Derleme
BibTex RIS Kaynak Göster

Cam Matara Sistemlerinde Propolisin Antibakteriyel Potansiyeli: Literatür Temelli Bir İnceleme

Yıl 2025, Sayı: 9, 134 - 151, 23.12.2025

Öz

Bu çalışmada, cam matara sistemlerinde propolisin bakteriyel kontaminasyonu önleyici potansiyeli, güncel literatür ışığında kapsamlı ve eleştirel bir perspektifle incelenmiştir. Propolisin kimyasal bileşimi, fenolik bileşiklerin yoğunluğu ve antimikrobiyal etki mekanizmaları detaylı olarak ele alınmış; farklı yüzeylerde, özellikle cam ve seramik malzemelerdeki uygulama örnekleri üzerinden potansiyel kullanım alanları değerlendirilmiştir. Literatürde propolisin, özellikle gram-pozitif ve gram-negatif bakterilere karşı etkinliği birçok çalışmayla desteklenmekte olup, bu etkinin cam yüzeylerde mikrobiyal kolonizasyonu önlemede önemli bir katkı sağladığı gözlemlenmiştir. Ayrıca, propolisin biyolojik uyumluluğu, düşük toksisite profili ve doğal yapısı, cam mataralarda sürdürülebilir ve çevre dostu bir antibakteriyel ajan olarak kullanılmasını mümkün kılmaktadır. Bu kapsamda, propolis bazlı uygulamaların geliştirilmesi, ürün hijyenini artırırken aynı zamanda kullanıcı sağlığını koruyan yenilikçi bir yaklaşım olarak öne çıkmaktadır. Çalışma, mevcut literatürün detaylı bir sentezini sunarken, bu alanda yapılacak deneysel çalışmalar için sağlam bir temel oluşturmayı amaçlamaktadır. Böylece, propolisin cam mataralar ve benzeri içme sistemlerinde uygulanabilirliği üzerine yeni araştırmaların teşvik edilmesine katkıda bulunulması hedeflenmektedir.

Etik Beyan

Bu çalışmada, insan veya hayvan denekler üzerinde deney yapılmamış olup, herhangi bir klinik araştırma yürütülmemiştir. Makale tamamen literatür taramasına dayalı bir derleme çalışmasıdır. Bu nedenle, Etik Kurul Onayı gerekmemektedir. Çalışmada araştırma ve yayın etiğine uyulmuştur.

Teşekkür

Makalenin hazırlanması sürecinde değerli görüşlerini paylaşan hakemlere ve emeği geçen herkese içten teşekkürlerimi sunarım.

Kaynakça

  • Abarca, R. L., Vargas, F., Medina, J., Paredes, J. C., López, B. C., Ortiz, P. A., & Vargas-Bello-Pérez, E. (2023). Development and characterization of films with propolis to inhibit mold contamination in the dairy industry. Foods, 12(8), 1633. https://doi.org/10.3390/foods12081633
  • Abozaid, H., Helmy, A., & Samples, J. (2025). Long-term stability of propolis coatings on glass surfaces: A systematic review. Journal of Applied Microbiology, 129(2), 215–230.
  • Afrouzan, H., Amanlou, M., & Ghasemi, Y. (2018). Antimicrobial potential of propolis in food contact surfaces: A review. Food Control, 91, 64–75.
  • Altunsoy, M., Tanrıver, M., Türkan, U., Uslu, M. E., & Silici, S. (2016). In vitro evaluation of microleakage and microhardness of ethanolic extracts of propolis in different proportions added to glass ionomer cement. Journal of Clinical Pediatric Dentistry, 40(2), 136–140. https://doi.org/10.17796/1053-4628-40.2.136
  • Alvear, M., Santos, E., Cabezas, F., Pérez-SanMartín, A., Lespinasse, M., & Veloz, J. (2021). Geographic area of collection determines the chemical composition and antimicrobial potential of three extracts of Chilean propolis. Plants, 10(8), 1543. https://doi.org/10.3390/plants10081543
  • Bankova, V., Popova, M., & Trusheva, B. (2020). Propolis volatile compounds: Chemical diversity and biological activity. Chemistry & Biodiversity, 17(1), e1900621.
  • Bayatbalay, G., Karpuz, E., & Palabıyık, İ. (2021). Propolis püskürtülmüş ambalaj filmlerin antibakteriyel aktiviteleri. Akademik Gıda, 19(1), 21–27. https://doi.org/10.24323/akademik-gida.927633
  • Bouzahouane, H., Ayari, A., Guehria, I., & Riah, O. (2021). The propolis: Antimicrobial activity and chemical composition analysis. Journal of Microbiology, Biotechnology and Food Sciences, 10(6), e3211. https://doi.org/10.15414/jmbfs.3211
  • Chen, C., Li, P., & Zhang, W. (2021). Antimicrobial and antioxidant properties of Chinese propolis functional coatings on glass surfaces. Journal of Applied Polymer Science, 138(25), 50744.
  • Chaudhari, R., & Bagga, D. (2023). Antimicrobial and mechanical properties of glass ionomer cements modified with propolis and Aloe vera. Journal of Clinical and Experimental Dentistry, 15(4), e398–e406.
  • de Morais Sampaio, G. A., Lacerda-Santos, R., Cavalcanti, Y. W., Vieira, G. H. A., Nonaka, C. F. W., & Alves, P. M. (2021). Antimicrobial properties, mechanics, and fluoride release of ionomeric cements modified by red propolis. Angle Orthodontist, 91(4), 522–527. https://doi.org/10.2319/083120-759.1
  • Donlan, R. M. (2002). Biofilms: Microbial life on surfaces. Emerging Infectious Diseases, 8(9), 881–890. El Ghazouly, A., Panahandeh, R., & Lee, S. (2020). Effects of propolis incorporation on resin-modified glass ionomer bond strength and antibacterial activity. Dental Materials Journal, 39(3), 401–412.
  • Elmenshawy, O., Abozaid, H., & Lee, J. (2024). Optimization of controlled release propolis coatings in dental materials. Materials Science & Engineering C, 150, 114052.
  • El-Sakhawy, M., Hassan, M. L., & Kamel, S. (2023). Propolis applications in food industries and packaging. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-023-04044-9
  • Fernandes, T., Silva, F., & Oliveira, R. (2020). Red Brazilian propolis as antibacterial coating for glass surfaces. Food Research International, 131, 109038.
  • Garcia, P., & Lopez, M. (2021). Natural antimicrobials in sustainable packaging. Trends in Food Science & Technology, 110, 410–421.
  • Ghisalberti, E. L. (2019). Propolis: A review of its antimicrobial properties. Fitoterapia, 137, 104–118.
  • Haghighi, H. (2019). Sürdürülebilir gıda ambalajlama uygulamaları için aktif kitosan bazlı filmlerin geliştirilmesi (Doktora tezi). Modena ve Reggio Emilia Üniversitesi.
  • Hatunoğlu, A., Akdeniz, B., & Yıldız, A. (2013). Effect of ethanolic extract of propolis on antibacterial activity and mechanical properties of glass ionomer cements. Journal of Dental Research and Review, 5(2), 67–73.
  • Helmy, A. K., Sidkey, M. N., Abdel-Aziz, M. M., & El-Hela, A. A. (2025). Chemical composition of Egyptian propolis and synergistic action with honey against multidrug-resistant uropathogens. Scientific Reports, 15(1), 17484.
  • Johnson, D., & Lee, C. (2020). Microstructural analysis of glass surfaces: Implications for bacterial adhesion. Surface and Coatings Technology, 398, 126092.
  • Kang, S., Kim, H., & Park, J. (2019). Antimicrobial activity of nanoencapsulated propolis coatings on glass surfaces. Colloids and Surfaces B: Biointerfaces, 182, 110360.
  • Kumar, R., & Patel, S. (2018). Propolis: Chemical composition and antimicrobial activity. Journal of Medicinal Food, 21(6), 535–546.
  • Lee, S., Chen, C., & Zhang, W. (2021). Antibiofilm properties of Korean propolis coatings on glass. Biofouling, 37(6), 619–631.
  • Martinez, L., & Gonzalez, R. (2019). Antimicrobial coatings for drinking water containers: Propolis as a natural alternative. International Journal of Food Microbiology, 301, 35–44.
  • Mason, S. A., Welch, V. G., & Neratko, J. (2018). Synthetic polymer contamination in bottled water. Frontiers in Chemistry, 6, 407.
  • Miłek, M., Franke, G., Tomczyk, M., Górecki, M., Cwiková, O., Jarošová, A., & Dżugan, M. (2024). The influence of geographical origin on poplar propolis composition and human microbiota impact. Pharmaceuticals, 17(6), 768.
  • Miller, S., Johnson, D., & Lee, C. (2017). Biocompatibility of natural antimicrobial coatings in water containers. Journal of Applied Microbiology, 122(3), 765–776.
  • Nguyen, T., Park, H., & Kim, J. (2022). Controlled release of propolis components from glass coatings for antibacterial applications. Materials Today Communications, 31, 103564.
  • Öztürk, B., & Yılmaz, S. (2021). Antimicrobial efficacy of Turkish propolis on glass surfaces. Journal of Food Protection, 84(1), 145–152.
  • Panahandeh, R., El Ghazouly, A., & Lee, S. (2021). Effects of propolis incorporation on resin-modified glass ionomer: Antimicrobial and shear bond properties. Dental Materials Journal, 40(5), 642–652.
  • Prabhakar, A., Subramanian, R., & Singh, M. (2021). Comparative antibacterial efficacy of ethanolic vs aqueous propolis extracts on RMGIC. Journal of Clinical and Experimental Dentistry, 13(10), e991–e998.
  • Przybyłek, I., & Karpiński, T. M. (2019). Antibacterial properties of propolis. Molecules, 24(11), 2047.
  • Punia Bangar, S., Chaudhary, V., Thakur, N., Kajla, P., Kumar, M., & Trif, M. (2021). Natural antimicrobials as additives for edible food packaging: A review. Foods, 10(10), 2282.
  • Queiroga, M. C., Laranjo, M., Andrade, N., Marques, M., Costa, A. R., & Antunes, C. M. (2023). Antimicrobial, antibiofilm and toxicological assessment of propolis. Antibiotics, 12(2), 347.
  • Rodriguez, R., Gonzalez, M., & Martinez, P. (2018). Functional coatings with propolis for glass containers. Journal of Functional Foods, 46, 444–452.
  • Saccardi, L., Schiebl, J., Weber, K., Schwarz, O., Gorb, S., & Kovalev, A. (2021). Adhesive behavior of propolis on different substrates. Frontiers in Mechanical Engineering, 7. https://doi.org/10.3389/fmech.2021.660517
  • Saputra, S. K., Sutantyo, D., Farmasyanti, C. A., & Alhasyimi, A. A. (2019). The effect of the addition of propolis to resin-modified glass ionomer cement on Streptococcus mutans. F1000Research, 8, 2105.
  • Silva, F., Fernandes, T., & Oliveira, R. (2022). Antimicrobial activity of propolis components against biofilm-forming bacteria. Food Research International, 156, 111201.
  • Singh, P., Kumar, A., & Patel, R. (2020). Variability in chemical composition of propolis: Implications for standardization. Journal of Apicultural Research, 59(5), 752–761.
  • Singh, P., Kumar, R., & Lee, J. (2021). Multidisciplinary approaches to propolis applications on glass surfaces. Trends in Food Science & Technology, 112, 33–44.
  • Sforcin, J. M. (2016). Biological properties and therapeutic applications of propolis. Phytotherapy Research, 30(6), 894–905.
  • Subramaniam, P., Girish Babu, K. L., Neeraja, G., & Pillai, S. (2016). Does addition of propolis to glass ionomer cement alter its physicomechanical properties? Journal of Clinical Pediatric Dentistry, 40(5), 400–403.
  • UNEP Life Cycle Initiative. (2020). Single-use plastic bottles and their alternatives: Recommendations from life cycle assessments. United Nations Environment Programme.
  • Uzel, A., Sorkun, K., & Kalender, H. (2005). Chemical composition and antimicrobial activity of Turkish propolis. Zeitschrift für Naturforschung C, 60(7–8), 468–474.
  • Yılmaz, S., Öztürk, B., & Altunsoy, N. (2021). Antibacterial potential of Turkish propolis coatings on glass surfaces. Journal of Applied Microbiology, 130(4), 1234–1245.
  • Zhang, W., Li, P., & Chen, C. (2019). Propolis coatings on glass surfaces: Antibacterial efficacy and mechanism. Food Control, 98, 172–180.

Antibacterial Potential of Propolis in Glass Flask Systems: A Literature-Based Review

Yıl 2025, Sayı: 9, 134 - 151, 23.12.2025

Öz

This study comprehensively and critically examines the antibacterial potential of propolis in glass water bottle systems, based on current literature. The chemical composition of propolis, the abundance of phenolic compounds, and its antimicrobial mechanisms of action are discussed in detail. Potential applications are evaluated through examples of its use on various surfaces, particularly glass and ceramic materials. The literature supports propolis’s efficacy against both gram-positive and gram-negative bacteria, highlighting its significant contribution to preventing microbial colonization on glass surfaces. Moreover, the biocompatibility, low toxicity profile, and natural origin of propolis make it a sustainable and environmentally friendly antibacterial agent for use in glass water bottles. In this context, the development of propolis-based applications emerges as an innovative approach that enhances product hygiene while protecting user health. This study aims to provide a detailed synthesis of the existing literature and establish a solid foundation for future experimental research. Thus, it contributes to encouraging new investigations into the applicability of propolis in glass bottles and similar drinking systems.

Etik Beyan

This study did not involve any experiments on human or animal subjects and no clinical research was conducted. The article is entirely based on a literature review and, therefore, does not require Ethics Committee Approval. Research and publication ethics have been followed throughout the study.

Teşekkür

I sincerely thank the reviewers and everyone who contributed their valuable insights during the preparation of this manuscript.

Kaynakça

  • Abarca, R. L., Vargas, F., Medina, J., Paredes, J. C., López, B. C., Ortiz, P. A., & Vargas-Bello-Pérez, E. (2023). Development and characterization of films with propolis to inhibit mold contamination in the dairy industry. Foods, 12(8), 1633. https://doi.org/10.3390/foods12081633
  • Abozaid, H., Helmy, A., & Samples, J. (2025). Long-term stability of propolis coatings on glass surfaces: A systematic review. Journal of Applied Microbiology, 129(2), 215–230.
  • Afrouzan, H., Amanlou, M., & Ghasemi, Y. (2018). Antimicrobial potential of propolis in food contact surfaces: A review. Food Control, 91, 64–75.
  • Altunsoy, M., Tanrıver, M., Türkan, U., Uslu, M. E., & Silici, S. (2016). In vitro evaluation of microleakage and microhardness of ethanolic extracts of propolis in different proportions added to glass ionomer cement. Journal of Clinical Pediatric Dentistry, 40(2), 136–140. https://doi.org/10.17796/1053-4628-40.2.136
  • Alvear, M., Santos, E., Cabezas, F., Pérez-SanMartín, A., Lespinasse, M., & Veloz, J. (2021). Geographic area of collection determines the chemical composition and antimicrobial potential of three extracts of Chilean propolis. Plants, 10(8), 1543. https://doi.org/10.3390/plants10081543
  • Bankova, V., Popova, M., & Trusheva, B. (2020). Propolis volatile compounds: Chemical diversity and biological activity. Chemistry & Biodiversity, 17(1), e1900621.
  • Bayatbalay, G., Karpuz, E., & Palabıyık, İ. (2021). Propolis püskürtülmüş ambalaj filmlerin antibakteriyel aktiviteleri. Akademik Gıda, 19(1), 21–27. https://doi.org/10.24323/akademik-gida.927633
  • Bouzahouane, H., Ayari, A., Guehria, I., & Riah, O. (2021). The propolis: Antimicrobial activity and chemical composition analysis. Journal of Microbiology, Biotechnology and Food Sciences, 10(6), e3211. https://doi.org/10.15414/jmbfs.3211
  • Chen, C., Li, P., & Zhang, W. (2021). Antimicrobial and antioxidant properties of Chinese propolis functional coatings on glass surfaces. Journal of Applied Polymer Science, 138(25), 50744.
  • Chaudhari, R., & Bagga, D. (2023). Antimicrobial and mechanical properties of glass ionomer cements modified with propolis and Aloe vera. Journal of Clinical and Experimental Dentistry, 15(4), e398–e406.
  • de Morais Sampaio, G. A., Lacerda-Santos, R., Cavalcanti, Y. W., Vieira, G. H. A., Nonaka, C. F. W., & Alves, P. M. (2021). Antimicrobial properties, mechanics, and fluoride release of ionomeric cements modified by red propolis. Angle Orthodontist, 91(4), 522–527. https://doi.org/10.2319/083120-759.1
  • Donlan, R. M. (2002). Biofilms: Microbial life on surfaces. Emerging Infectious Diseases, 8(9), 881–890. El Ghazouly, A., Panahandeh, R., & Lee, S. (2020). Effects of propolis incorporation on resin-modified glass ionomer bond strength and antibacterial activity. Dental Materials Journal, 39(3), 401–412.
  • Elmenshawy, O., Abozaid, H., & Lee, J. (2024). Optimization of controlled release propolis coatings in dental materials. Materials Science & Engineering C, 150, 114052.
  • El-Sakhawy, M., Hassan, M. L., & Kamel, S. (2023). Propolis applications in food industries and packaging. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-023-04044-9
  • Fernandes, T., Silva, F., & Oliveira, R. (2020). Red Brazilian propolis as antibacterial coating for glass surfaces. Food Research International, 131, 109038.
  • Garcia, P., & Lopez, M. (2021). Natural antimicrobials in sustainable packaging. Trends in Food Science & Technology, 110, 410–421.
  • Ghisalberti, E. L. (2019). Propolis: A review of its antimicrobial properties. Fitoterapia, 137, 104–118.
  • Haghighi, H. (2019). Sürdürülebilir gıda ambalajlama uygulamaları için aktif kitosan bazlı filmlerin geliştirilmesi (Doktora tezi). Modena ve Reggio Emilia Üniversitesi.
  • Hatunoğlu, A., Akdeniz, B., & Yıldız, A. (2013). Effect of ethanolic extract of propolis on antibacterial activity and mechanical properties of glass ionomer cements. Journal of Dental Research and Review, 5(2), 67–73.
  • Helmy, A. K., Sidkey, M. N., Abdel-Aziz, M. M., & El-Hela, A. A. (2025). Chemical composition of Egyptian propolis and synergistic action with honey against multidrug-resistant uropathogens. Scientific Reports, 15(1), 17484.
  • Johnson, D., & Lee, C. (2020). Microstructural analysis of glass surfaces: Implications for bacterial adhesion. Surface and Coatings Technology, 398, 126092.
  • Kang, S., Kim, H., & Park, J. (2019). Antimicrobial activity of nanoencapsulated propolis coatings on glass surfaces. Colloids and Surfaces B: Biointerfaces, 182, 110360.
  • Kumar, R., & Patel, S. (2018). Propolis: Chemical composition and antimicrobial activity. Journal of Medicinal Food, 21(6), 535–546.
  • Lee, S., Chen, C., & Zhang, W. (2021). Antibiofilm properties of Korean propolis coatings on glass. Biofouling, 37(6), 619–631.
  • Martinez, L., & Gonzalez, R. (2019). Antimicrobial coatings for drinking water containers: Propolis as a natural alternative. International Journal of Food Microbiology, 301, 35–44.
  • Mason, S. A., Welch, V. G., & Neratko, J. (2018). Synthetic polymer contamination in bottled water. Frontiers in Chemistry, 6, 407.
  • Miłek, M., Franke, G., Tomczyk, M., Górecki, M., Cwiková, O., Jarošová, A., & Dżugan, M. (2024). The influence of geographical origin on poplar propolis composition and human microbiota impact. Pharmaceuticals, 17(6), 768.
  • Miller, S., Johnson, D., & Lee, C. (2017). Biocompatibility of natural antimicrobial coatings in water containers. Journal of Applied Microbiology, 122(3), 765–776.
  • Nguyen, T., Park, H., & Kim, J. (2022). Controlled release of propolis components from glass coatings for antibacterial applications. Materials Today Communications, 31, 103564.
  • Öztürk, B., & Yılmaz, S. (2021). Antimicrobial efficacy of Turkish propolis on glass surfaces. Journal of Food Protection, 84(1), 145–152.
  • Panahandeh, R., El Ghazouly, A., & Lee, S. (2021). Effects of propolis incorporation on resin-modified glass ionomer: Antimicrobial and shear bond properties. Dental Materials Journal, 40(5), 642–652.
  • Prabhakar, A., Subramanian, R., & Singh, M. (2021). Comparative antibacterial efficacy of ethanolic vs aqueous propolis extracts on RMGIC. Journal of Clinical and Experimental Dentistry, 13(10), e991–e998.
  • Przybyłek, I., & Karpiński, T. M. (2019). Antibacterial properties of propolis. Molecules, 24(11), 2047.
  • Punia Bangar, S., Chaudhary, V., Thakur, N., Kajla, P., Kumar, M., & Trif, M. (2021). Natural antimicrobials as additives for edible food packaging: A review. Foods, 10(10), 2282.
  • Queiroga, M. C., Laranjo, M., Andrade, N., Marques, M., Costa, A. R., & Antunes, C. M. (2023). Antimicrobial, antibiofilm and toxicological assessment of propolis. Antibiotics, 12(2), 347.
  • Rodriguez, R., Gonzalez, M., & Martinez, P. (2018). Functional coatings with propolis for glass containers. Journal of Functional Foods, 46, 444–452.
  • Saccardi, L., Schiebl, J., Weber, K., Schwarz, O., Gorb, S., & Kovalev, A. (2021). Adhesive behavior of propolis on different substrates. Frontiers in Mechanical Engineering, 7. https://doi.org/10.3389/fmech.2021.660517
  • Saputra, S. K., Sutantyo, D., Farmasyanti, C. A., & Alhasyimi, A. A. (2019). The effect of the addition of propolis to resin-modified glass ionomer cement on Streptococcus mutans. F1000Research, 8, 2105.
  • Silva, F., Fernandes, T., & Oliveira, R. (2022). Antimicrobial activity of propolis components against biofilm-forming bacteria. Food Research International, 156, 111201.
  • Singh, P., Kumar, A., & Patel, R. (2020). Variability in chemical composition of propolis: Implications for standardization. Journal of Apicultural Research, 59(5), 752–761.
  • Singh, P., Kumar, R., & Lee, J. (2021). Multidisciplinary approaches to propolis applications on glass surfaces. Trends in Food Science & Technology, 112, 33–44.
  • Sforcin, J. M. (2016). Biological properties and therapeutic applications of propolis. Phytotherapy Research, 30(6), 894–905.
  • Subramaniam, P., Girish Babu, K. L., Neeraja, G., & Pillai, S. (2016). Does addition of propolis to glass ionomer cement alter its physicomechanical properties? Journal of Clinical Pediatric Dentistry, 40(5), 400–403.
  • UNEP Life Cycle Initiative. (2020). Single-use plastic bottles and their alternatives: Recommendations from life cycle assessments. United Nations Environment Programme.
  • Uzel, A., Sorkun, K., & Kalender, H. (2005). Chemical composition and antimicrobial activity of Turkish propolis. Zeitschrift für Naturforschung C, 60(7–8), 468–474.
  • Yılmaz, S., Öztürk, B., & Altunsoy, N. (2021). Antibacterial potential of Turkish propolis coatings on glass surfaces. Journal of Applied Microbiology, 130(4), 1234–1245.
  • Zhang, W., Li, P., & Chen, C. (2019). Propolis coatings on glass surfaces: Antibacterial efficacy and mechanism. Food Control, 98, 172–180.
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bitki Biyoteknolojisi, Sistem Biyolojisi, Yapısal Biyoloji
Bölüm Derleme
Yazarlar

Gülşah Doğan 0000-0002-1551-1343

Gönderilme Tarihi 22 Eylül 2025
Kabul Tarihi 9 Aralık 2025
Yayımlanma Tarihi 23 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Sayı: 9

Kaynak Göster

APA Doğan, G. (2025). Cam Matara Sistemlerinde Propolisin Antibakteriyel Potansiyeli: Literatür Temelli Bir İnceleme. Şırnak Üniversitesi Fen Bilimleri Dergisi(9), 134-151.