Derleme
BibTex RIS Kaynak Göster

Küresel Isınma ve İklim Değişikliğinin Türkiye'de Badem Üretimi Üzerindeki Olası Etkileri

Yıl 2025, Sayı: 9, 120 - 133, 23.12.2025

Öz

Küresel iklim değişikliği, tarımsal üretim sistemleri üzerinde giderek artan baskılar oluşturarak, fenolojik gelişim süreçleri çevresel koşullara yüksek derecede bağlı olan meyve türleri üzerinde özellikle önemli etkiler yaratmaktadır. Ekonomik ve ekolojik önemi giderek artan sert kabuklu bir meyve olan badem (Prunus dulcis), Türkiye'nin çeşitli agroekolojik bölgelerinde yaygın olarak yetiştirilmektedir. Bu derleme, Türkiye’de badem yetiştiriciliğinin küresel ısınma ve iklim değişikliği ile ilişkili çevresel stres faktörlerinden nasıl etkilendiğini kapsamlı bir şekilde incelemektedir. Erken ilkbahar donları, sıcaklık anormallikleri, artan kuraklık şiddeti, düzensiz yağış desenleri ve aşırı iklim olaylarının badem üretimi üzerindeki potansiyel etkileri geniş bir literatür taramasıyla analiz edilmektedir. Ayrıca, bademlerin bu streslere karşı fizyolojik ve fenolojik tepkileri, genetik kaynakların değerlendirilmesi, kuraklığa ve dona dayanıklı çeşitler ile anaçların kullanımı, modern sulama teknikleri, uyum odaklı tarımsal uygulamalar ve sürdürülebilir badem ıslahı stratejileri ele alınmakta ve önerilmektedir. Elde edilen bulgular, Türkiye’de iklim değişikliğine dayanıklı ve verimli badem üretim sistemlerinin geliştirilmesi için bilimsel bir temel sunmayı amaçlamaktadır.

Kaynakça

  • Anonymous a. (2024). 2024 average temperature analysis. Turkish State Meteorological Service. https://www.mgm.gov.tr/FILES/resmi-istatistikler/parametreAnalizi/2024-ortalama-sicaklik.pdf
  • Anonymous b. (2025). Crop Production Statistics. Turkish Statistical Institute. Retrieved from https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr
  • Álvarez, S., Martín, H., Barajas, E., Rubio, J.A. and Vivaldi, G. A. (2020). Rootstock effects on water relations of young almond trees (cv. Soleta) when subjected to water stress and rehydration. Water, 12(12), 3319. https://doi.org/10.3390/w12123319
  • Campoy, J. A., Ruiz, D., and Egea, J. (2011). Dormancy in temperate fruit trees in a global warming context: A review. Scientia Horticulturae, 130(2), 357–372. https://doi.org/10.1016/j.scienta.2011.07.011
  • Chaves, M. M., Flexas, J., and Pinheiro, C. (2009). Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Annals of Botany, 103(4), 551–560. https://doi.org/10.1093/aob/mcn125
  • Egea, G., Nortes, P. A., González-Real, M. M., Baille, A., and Domingo, R. (2010). Agronomic response and water productivity of almond trees under contrasted deficit irrigation regimes. Agricultural Water Management, 97(1), 171–181. https://doi.org/10.1016/j.agwat.2009.09.006
  • FAOSTAT. (2023). Crops and livestock products: Production quantities of almonds, in shell – Turkey (2023). Food and Agriculture Organization of the United Nations. Retrieved September 12, 2025, from https://www.fao.org/faostat/en/#data/QCL
  • Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., and Basra, S. M. A. (2009). Plant drought stress: Effects, mechanisms and management. Agronomy for Sustainable Development, 29(1), 185–212. https://doi.org/10.1051/agro:2008021
  • Fereres, E., and Soriano, M. A. (2007). Deficit irrigation for reducing agricultural water use. Journal of Experimental Botany, 58(2), 147–159. https://doi.org/10.1093/jxb/erl165
  • Fernandez i Marti, A., Alonso Segura, J. M., Espiau, M. T., Kodad, O., and Socias i Company, R. (2009). Genetic diversity in Spanish and foreign almond germplasm assessed by molecular characterization with simple sequence repeats. Journal of the American Society for Horticultural Science, 134(5), 535–542. https://doi.org/10.21273/JASHS.134.5.535
  • Flexas, J., and Medrano, H. (2002). Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Annals of Botany, 89(2), 183–189. https://doi.org/10.1093/aob/mcf027
  • Flexas, J., Bota, J., Loreto, F., Cornic, G., and Sharkey, T. D. (2008). Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biology, 6(3), 269–279. https://doi.org/10.1055/s-2004-820867
  • Food and Agriculture Organization of the United Nations (FAO). (2016). The state of food and agriculture: Climate change, agriculture and food security. FAO. https://www.fao.org/3/i6030e/i6030e.pdf
  • García-Tejero, I. F., Durán Zuazo, V. H., Jiménez Bocanegra, J. A., and Muriel, J. L. (2011). Improved water-use efficiency by deficit-irrigation programmes: Implications for saving water in citrus orchards. Scientia Horticulturae, 128(3), 274–282. https://doi.org/10.1016/j.scienta.2011.01.035
  • Gill, S. S., and Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930. https://doi.org/10.1016/j.plaphy.2010.08.016
  • Gökkür, S., and Şahin, M. (2023). Effects of climate change on almond cultivation. Modern Almond Cultivation (Chapter XV). İksad Publishing. https://doi.org/10.5281/zenodo.10456043
  • Han, Q., Guo, Q., Korpelainen, H., Niinemets, Ü., and Li, C. (2019). Rootstock determines the drought resistance of poplar grafting combinations. Tree Physiology, 39(11), 1855–1866. https://doi.org/10.1093/treephys/tpz102
  • Harvey, C. A., Rakotobe, Z. L., Rao, N. S., Dave, R., Razafimahatratra, H., Rabarijohn, R. H., Rajaofara, H., and MacKinnon, J. L. (2014). Extreme vulnerability of smallholder farmers to agricultural risks and climate change in Madagascar. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1639), 20130089. https://doi.org/10.1098/rstb.2013.0089
  • Hedhly, A., Hormaza, J. I., and Herrero, M. (2009). Global warming and sexual plant reproduction. Trends in Plant Science, 14(1), 30–36. https://doi.org/10.1016/j.tplants.2008.11.005
  • Jaganathan, D., Ramasamy, K., Sellamuthu, G., Jayabalan, S., and Venkataraman, G. (2018). CRISPR for crop improvement: An update review. Frontiers in Plant Science, 9, 985. https://doi.org/10.3389/fpls.2018.00985
  • Kodad, O., and Socias i Company, R. (2008). Variability of oil content and of major fatty acid composition in almond (Prunus amygdalus Batsch) and its relationship with kernel quality. Journal of Agricultural and Food Chemistry, 56(11), 4096–4101. https://doi.org/10.1021/jf8001679
  • Lemos, M. C., Kirchhoff, C. J., and Ramprasad, V. (2012). Narrowing the climate information usability gap. Nature Climate Change, 2(11), 789–794. https://doi.org/10.1038/nclimate1614
  • Luedeling, E. (2012). Climate change impacts on winter chill for temperate fruit and nut production: A review. Scientia Horticulturae, 144, 218–229. https://doi.org/10.1016/j.scienta.2012.07.011
  • Luedeling, E., Girvetz, E. H., Semenov, M. A., and Brown, P. H. (2011). Climate change affects winter chill for temperate fruit and nut trees. PLoS ONE, 6(5), e20155. https://doi.org/10.1371/journal.pone.0020155
  • Luedeling, E., Zhang, M., and Girvetz, E. H. (2013). Climatic changes lead to declining winter chill for fruit and nut trees in California during 1950–2099. PLoS ONE, 4(7), e20155. https://doi.org/10.1371/journal.pone.0020155
  • Medrano, H., Tomas, M., Martorell, S., Bota, J., et al. (2015). Improving water use efficiency of vineyards in semi-arid regions: A review. Agronomy for Sustainable Development, 35(2). https://doi.org/10.1007/s13593-014-0280-z
  • Mertz, O., Mbow, C., Reenberg, A., and Diouf, A. (2009). Farmers’ perceptions of climate change and agricultural adaptation strategies in rural Sahel. Environmental Management, 43, 804–816. https://doi.org/10.1007/s00267-008-9197-0
  • Miras-Avalos, J. M., and Ramírez Cuesta, J. M. (2022). Water management in woody crops: Challenges and opportunities. Water, 14(13), 2043. https://doi.org/10.3390/w14132043
  • Oebker, N. F., and Hopen, H. J. (1974). Microclimate modification and the vegetable crop ecosystem. HortScience, 9(6), 564–568. https://doi.org/10.21273/HORTSCI.9.6.564
  • Oliveira, A. F. de, Mameli, M. G., De Pau, L., and Satta, D. (2023). Almond tree adaptation to water stress: Differences in physiological performance and yield responses among four cultivars grown in Mediterranean environment. Plants, 12(5), 1131. https://doi.org/10.3390/plants12051131
  • Pretty, J., Benton, T. G., Bharucha, Z. P., Dicks, L. V., Flora, C. B., Godfray, H. C. J., … and Wratten, S. D. (2018). Global assessment of agricultural system redesign for sustainable intensification. Nature Sustainability, 1(8), 441-446. https://doi.org/10.1038/s41893-018-0114-0
  • Ramírez, F., and Kallarackal, J. (2015). Climate change and chilling requirements. In Responses of fruit trees to global climate change (pp. 31–34).
  • Safavi Bakhtiari, E., Mousavi, A., Yadegari, M., Haghighati, B., and Martínez-García, P. J. (2025). Physiological and biochemical responses of almond (Prunus dulcis) cultivars to drought stress in semi-arid conditions in Iran. Plants, 14(5), 734. https://doi.org/10.3390/plants14050734
  • Sebastiani, L., and Gucci, R. (2023). Responses to abiotic stresses. In The olive: Botany and production (pp. 510–528). https://doi.org/10.1079/9781789247350.0021
  • Souza, G. A. R. de, Vale, E. de M., Bernado, W. de P., Baroni, D. F., Sousa, E. F. de, Rakočević, M., Rodrigues, W. P., and Campostrini, E. (2025). Water relations in fruit trees: Knowing for better irrigation management. In M. P. Gonzatto and J. S. Santos (Eds.), Fruit Crops Science (Online First). IntechOpen. https://doi.org/10.5772/intechopen.1008558
  • Stewart, W. L., Fulton, A., Krueger, W. H., Buchner, R. P., and Shackel, K. A. (2011). Regulated deficit irrigation reduces water use of almonds without affecting yield. California Agriculture, 65(2), 90–95. https://doi.org/10.3733/ca.v065n02p90
  • Şahin, G. (2020). Coğrafi, zirai ve iktisadi açıdan Turkey’de badem [Almond production in Turkey: Geographical, agricultural, and economic perspectives]. Gelecek Vizyonlar Dergisi, 4(Special Issue), 27–50. https://doi.org/10.29345/futvis.114
  • Vitasse, Y., François, C., Delpierre, N., Dufrêne, E., Kremer, A., Chuine, I., and Delzon, S. (2011). Assessing the effects of climate change on the phenology of European temperate trees. Agricultural and Forest Meteorology, 151(7), 969–980. https://doi.org/10.1016/j.agrformet.2011.03.003
  • Weiss, E., Zohary, D., and Hopf, M. (2012). Domestication of plants in the Old World: The origin and spread of domesticated plants in South-west Asia, Europe, and the Mediterranean Basin (4th ed.). Oxford University Press. https://doi.org/10.1093/acprof:osobl/9780199549061.001.0001
  • Wheeler, T., and von Braun, J. (2013). Climate change impacts on global food security. Science, 341(6145), 508–513. https://doi.org/10.1126/science.1239402
  • Zampieri, M., Ceglar, A., Dentener, F., Dosio, A., Naumann, G., van den Berg, M., and Toreti, A. (2019). When will current climate extremes affecting maize production become the norm? Earth's Future, 7(2), 108–120. https://doi.org/10.1029/2018EF000995
  • Zheng, Y., Li, Q., Ye, M., Chen, A., and Wang, H. (2021). Applications of CRISPR/Cas9-based genome editing in the plant biology. Turkish Journal of Botany, 45(4), 253–268. https://doi.org/10.3906/bot-2103-50

Possible Effects of Global Warming and Climate Change on Almond Production in Turkey

Yıl 2025, Sayı: 9, 120 - 133, 23.12.2025

Öz

Global climate change exerts increasing pressures on agricultural production systems, causing significant impacts particularly on fruit species whose phenological development processes are highly dependent on environmental conditions. Almond (Prunus dulcis), a nut crop with growing economic and ecological importance, is widely cultivated in various agroecological regions of Turkey. This review comprehensively examines how almond cultivation in Turkey is affected by environmental stress factors associated with global warming and climate change. Potential impacts of early spring frosts, temperature anomalies, increased drought intensity, irregular precipitation patterns, and extreme climatic events on almond production are analyzed through an extensive literature review. Moreover, the physiological and phenological responses of almonds to these stresses, evaluation of genetic resources, use of drought- and frost-tolerant cultivars and rootstocks, modern irrigation techniques, adaptation-oriented agronomic practices, and sustainable almond breeding strategies are discussed and proposed. The findings aim to provide a scientific basis for developing climate-resilient and productive almond production systems in Turkey.

Kaynakça

  • Anonymous a. (2024). 2024 average temperature analysis. Turkish State Meteorological Service. https://www.mgm.gov.tr/FILES/resmi-istatistikler/parametreAnalizi/2024-ortalama-sicaklik.pdf
  • Anonymous b. (2025). Crop Production Statistics. Turkish Statistical Institute. Retrieved from https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr
  • Álvarez, S., Martín, H., Barajas, E., Rubio, J.A. and Vivaldi, G. A. (2020). Rootstock effects on water relations of young almond trees (cv. Soleta) when subjected to water stress and rehydration. Water, 12(12), 3319. https://doi.org/10.3390/w12123319
  • Campoy, J. A., Ruiz, D., and Egea, J. (2011). Dormancy in temperate fruit trees in a global warming context: A review. Scientia Horticulturae, 130(2), 357–372. https://doi.org/10.1016/j.scienta.2011.07.011
  • Chaves, M. M., Flexas, J., and Pinheiro, C. (2009). Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Annals of Botany, 103(4), 551–560. https://doi.org/10.1093/aob/mcn125
  • Egea, G., Nortes, P. A., González-Real, M. M., Baille, A., and Domingo, R. (2010). Agronomic response and water productivity of almond trees under contrasted deficit irrigation regimes. Agricultural Water Management, 97(1), 171–181. https://doi.org/10.1016/j.agwat.2009.09.006
  • FAOSTAT. (2023). Crops and livestock products: Production quantities of almonds, in shell – Turkey (2023). Food and Agriculture Organization of the United Nations. Retrieved September 12, 2025, from https://www.fao.org/faostat/en/#data/QCL
  • Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., and Basra, S. M. A. (2009). Plant drought stress: Effects, mechanisms and management. Agronomy for Sustainable Development, 29(1), 185–212. https://doi.org/10.1051/agro:2008021
  • Fereres, E., and Soriano, M. A. (2007). Deficit irrigation for reducing agricultural water use. Journal of Experimental Botany, 58(2), 147–159. https://doi.org/10.1093/jxb/erl165
  • Fernandez i Marti, A., Alonso Segura, J. M., Espiau, M. T., Kodad, O., and Socias i Company, R. (2009). Genetic diversity in Spanish and foreign almond germplasm assessed by molecular characterization with simple sequence repeats. Journal of the American Society for Horticultural Science, 134(5), 535–542. https://doi.org/10.21273/JASHS.134.5.535
  • Flexas, J., and Medrano, H. (2002). Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Annals of Botany, 89(2), 183–189. https://doi.org/10.1093/aob/mcf027
  • Flexas, J., Bota, J., Loreto, F., Cornic, G., and Sharkey, T. D. (2008). Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biology, 6(3), 269–279. https://doi.org/10.1055/s-2004-820867
  • Food and Agriculture Organization of the United Nations (FAO). (2016). The state of food and agriculture: Climate change, agriculture and food security. FAO. https://www.fao.org/3/i6030e/i6030e.pdf
  • García-Tejero, I. F., Durán Zuazo, V. H., Jiménez Bocanegra, J. A., and Muriel, J. L. (2011). Improved water-use efficiency by deficit-irrigation programmes: Implications for saving water in citrus orchards. Scientia Horticulturae, 128(3), 274–282. https://doi.org/10.1016/j.scienta.2011.01.035
  • Gill, S. S., and Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930. https://doi.org/10.1016/j.plaphy.2010.08.016
  • Gökkür, S., and Şahin, M. (2023). Effects of climate change on almond cultivation. Modern Almond Cultivation (Chapter XV). İksad Publishing. https://doi.org/10.5281/zenodo.10456043
  • Han, Q., Guo, Q., Korpelainen, H., Niinemets, Ü., and Li, C. (2019). Rootstock determines the drought resistance of poplar grafting combinations. Tree Physiology, 39(11), 1855–1866. https://doi.org/10.1093/treephys/tpz102
  • Harvey, C. A., Rakotobe, Z. L., Rao, N. S., Dave, R., Razafimahatratra, H., Rabarijohn, R. H., Rajaofara, H., and MacKinnon, J. L. (2014). Extreme vulnerability of smallholder farmers to agricultural risks and climate change in Madagascar. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1639), 20130089. https://doi.org/10.1098/rstb.2013.0089
  • Hedhly, A., Hormaza, J. I., and Herrero, M. (2009). Global warming and sexual plant reproduction. Trends in Plant Science, 14(1), 30–36. https://doi.org/10.1016/j.tplants.2008.11.005
  • Jaganathan, D., Ramasamy, K., Sellamuthu, G., Jayabalan, S., and Venkataraman, G. (2018). CRISPR for crop improvement: An update review. Frontiers in Plant Science, 9, 985. https://doi.org/10.3389/fpls.2018.00985
  • Kodad, O., and Socias i Company, R. (2008). Variability of oil content and of major fatty acid composition in almond (Prunus amygdalus Batsch) and its relationship with kernel quality. Journal of Agricultural and Food Chemistry, 56(11), 4096–4101. https://doi.org/10.1021/jf8001679
  • Lemos, M. C., Kirchhoff, C. J., and Ramprasad, V. (2012). Narrowing the climate information usability gap. Nature Climate Change, 2(11), 789–794. https://doi.org/10.1038/nclimate1614
  • Luedeling, E. (2012). Climate change impacts on winter chill for temperate fruit and nut production: A review. Scientia Horticulturae, 144, 218–229. https://doi.org/10.1016/j.scienta.2012.07.011
  • Luedeling, E., Girvetz, E. H., Semenov, M. A., and Brown, P. H. (2011). Climate change affects winter chill for temperate fruit and nut trees. PLoS ONE, 6(5), e20155. https://doi.org/10.1371/journal.pone.0020155
  • Luedeling, E., Zhang, M., and Girvetz, E. H. (2013). Climatic changes lead to declining winter chill for fruit and nut trees in California during 1950–2099. PLoS ONE, 4(7), e20155. https://doi.org/10.1371/journal.pone.0020155
  • Medrano, H., Tomas, M., Martorell, S., Bota, J., et al. (2015). Improving water use efficiency of vineyards in semi-arid regions: A review. Agronomy for Sustainable Development, 35(2). https://doi.org/10.1007/s13593-014-0280-z
  • Mertz, O., Mbow, C., Reenberg, A., and Diouf, A. (2009). Farmers’ perceptions of climate change and agricultural adaptation strategies in rural Sahel. Environmental Management, 43, 804–816. https://doi.org/10.1007/s00267-008-9197-0
  • Miras-Avalos, J. M., and Ramírez Cuesta, J. M. (2022). Water management in woody crops: Challenges and opportunities. Water, 14(13), 2043. https://doi.org/10.3390/w14132043
  • Oebker, N. F., and Hopen, H. J. (1974). Microclimate modification and the vegetable crop ecosystem. HortScience, 9(6), 564–568. https://doi.org/10.21273/HORTSCI.9.6.564
  • Oliveira, A. F. de, Mameli, M. G., De Pau, L., and Satta, D. (2023). Almond tree adaptation to water stress: Differences in physiological performance and yield responses among four cultivars grown in Mediterranean environment. Plants, 12(5), 1131. https://doi.org/10.3390/plants12051131
  • Pretty, J., Benton, T. G., Bharucha, Z. P., Dicks, L. V., Flora, C. B., Godfray, H. C. J., … and Wratten, S. D. (2018). Global assessment of agricultural system redesign for sustainable intensification. Nature Sustainability, 1(8), 441-446. https://doi.org/10.1038/s41893-018-0114-0
  • Ramírez, F., and Kallarackal, J. (2015). Climate change and chilling requirements. In Responses of fruit trees to global climate change (pp. 31–34).
  • Safavi Bakhtiari, E., Mousavi, A., Yadegari, M., Haghighati, B., and Martínez-García, P. J. (2025). Physiological and biochemical responses of almond (Prunus dulcis) cultivars to drought stress in semi-arid conditions in Iran. Plants, 14(5), 734. https://doi.org/10.3390/plants14050734
  • Sebastiani, L., and Gucci, R. (2023). Responses to abiotic stresses. In The olive: Botany and production (pp. 510–528). https://doi.org/10.1079/9781789247350.0021
  • Souza, G. A. R. de, Vale, E. de M., Bernado, W. de P., Baroni, D. F., Sousa, E. F. de, Rakočević, M., Rodrigues, W. P., and Campostrini, E. (2025). Water relations in fruit trees: Knowing for better irrigation management. In M. P. Gonzatto and J. S. Santos (Eds.), Fruit Crops Science (Online First). IntechOpen. https://doi.org/10.5772/intechopen.1008558
  • Stewart, W. L., Fulton, A., Krueger, W. H., Buchner, R. P., and Shackel, K. A. (2011). Regulated deficit irrigation reduces water use of almonds without affecting yield. California Agriculture, 65(2), 90–95. https://doi.org/10.3733/ca.v065n02p90
  • Şahin, G. (2020). Coğrafi, zirai ve iktisadi açıdan Turkey’de badem [Almond production in Turkey: Geographical, agricultural, and economic perspectives]. Gelecek Vizyonlar Dergisi, 4(Special Issue), 27–50. https://doi.org/10.29345/futvis.114
  • Vitasse, Y., François, C., Delpierre, N., Dufrêne, E., Kremer, A., Chuine, I., and Delzon, S. (2011). Assessing the effects of climate change on the phenology of European temperate trees. Agricultural and Forest Meteorology, 151(7), 969–980. https://doi.org/10.1016/j.agrformet.2011.03.003
  • Weiss, E., Zohary, D., and Hopf, M. (2012). Domestication of plants in the Old World: The origin and spread of domesticated plants in South-west Asia, Europe, and the Mediterranean Basin (4th ed.). Oxford University Press. https://doi.org/10.1093/acprof:osobl/9780199549061.001.0001
  • Wheeler, T., and von Braun, J. (2013). Climate change impacts on global food security. Science, 341(6145), 508–513. https://doi.org/10.1126/science.1239402
  • Zampieri, M., Ceglar, A., Dentener, F., Dosio, A., Naumann, G., van den Berg, M., and Toreti, A. (2019). When will current climate extremes affecting maize production become the norm? Earth's Future, 7(2), 108–120. https://doi.org/10.1029/2018EF000995
  • Zheng, Y., Li, Q., Ye, M., Chen, A., and Wang, H. (2021). Applications of CRISPR/Cas9-based genome editing in the plant biology. Turkish Journal of Botany, 45(4), 253–268. https://doi.org/10.3906/bot-2103-50
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ziraat Mühendisliği (Diğer)
Bölüm Derleme
Yazarlar

Kenan Çelik 0000-0002-5780-6342

Gönderilme Tarihi 12 Ağustos 2025
Kabul Tarihi 2 Aralık 2025
Yayımlanma Tarihi 23 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Sayı: 9

Kaynak Göster

APA Çelik, K. (2025). Possible Effects of Global Warming and Climate Change on Almond Production in Turkey. Şırnak Üniversitesi Fen Bilimleri Dergisi(9), 120-133.