bulletin, 86(3–4), 165–172. https://doi.org/10.1016/j.brainresbull.2011.06 .007
  • Sharma, R., Sharma, A., Kumari, A., Kulurkar, P. M., Raj, R., Gulati, A., & Padwad, Y. S. (2017). Consumption of green tea epigallocatechin-3- gallate enhances systemic immune response, antioxidative capacity and HPA axis functions in aged male swiss albino mice. Biogerontology, 18(3), 367-382. https://doi.org/10.1007/s10522-017-9696-6
  • Sharma, S., Chawla, S., Kumar, P., Ahmad, R., & Verma, P. K. (2024). The chronic unpredictable mild stress (CUMS) paradigm: Bridging the gap in depression research from bench to bedside. Brain Research, 149123. https://doi.org/10.1016/j.brainres.2024.14912 3
  • Shi, J., Yang, G., You, Q., Sun, S., Chen, R., Lin, Z., ... & Lv, H. (2023). Updates on the chemistry, processing characteristics, and utilization of tea flavonoids in last two decades (2001-2021). Critical Reviews in Food Science and Nutrition, 63(20), 4757-4784. https://doi.org/10.1080/10408398.2021.2007 353
  • Sigvardsen, P. E., Fosbøl, E., Jørgensen, A., TorpPedersen, C., Køber, L., & Kofoed, K. F. (2025). Medical conditions and the risk of subsequent major depressive disorder: a nationwide, register-based, retrospective cohort study. The Lancet Public Health, 10(6), e503-e511. DOI: 10.1016/S2468-2667(25)00073-8
  • Skosnik, P. D., Sloshower, J., Safi-Aghdam, H., Pathania, S., Syed, S., Pittman, B., & D’Souza, D. C. (2023). Sub-acute effects of psilocybin on EEG correlates of neural plasticity in major depression: relationship to symptoms. Journal of Psychopharmacology, 37(7), 687-697. https://doi.org/10.1177/02698811231179800 Stoeva,
  • S., Hvarchanova, N., Georgiev, K. D., & Radeva-Ilieva, M. (2025). Green tea: Antioxidant vs. Pro-oxidant activity. Beverages, 11(3), 64. https://doi.org/10.3390/beverages11030064
  • Wang, Y., Li, M., Xu, X., Song, M., Tao, H., & Bai, Y. (2012). Green tea epigallocatechin-3-gallate (EGCG) promotes neural progenitor cell proliferation and sonic hedgehog pathway activation during adult hippocampal neurogenesis. Molecular Nutrition & Food Research, 56, 1292–1303. https://doi.org/10.1002/mnfr.201200035
  • Vanhee, C., Deconinck, E., George, M., Hansen, A., Hackl, A., Wollein, U., … & Miquel, M. (2025). The occurrence of illicit smart drugs or nootropics in Europe and Australia and their associated dangers: Results from a market surveillance study by 12 official medicines control laboratories. Journal of Xenobiotics, 15(3), 88. https://doi.org/10.3390/jox15030088
  • Yang, Z., Liu, T., Kong, X., & Wei, J. (2025). Neuroprotective effect of abscisic acid on MPTP‐induced Parkinson's disease in mice. Molecular Nutrition & Food Research, e70111. https://doi.org/10.1002/mnfr.70111
  • Yankelevitch-Yahav, R., Franko, M., Huly, A., & Doron, R. (2015). The forced swim test as a model of depressive-like behavior. Journal of Visualized Experiments: JoVE, (97). Young, E. A., Haskett, R. F., Murphy-Weinberg, V.,
  • Watson, S. J., & Akil, H. (1991). Loss of glucocorticoid fast feedback in depression. Archives of General Psychiatry, 48(8), 693–699. https://doi.org/10.1001/archpsyc.1991.01810 320017003
  • Zhang, Y., Liu, C., Zhu, Q., Wu, H., Liu, Z., & Zeng, L. (2025). Relationship between depression and epigallocatechin gallate from the perspective of gut microbiota: A systematic review. Nutrients, 17(2), 259. https://doi.org/10.1002/fsn3.3761
  • Zhang, P. F., You, W. Y., Gao, Y. J., & Wu, X. B. (2024). Activation of pyramidal neurons in the infralimbic cortex alleviates LPS-induced depressive-like behavior in mice. Brain Research Bulletin, 214, 111008. https://doi.org/10.1016/j.brainresbull.2024.11 1008
  • Zhou, F., Deng, S., Luo, Y., Liu, Z., & Liu, C. (2025). Research progress on the protective effect of green tea polyphenol (-)-epigallocatechin-3- gallate (EGCG) on the liver. Nutrients, 17(7), 1101. https://doi.org/10.3390/nu17071101
  • Zhu, W. L., Shi, H. S., Wei, Y. M., Wang, S. J., Sun, C. Y., Ding, Z. B., & Lu, L. (2012). Green tea polyphenols produce antidepressant-like effects in adult mice. Pharmacological Research, 65(1), 74–80. https://doi.org/10.1016/j.phrs.2011.09.007
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Diş Terapötikleri, Farmakoloji ve Toksikoloji
Bölüm Araştırma Makalesi
Yazarlar

Arslan Say 0000-0001-5454-3105

Nuri İhsan Kalyoncu 0000-0002-4484-8623

Gönderilme Tarihi 16 Ekim 2025
Kabul Tarihi 27 Kasım 2025
Yayımlanma Tarihi 26 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 7 Sayı: 3

Kaynak Göster

APA Say, A., & Kalyoncu, N. İ. (2025). EXAMINATION OF THE EFFECTS OF EPIGALLOCATECHIN GALLATE IN EXPERIMENTAL DEPRESSION MODEL OF MICE. Sabuncuoglu Serefeddin Health Sciences, 7(3), 176-187. https://doi.org/10.55895/sshs.1804132

                                         34329                    34330                    34331


34328

Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.