Derleme
BibTex RIS Kaynak Göster

Wheat Responses to Abiotic Stresses and Microbiome Dynamics: A Review

Yıl 2025, Sayı: 9, 81 - 97, 23.12.2025

Öz

Wheat (Triticum aestivum) is renowned as one of the world's most crucial cereal crops. Throughout agricultural production, wheat faces multiple stressors, with numerous researchers investigating both these stress factors and the resultant response mechanisms. The main abiotic stress factors that wheat is exposed to include drought, salinity, and temperature. Drought stress negatively affects plant productivity by reducing photosynthetic capacity and increasing water loss. Salinity stress disrupts ion balance, limiting plant growth and nutrient uptake. Heat stress leads to yield loss through protein denaturation and a decline in photosynthetic activity. The responses of wheat to stress conditions are supported by various physiological and biochemical mechanisms. These include an increase in hormones such as abscisic acid (ABA), stomatal closure, and osmotic adjustment mechanisms. Additionally, microbiome dynamics are among the important factors supporting wheat against these stresses. Researchers have reported that rhizobacteria (PGPR) and mycorrhizal fungi enhance nutrient uptake, thereby improving stress tolerance. In this context, the response mechanisms of wheat to stress conditions and microbiome interactions have played a critical role in agricultural productivity. The use of microbial supplements in agricultural production is believed to have the potential to increase wheat productivity. In our study, the detailed mechanisms of these interactions have been presented and examined from a sustainable perspective.

Kaynakça

  • Abid, M., Tian, Z., Ata-Ul-Karim, S. T., Liu, Y., Cui, Y., Zahoor, R., Dai, T. (2016). Improved tolerance to post-anthesis drought stress by pre-drought priming at vegetative stages in drought-tolerant and -sensitive wheat cultivars. Plant Physiology and Biochemistry, 106, 218–227. https://doi.org/10.1016/j.plaphy.2016.04.046
  • Alzahrani, Y., Kuşvuran, A., Alharby, H. F., Kuşvuran, S., Rady, M. M. (2018). The defensive role of silicon in wheat against stress conditions induced by drought, salinity or cadmium. Ecotoxicology and Environmental Safety, 154, 187–196. https://doi.org/10.1016/j.ecoenv.2018.02.002
  • Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206–216. https://doi.org/10.1016/j.envexpbot.2005.12.006
  • Ashraf, M. & Harris, P. J. C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166(1), 3–16. https://doi.org/10.1016/j.plantsci.2003.10.024
  • Bashan, Y., & de-Bashan, L. E. (2010). How the plant growth-promoting bacterium Azospirillum promotes plant growth—A critical assessment. Advances in Agronomy, 108, 77–136. https://doi.org/10.1016/S0065-2113(10)08002-8
  • Berendsen, R. L., Pieterse, C. M., Bakker, P. A. (2012). The rhizosphere microbiome and plant health. Trends in Plant Science, 17(8), 478–486. https://doi.org/10.1016/j.tplants.2012.04.001
  • Bharti, N., Barnawal, D., & Kalra, A. (2016). Halophilic bacteria mediate salt stress tolerance in plants: Recent developments. Journal of Plant Growth Regulation, 35(3), 943–960. https://doi.org/10.1007/s00344-016-9599-3
  • Bresson, J., Varoquaux, F., Bontpart, T., Touraine, B., Vile, D. (2013). The PGPR strain Phyllobacterium brassicacearum STM196 induces a reproductive delay and increases drought tolerance in Arabidopsis. New Phytologist, 200(2), 558–569.
  • Büyük, İ., Soydam-Aydın, S., & Aras, S. (2012). Bitkilerin stres koşullarına verdiği moleküler cevaplar. Turkish Bulletin of Hygiene & Experimental Biology, 69(2). https://doi.org/10.5505/TurkHijyen.2012.44946
  • Chaves, M. M., Flexas, J., Pinheiro, C. (2009). Photosynthesis under drought and salt stress: Regulation from the whole plant to cell. Annals of Botany, 103(4), 551–560. https://doi.org/10.1093/aob/mcn125
  • Chaves, M. M., Maroco, J. P., Pereira, J. S. (2003). Understanding plant responses to drought—From genes to the whole plant. Functional Plant Biology, 30(3), 239–264. https://doi.org/10.1071/FP02076
  • Cohen, A. C., Bottini, R., Piccoli, P. N. (2008). Azospirillum brasilense Sp 245 produces ABA in chemically defined culture medium and increases ABA content in Arabidopsis plants. Plant Growth Regulation, 54(2), 97–103. https://doi.org/10.1007/s10725-007-9232-9
  • Coleman-Derr, D., & Tringe, S. G. (2014). Building the crops of tomorrow: Advantages of symbiont-based approaches to improving abiotic stress tolerance. Frontiers in Microbiology, 5, 283. https://doi.org/10.3389/fmicb.2014.00283
  • Egamberdieva, D., Wirth, S., Bellingrath-Kimura, S. D., Mishra, J., Arora, N. K. (2019). Salt-tolerant plant growth-promoting rhizobacteria for enhancing crop productivity of saline soils. Frontiers in Microbiology, 10, 2791. https://doi.org/10.3389/fmicb.2019.02791
  • Evelin, H., Kapoor, R., Giri, B. (2009). Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Annals of Botany, 104(7), 1263–1280. https://doi.org/10.1093/aob/mcp251
  • Farooq, M., Bramley, H., Palta, J. A., Siddique, K. H. (2011). Heat stress in wheat during reproductive and grain-filling phases. Critical Reviews in Plant Sciences, 30(6), 491–507. https://doi.org/10.1080/07352689.2011.615687
  • Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., Basra, S. M. A. (2009). Plant drought stress: Effects, mechanisms and management. Agronomy for Sustainable Development, 29(1), 185–212. https://doi.org/10.1051/agro:2008021
  • Fitzpatrick, C. R., Salas-González, I., Conway, J. M., Finkel, O. M., Gilbert, S., Russ, D., Teixeira, P. J. P. L., Dangl, J. L., Jones, C. D. (2020). The plant microbiome: From ecology to reductionism and beyond. Annual Review of Microbiology, 74, 81–100. https://doi.org/10.1146/annurev-micro-022620-014327
  • Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909–930. https://doi.org/10.1016/j.plaphy.2010.08.016
  • Glick, B. R. (2012). Plant growth-promoting bacteria: Mechanisms and applications. Scientifica, 2012, 963401. https://doi.org/10.6064/2012/963401
  • Hasegawa, P. M., Bressan, R. A., Zhu, J. K., Bohnert, H. J. (2000). Cellular and molecular responses of plants to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology, 51, 463–499. https://doi.org/10.1146/annurev.arplant.51.1.463
  • Hasanuzzaman, M., Nahar, K., Alam, M. M., Roychowdhury, R., Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 14(5), 9643–9684. https://doi.org/10.3390/ijms14059643
  • Hays, D. B., Do, J. H., Mason, R. E., Morgan, G., Finlayson, S. A. (2007). Heat stress induced ethylene production in developing wheat grains induces kernel abortion and increased maturation in a susceptible cultivar. Plant Science, 172(6), 1113–1123. https://doi.org/10.1016/j.plantsci.2007.02.004
  • Joshi, R., Wani, S. H., Singh, B., Bohra, A., Dar, Z. A., Lone, A. A., Singla-Pareek, S. L. (2016). Transcription factors and plants’ response to drought stress: Current understanding and future directions. Frontiers in Plant Science, 7, 1029. https://doi.org/10.3389/fpls.2016.01029
  • Kohler, J., Hernández, J. A., Caravaca, F., Roldán, A. (2008). Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Functional Plant Biology, 35(2), 141–151. https://doi.org/10.1071/FP07218
  • Kotak, S., Larkindale, J., Lee, U., von Koskull-Döring, P., Vierling, E., Scharf, K. D. (2007). Complexity of the heat stress response in plants. Current Opinion in Plant Biology, 10(3), 310–316. https://doi.org/10.1016/j.pbi.2007.04.011
  • Lynch, J. P. (2013). Steep, cheap and deep: An ideotype to optimize water and N acquisition by maize root systems. Functional Plant Biology, 40(9), 975–982. https://doi.org/10.1071/FP13033
  • Marulanda, A., Barea, J. M., Azcón, R. (2009). Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments. Journal of Plant Growth Regulation, 28(2), 115–124. https://doi.org/10.1007/s00344-009-9079-6
  • Mendes, R., Garbeva, P., Raaijmakers, J. M. (2013). The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, 37(5), 634–663. https://doi.org/10.1111/1574-6976.12028
  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9), 405–410. https://doi.org/10.1016/S1360-1385(02)02312-9
  • Mittova, V., Tal, M., Volokita, M., Guy, M. (2004). Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii. Journal of Experimental Botany, 55(399), 1105–1113. https://doi.org/10.1093/jxb/erh113
  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
  • Nakashima, K., & Yamaguchi-Shinozaki, K. (2013). ABA signaling and abiotic stress responses in plants. Journal of Plant Research, 126(5), 613–620. https://doi.org/10.1007/s10265-013-0561-4
  • Ngumbi, E., & Kloepper, J. (2016). Bacterial-mediated drought tolerance: Current and future prospects. Applied Soil Ecology, 105, 109–125. https://doi.org/10.1016/j.apsoil.2016.04.009
  • Nguyen, N. H., Song, I. J., Cheong, J. J., Park, S. H. (2020). Plant growth-promoting rhizobacteria improve salt stress tolerance in plants. Microbiological Research, 235, 126–146. https://doi.org/10.1016/j.micres.2020.126446
  • Sairam, R. K., & Srivastava, G. C. (2001). Water stress tolerance of wheat (Triticum aestivum L.): Variations in hydrogen peroxide accumulation and antioxidant activity. Journal of Agronomy and Crop Science, 186(1), 63–70. https://doi.org/10.1046/j.1439-037x.2001.00461
  • Sandhya, V., Ali, S. Z., Grover, M., Reddy, G., Venkateswarlu, B. (2010). Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regulation, 62(1), 21–30. https://doi.org/10.1007/s10725-010-9479-4
  • Sharma, B., Yadav, L., Shrestha, A., Shrestha, S., Subedi, M., Subedi, S., Shrestha, J. (2022). Drought stress and its management in wheat (Triticum aestivum L.): A review. Agricultural Science & Technology, 14(1), 1–10.
  • Shi, H., Quintero, F. J., Pardo, J. M., Zhu, J. K. (2002). The putative plasma membrane Na⁺/H⁺ antiporter SOS1 controls long-distance Na⁺ transport in plants. The Plant Cell, 14(2), 465–477. https://doi.org/10.1105/tpc.010371
  • Shrivastava, P., & Kumar, R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22(2), 123–131. https://doi.org/10.1016/j.sjbs.2014.12.001
  • Smith, S. E., & Read, D. J. (2008). Mycorrhizal symbiosis (3rd ed.). Academic Press.
  • Trachsel, S., Kaeppler, S. M., Brown, K. M., Lynch, J. P. (2011). Shovelomics: High throughput phenotyping of maize (Zea mays L.) root architecture in the field. Plant and Soil, 341(1), 75–87. https://doi.org/10.1007/s11104-010-0623-8
  • Uga, Y., Sugimoto, K., Ogawa, S., Rane, J., Ishitani, M., Hara, N., Kitomi, Y., Inukai, Y., Ono, K., Kanno, N., Inoue, H., Takehisa, H., Motoyama, R., Nagamura, Y., Wu, J., Matsumoto, T., Takai, T., Okuno, K., Yano, M. (2013). Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genetics, 45(9), 1097–1102. https://doi.org/10.1038/ng.2725
  • Vierling, E. (1991). The roles of heat shock proteins in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 42(1), 579–620. https://doi.org/10.1146/annurev.pp.42.060191.003051
  • Vishwakarma, K., Kumar, N., Shandilya, C., Mohapatra, S., Bhayana, S., Varma, A. (2020). Revisiting plant–microbe interactions and microbial consortia application for enhancing sustainable agriculture: A review. Frontiers in Microbiology, 11, 560406. https://doi.org/10.3389/fmicb.2020.560406
  • Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M., Ali, S. Z. (2016). Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiological Research, 184, 13–24. https://doi.org/10.1016/j.micres.2015.12.003
  • Wahid, A., Gelani, S., Ashraf, M., Foolad, M. R. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61(3), 199–223. https://doi.org/10.1016/j.envexpbot.2007.05.011
  • Qiao, M. (2024). Physiological and biochemical responses of plants to drought stress: Adaptation mechanisms and management strategies. Plants, 13(13), 1808. https://doi.org/10.3390/plants13131808
  • Yamaguchi-Shinozaki, K., & Shinozaki, K. (2006). Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual Review of Plant Biology, 57, 781–803. https://doi.org/10.1146/annurev.arplant.57.032905.105444
  • Yasmeen, A., Basra, S., Wahid, A., Farooq, M., Nouman, W., Hussain, N. (2013). Improving drought resistance in wheat (Triticum aestivum) by exogenous application of growth enhancers. International Journal of Agriculture & Biology, 15(6), 1307–1312.
  • Zhu, J.-K. (2021). Abiotic stress signaling and responses in plants. Cell, 184(6), 1525–1539. https://doi.org/10.1016/j.cell.2021.01.029

Buğdayın Abiyotik Streslere ve Mikrobiyom Dinamiklerine Yanıtları: Bir Derleme

Yıl 2025, Sayı: 9, 81 - 97, 23.12.2025

Öz

Buğday (Triticum aestivum), küresel ölçekte gıda güvenliğinin sağlanmasında temel bir stratejik ürün konumundadır. Tarımsal üretim sürecinde, özellikle kuraklık, tuzluluk ve yüksek sıcaklık gibi abiyotik stres faktörleri bitkinin büyüme ve verim potansiyelini önemli ölçüde sınırlandırmaktadır. Kuraklık stresi, fotosentetik etkinliği azaltarak ve transpirasyon yoluyla su kaybını artırarak bitki verimliliğini düşürürken; tuzluluk stresi iyon homeostazını bozarak kök gelişimi ve besin alımını olumsuz etkiler. Yüksek sıcaklıklar ise protein denatürasyonu ve fotosentez kapasitesinde azalma gibi etkilerle önemli ölçüde ürün kaybına neden olur. Bu stres koşullarına karşı buğday, abiyotik stres toleransını artıran bir dizi fizyolojik ve biyokimyasal savunma mekanizmasını devreye alır. Abscisik asit (ABA) düzeyindeki artış, stomatal düzenleme ve osmotik ayarlama süreçleri bu adaptif tepkilerin başlıca bileşenlerini oluşturur. Bununla birlikte, bitki kök mikrobiyomu da stres toleransının güçlendirilmesinde tamamlayıcı bir rol üstlenmektedir. Bitki gelişimini destekleyen rizobakteriler (PGPR) ve arbusküler mikorizal mantarlar, su ve besin alımını iyileştirerek bitkinin stres koşullarına daha dayanıklı hale gelmesini sağlar. Mikrobiyal etkileşimlerin tarımsal üretim sistemlerine entegre edilmesi, hem kimyasal girdi bağımlılığının azaltılmasına hem de üretim istikrarının artırılmasına katkı sunabilecek önemli bir strateji olarak değerlendirilmektedir. Bu bağlamda, mikrobiyom temelli yaklaşımlar, buğday üretiminde stres toleransını güçlendiren sürdürülebilir uygulamalar için güçlü bir potansiyel taşımaktadır.

Kaynakça

  • Abid, M., Tian, Z., Ata-Ul-Karim, S. T., Liu, Y., Cui, Y., Zahoor, R., Dai, T. (2016). Improved tolerance to post-anthesis drought stress by pre-drought priming at vegetative stages in drought-tolerant and -sensitive wheat cultivars. Plant Physiology and Biochemistry, 106, 218–227. https://doi.org/10.1016/j.plaphy.2016.04.046
  • Alzahrani, Y., Kuşvuran, A., Alharby, H. F., Kuşvuran, S., Rady, M. M. (2018). The defensive role of silicon in wheat against stress conditions induced by drought, salinity or cadmium. Ecotoxicology and Environmental Safety, 154, 187–196. https://doi.org/10.1016/j.ecoenv.2018.02.002
  • Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206–216. https://doi.org/10.1016/j.envexpbot.2005.12.006
  • Ashraf, M. & Harris, P. J. C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166(1), 3–16. https://doi.org/10.1016/j.plantsci.2003.10.024
  • Bashan, Y., & de-Bashan, L. E. (2010). How the plant growth-promoting bacterium Azospirillum promotes plant growth—A critical assessment. Advances in Agronomy, 108, 77–136. https://doi.org/10.1016/S0065-2113(10)08002-8
  • Berendsen, R. L., Pieterse, C. M., Bakker, P. A. (2012). The rhizosphere microbiome and plant health. Trends in Plant Science, 17(8), 478–486. https://doi.org/10.1016/j.tplants.2012.04.001
  • Bharti, N., Barnawal, D., & Kalra, A. (2016). Halophilic bacteria mediate salt stress tolerance in plants: Recent developments. Journal of Plant Growth Regulation, 35(3), 943–960. https://doi.org/10.1007/s00344-016-9599-3
  • Bresson, J., Varoquaux, F., Bontpart, T., Touraine, B., Vile, D. (2013). The PGPR strain Phyllobacterium brassicacearum STM196 induces a reproductive delay and increases drought tolerance in Arabidopsis. New Phytologist, 200(2), 558–569.
  • Büyük, İ., Soydam-Aydın, S., & Aras, S. (2012). Bitkilerin stres koşullarına verdiği moleküler cevaplar. Turkish Bulletin of Hygiene & Experimental Biology, 69(2). https://doi.org/10.5505/TurkHijyen.2012.44946
  • Chaves, M. M., Flexas, J., Pinheiro, C. (2009). Photosynthesis under drought and salt stress: Regulation from the whole plant to cell. Annals of Botany, 103(4), 551–560. https://doi.org/10.1093/aob/mcn125
  • Chaves, M. M., Maroco, J. P., Pereira, J. S. (2003). Understanding plant responses to drought—From genes to the whole plant. Functional Plant Biology, 30(3), 239–264. https://doi.org/10.1071/FP02076
  • Cohen, A. C., Bottini, R., Piccoli, P. N. (2008). Azospirillum brasilense Sp 245 produces ABA in chemically defined culture medium and increases ABA content in Arabidopsis plants. Plant Growth Regulation, 54(2), 97–103. https://doi.org/10.1007/s10725-007-9232-9
  • Coleman-Derr, D., & Tringe, S. G. (2014). Building the crops of tomorrow: Advantages of symbiont-based approaches to improving abiotic stress tolerance. Frontiers in Microbiology, 5, 283. https://doi.org/10.3389/fmicb.2014.00283
  • Egamberdieva, D., Wirth, S., Bellingrath-Kimura, S. D., Mishra, J., Arora, N. K. (2019). Salt-tolerant plant growth-promoting rhizobacteria for enhancing crop productivity of saline soils. Frontiers in Microbiology, 10, 2791. https://doi.org/10.3389/fmicb.2019.02791
  • Evelin, H., Kapoor, R., Giri, B. (2009). Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Annals of Botany, 104(7), 1263–1280. https://doi.org/10.1093/aob/mcp251
  • Farooq, M., Bramley, H., Palta, J. A., Siddique, K. H. (2011). Heat stress in wheat during reproductive and grain-filling phases. Critical Reviews in Plant Sciences, 30(6), 491–507. https://doi.org/10.1080/07352689.2011.615687
  • Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., Basra, S. M. A. (2009). Plant drought stress: Effects, mechanisms and management. Agronomy for Sustainable Development, 29(1), 185–212. https://doi.org/10.1051/agro:2008021
  • Fitzpatrick, C. R., Salas-González, I., Conway, J. M., Finkel, O. M., Gilbert, S., Russ, D., Teixeira, P. J. P. L., Dangl, J. L., Jones, C. D. (2020). The plant microbiome: From ecology to reductionism and beyond. Annual Review of Microbiology, 74, 81–100. https://doi.org/10.1146/annurev-micro-022620-014327
  • Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909–930. https://doi.org/10.1016/j.plaphy.2010.08.016
  • Glick, B. R. (2012). Plant growth-promoting bacteria: Mechanisms and applications. Scientifica, 2012, 963401. https://doi.org/10.6064/2012/963401
  • Hasegawa, P. M., Bressan, R. A., Zhu, J. K., Bohnert, H. J. (2000). Cellular and molecular responses of plants to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology, 51, 463–499. https://doi.org/10.1146/annurev.arplant.51.1.463
  • Hasanuzzaman, M., Nahar, K., Alam, M. M., Roychowdhury, R., Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 14(5), 9643–9684. https://doi.org/10.3390/ijms14059643
  • Hays, D. B., Do, J. H., Mason, R. E., Morgan, G., Finlayson, S. A. (2007). Heat stress induced ethylene production in developing wheat grains induces kernel abortion and increased maturation in a susceptible cultivar. Plant Science, 172(6), 1113–1123. https://doi.org/10.1016/j.plantsci.2007.02.004
  • Joshi, R., Wani, S. H., Singh, B., Bohra, A., Dar, Z. A., Lone, A. A., Singla-Pareek, S. L. (2016). Transcription factors and plants’ response to drought stress: Current understanding and future directions. Frontiers in Plant Science, 7, 1029. https://doi.org/10.3389/fpls.2016.01029
  • Kohler, J., Hernández, J. A., Caravaca, F., Roldán, A. (2008). Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Functional Plant Biology, 35(2), 141–151. https://doi.org/10.1071/FP07218
  • Kotak, S., Larkindale, J., Lee, U., von Koskull-Döring, P., Vierling, E., Scharf, K. D. (2007). Complexity of the heat stress response in plants. Current Opinion in Plant Biology, 10(3), 310–316. https://doi.org/10.1016/j.pbi.2007.04.011
  • Lynch, J. P. (2013). Steep, cheap and deep: An ideotype to optimize water and N acquisition by maize root systems. Functional Plant Biology, 40(9), 975–982. https://doi.org/10.1071/FP13033
  • Marulanda, A., Barea, J. M., Azcón, R. (2009). Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments. Journal of Plant Growth Regulation, 28(2), 115–124. https://doi.org/10.1007/s00344-009-9079-6
  • Mendes, R., Garbeva, P., Raaijmakers, J. M. (2013). The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, 37(5), 634–663. https://doi.org/10.1111/1574-6976.12028
  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9), 405–410. https://doi.org/10.1016/S1360-1385(02)02312-9
  • Mittova, V., Tal, M., Volokita, M., Guy, M. (2004). Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii. Journal of Experimental Botany, 55(399), 1105–1113. https://doi.org/10.1093/jxb/erh113
  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
  • Nakashima, K., & Yamaguchi-Shinozaki, K. (2013). ABA signaling and abiotic stress responses in plants. Journal of Plant Research, 126(5), 613–620. https://doi.org/10.1007/s10265-013-0561-4
  • Ngumbi, E., & Kloepper, J. (2016). Bacterial-mediated drought tolerance: Current and future prospects. Applied Soil Ecology, 105, 109–125. https://doi.org/10.1016/j.apsoil.2016.04.009
  • Nguyen, N. H., Song, I. J., Cheong, J. J., Park, S. H. (2020). Plant growth-promoting rhizobacteria improve salt stress tolerance in plants. Microbiological Research, 235, 126–146. https://doi.org/10.1016/j.micres.2020.126446
  • Sairam, R. K., & Srivastava, G. C. (2001). Water stress tolerance of wheat (Triticum aestivum L.): Variations in hydrogen peroxide accumulation and antioxidant activity. Journal of Agronomy and Crop Science, 186(1), 63–70. https://doi.org/10.1046/j.1439-037x.2001.00461
  • Sandhya, V., Ali, S. Z., Grover, M., Reddy, G., Venkateswarlu, B. (2010). Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regulation, 62(1), 21–30. https://doi.org/10.1007/s10725-010-9479-4
  • Sharma, B., Yadav, L., Shrestha, A., Shrestha, S., Subedi, M., Subedi, S., Shrestha, J. (2022). Drought stress and its management in wheat (Triticum aestivum L.): A review. Agricultural Science & Technology, 14(1), 1–10.
  • Shi, H., Quintero, F. J., Pardo, J. M., Zhu, J. K. (2002). The putative plasma membrane Na⁺/H⁺ antiporter SOS1 controls long-distance Na⁺ transport in plants. The Plant Cell, 14(2), 465–477. https://doi.org/10.1105/tpc.010371
  • Shrivastava, P., & Kumar, R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22(2), 123–131. https://doi.org/10.1016/j.sjbs.2014.12.001
  • Smith, S. E., & Read, D. J. (2008). Mycorrhizal symbiosis (3rd ed.). Academic Press.
  • Trachsel, S., Kaeppler, S. M., Brown, K. M., Lynch, J. P. (2011). Shovelomics: High throughput phenotyping of maize (Zea mays L.) root architecture in the field. Plant and Soil, 341(1), 75–87. https://doi.org/10.1007/s11104-010-0623-8
  • Uga, Y., Sugimoto, K., Ogawa, S., Rane, J., Ishitani, M., Hara, N., Kitomi, Y., Inukai, Y., Ono, K., Kanno, N., Inoue, H., Takehisa, H., Motoyama, R., Nagamura, Y., Wu, J., Matsumoto, T., Takai, T., Okuno, K., Yano, M. (2013). Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genetics, 45(9), 1097–1102. https://doi.org/10.1038/ng.2725
  • Vierling, E. (1991). The roles of heat shock proteins in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 42(1), 579–620. https://doi.org/10.1146/annurev.pp.42.060191.003051
  • Vishwakarma, K., Kumar, N., Shandilya, C., Mohapatra, S., Bhayana, S., Varma, A. (2020). Revisiting plant–microbe interactions and microbial consortia application for enhancing sustainable agriculture: A review. Frontiers in Microbiology, 11, 560406. https://doi.org/10.3389/fmicb.2020.560406
  • Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M., Ali, S. Z. (2016). Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiological Research, 184, 13–24. https://doi.org/10.1016/j.micres.2015.12.003
  • Wahid, A., Gelani, S., Ashraf, M., Foolad, M. R. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61(3), 199–223. https://doi.org/10.1016/j.envexpbot.2007.05.011
  • Qiao, M. (2024). Physiological and biochemical responses of plants to drought stress: Adaptation mechanisms and management strategies. Plants, 13(13), 1808. https://doi.org/10.3390/plants13131808
  • Yamaguchi-Shinozaki, K., & Shinozaki, K. (2006). Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual Review of Plant Biology, 57, 781–803. https://doi.org/10.1146/annurev.arplant.57.032905.105444
  • Yasmeen, A., Basra, S., Wahid, A., Farooq, M., Nouman, W., Hussain, N. (2013). Improving drought resistance in wheat (Triticum aestivum) by exogenous application of growth enhancers. International Journal of Agriculture & Biology, 15(6), 1307–1312.
  • Zhu, J.-K. (2021). Abiotic stress signaling and responses in plants. Cell, 184(6), 1525–1539. https://doi.org/10.1016/j.cell.2021.01.029
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ziraat Mühendisliği (Diğer)
Bölüm Derleme
Yazarlar

Çağdaş Can Toprak 0000-0002-0951-7458

Zeki Erden 0000-0003-1613-7768

Gönderilme Tarihi 3 Temmuz 2025
Kabul Tarihi 7 Kasım 2025
Yayımlanma Tarihi 23 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Sayı: 9

Kaynak Göster

APA Toprak, Ç. C., & Erden, Z. (2025). Wheat Responses to Abiotic Stresses and Microbiome Dynamics: A Review. Şırnak Üniversitesi Fen Bilimleri Dergisi(9), 81-97.