BibTex RIS Kaynak Göster

Havacılıkta Sürdürülebilir Gelişme Göstergeleri

Yıl 2017, Cilt: 2 Sayı: 1, 1 - 11, 01.03.2017

Öz

Genel sürdürülebilir gelişme indeksi, kendisini belirleyen üç indeksten özellikle toplumsal sürdürülebilir gelişme indeksi dolayısıyla, politik kararlar için önem taşımaktadır. Eksergoekonomik ve çevresel sürdürülebilir gelişme indeksleri ise teknolojik gelişme için ön plana çıkmaktadır. Bu çalışmada, birleşik eksergoekonomik - çevresel indeksi oluşturan göstergelerden havacılık sektörünü ilgilendirenler irdelenmiştir. Göstergeleri normalleştirme ve aritmetik, geometrik birleştirme yöntemlerine ilişkin geliştirme önerileri sunulmuştur. Çok sayıdaki benzer eksergoekonomik göstergelerden, havacılık alt sektörlerinin ihtiyacı doğrultusunda temel olanlar üzerinde durulması teknolojik iletişim için kolaylık sağlayacaktır. Sürdürülebilirlik analizinin uygulanması yararlı olacak başlıca alt sektörler: Uçak gövdesi ve uçuş; uçak itki sistemleri, uçak yardımcı enerji sistemleri, hava meydanları, hava trafiği kontrolü ve uçak yer hizmetleri, uçak dışı hava araçları, askeri havacılık, havacılıkta geri dönüşümdür. Beyaz eşya ve binalar için uygulanmakta olan enerji sertifikasyonuna benzer olarak eksergoekonomik - çevresel gelişme indeksi ve sertifikasyonu, sanayi tesislerine ve havacılık alt sektörlerine, geniş bir zaman çerçevesi içinde, uygulanmalıdır. Çalışmada uçuş sırasında çevre şartlarının değişiminin etkisi ve Genişletilmiş Ekserji Muhasebesi yöntemi hakkında bilgilere de yer verilmiştir

Kaynakça

  • Aydın, H., Turan, Ö, Karakoç, T. H., Midilli, A., (2013), Exergo-Sustainability Indicators of a Turboprop Aircraft for the Phases of a Flight, Energy, cilt 58, sayfa 550 – 560.
  • Aydın, H., Turan, Ö, Karakoç, T. H., Midilli, A., (2015) Exergetic Sustainability Indicators as a Tool in Commercial Aircraft: A Case Study for a Turbofan Engine, International Journal of Green Energy, cilt, 12, sayfa 28 – 40.
  • Ballı, Ö, Aras H., Aras N., Hepbaşlı, A., (2008), Exergetic and exergoeconomic analysis of an aircraft jet engine (AJE), Int. J. Exergy, cilt, 5., sayfa 567 – 581.
  • Ballı, Ö., Hepbaşlı, A., (2013), Energetic and Exergetic Analysis of T56 Turboprop Engine, Energy Coversion and Management, cilt, 73, sayfa 106 – 120.
  • Ballı, Ö., Hepbaşlı, A., (2014), Exergoeconomic, Sustainability, and Environmental Damage Cost Analyses of T56 Turboprop Engine, Energy, cilt, 64, sayfa 582 – 600.
  • Bejan, A., Tsatsaronis, G., Moran, M., (1996) Thermal Design and Optimization, John -Wiley&Sons, Inc.
  • Frangapoulos, C., (2006), Exergy, energy system analysis, and optimization, in Encyklopedia of Life Supporting System.
  • Gadreau, K., Fraser, R. A., Murphy, S., (2012) The Characteristics of Exergy Reference Environment and Its Implications for Sustainability Based Decision Making, Energies, cilt 5, sayfa 2197 – 2213.
  • Göğüş, Y. A., Çamdalı, Ü., Kavsaoğlu, M. Ş., (2002) Exergy Balance of a General System with Variation of Environmenta lConditions and Some Applications, Energy, cilt 27, sayfa, 625 – 646.
  • Grimley, P. M., (2006) Indicators of sustainable development in civil aviation, Ph.D. Thesis, Loughborough University.
  • Hepbaşlı, A., (2012) Low exergy (LowEx) heating and cooling systems for sustainable buildings and societies, Renewable and Sustainable Energy Reviews, cilt 16 sayfa 73– 104.
  • Liu, G., (2014) Development of a General Sustainability Indicator for Renewable Energy Systems, A Review, Renewable and Sustainable Energy Reviews, cilt, 31, sayfa, 611 – 621.
  • Kılkış, Ş., Kılkış, Ş., (2016a) Benchmarking Airports Based on a Sustainability Ranking Index, Journal of Cleaner Production, cilt, 130, sayfa, 248 – 259.
  • Kılkış, Ş., Kılkış, Ş., (2016b) Multicriteria Analysis of Integrated Airline – Main Hub Airports Based on a Sustainable Aviation Sector Index, International Symposium on SustainableAviation, 29 Mayıs – 1 Haziran 2016, İstanbul, Türkiye.
  • Kjelstrup, S., Dewulf, J., Norden, B., (2015) A Themodynamic Metric for Assessing Sustainable use of Natural Resources, International Journal of Thermodynamics, cilt 18, sayfa 66 – 72.
  • Midilli, A., Dinçer, İ., (2009) Development of Some Exergetic Parameters for PEM Fuel Cells for Measuring Environmental Impact and Sustainability, International Journal of Hydrogen Energy, cilt, 34, sayfa 3858 – 3872.
  • Ordonez, J. C., Bejan, A., (2003) “Minimum power requirement for environmental control of aircraft, Energy, cilt 28, sayfa 1183–1202.
  • Rocco, M.V., Colombo, E., Sciubba, E., (2014) Advances in exergy analysis: a novel assessment of the Extended Exergy Accounting Method, Applied Energy, cilt 113 sayfa 1405–1420.
  • Romero, J. C., Linares, P., (2014) Exergy as a Global Energy Sustainability Indicator. A Review of the State of the Art, Renewable and Sustainable Energy Reviews, cilt, 33, sayfa, 427 – 442.
  • Rosen, M.A., Dinçer, İ., Kanoğlu, M., (2008) Role of exergy in increasing efficiency and sustainability and reducing environmental impact. Energy Policy, 36 (1), 128-137. Sciubba, E., (2005) Exergo-economics:
  • Thermodynamic Foundation of a Rational Resource EnergyResearch, cilt 29, sayfa 613 – 636. Journal of Sciubba, E., Frankl, P.
  • Sciubba, E., (2011) A Revised Calculation of the Econometricfactors and for the Extended Exergy Accounting Method, Ecol Model, cilt 222, sayfa 1060 – 1066.
  • Sciubba, E., (2013) Can an Environmental Indicator, Valid Both at the Local and Global Scales, be Derived on a Thermodynamic Basis; Ecological Indicators, cilt 29, sayfa 125 – 137.
  • Schlör H., Fischer W., Hake J.-F., (2013) Methods of measuring sustainable development of the German energy sector, Applied Energy 101 (2013) Sayfa 172–181.
  • Sewalt, M. P. G., Toxopeus, M. E., Hirs, G. G., (2001) Thermodynamics Based Sustainability Concept, International Journal of Applied Thermodynamics, cilt 4, sayfa 35 – 41.
  • Şöhret, Y., Açıkkalp, E., Hepbaşlı, A., Karakoç, T. H., (2015) Advanced Exergy Analysis of Aircraft GasTurbine Engine: Splitting Exergy Destructure into parts, Energy, cilt 90, sayfa 1219 – 1228.
  • Tona, C., Raviolo, P. A., Pellegrini, L. F., Junior S. de O. (2010) Exergy and Thermoeconomic Analysis of a Turbofan Engine during a Typical Commercial Flight, Energy, cilt 35, sayfa 952 – 959.
  • Van Gool W. (1997) Exergy policy: fairly tales and factualities, Innovation and technology strategies- and policies, Dordrecht, Kluwer.
  • Zhang, T., Liu, X., Zhang, L., Jiang, J., Zhou, M., Jiang, Y., (2013), Performance analysis of the air- conditioning International Airport, Energy and Buildings, cilt 59, sayfa 11–20. in Xi’an Xianyang

INDICATORS OF SUSTAINABLE DEVELOPMENT IN AVIATION

Yıl 2017, Cilt: 2 Sayı: 1, 1 - 11, 01.03.2017

Öz

General sustainable development index is very important for making a political decision especially thanks to the social sustainable development index, which is one of the three indices that define it. Exergoeconomic and environmental sustainable development indices, however, become important for technological development. Among the indicators that form the aggregated exergoeconomic-environmental sustainability index and related to the aviation sector are analyzed in this study. Remarks have been made on normalization of the indicators, and arithmetic and geometric aggregation methods. Among the many similar exergoeconomic indicators, emphasizing the basic ones for aviation subsectors will be beneficial for technical communication. The primary sub-sectors which will benefit from sustainability analysis are: airplane fuselage and flight, airplane propulsion systems, airplane auxiliary energy systems, airports, air traffic control and ground services, air transportation other than aircraft, military aviation and recycling in aviation. Similar to the energy certifications applied for home appliances and buildings, an exergoeconomic environmental sustainability index and its certification should also be applied for industrial facilities and aviation subsectors in the long run. Study also contains remarks on the effect of the variation of environmental conditions during flight, and Extended Exergy Accounting method

Kaynakça

  • Aydın, H., Turan, Ö, Karakoç, T. H., Midilli, A., (2013), Exergo-Sustainability Indicators of a Turboprop Aircraft for the Phases of a Flight, Energy, cilt 58, sayfa 550 – 560.
  • Aydın, H., Turan, Ö, Karakoç, T. H., Midilli, A., (2015) Exergetic Sustainability Indicators as a Tool in Commercial Aircraft: A Case Study for a Turbofan Engine, International Journal of Green Energy, cilt, 12, sayfa 28 – 40.
  • Ballı, Ö, Aras H., Aras N., Hepbaşlı, A., (2008), Exergetic and exergoeconomic analysis of an aircraft jet engine (AJE), Int. J. Exergy, cilt, 5., sayfa 567 – 581.
  • Ballı, Ö., Hepbaşlı, A., (2013), Energetic and Exergetic Analysis of T56 Turboprop Engine, Energy Coversion and Management, cilt, 73, sayfa 106 – 120.
  • Ballı, Ö., Hepbaşlı, A., (2014), Exergoeconomic, Sustainability, and Environmental Damage Cost Analyses of T56 Turboprop Engine, Energy, cilt, 64, sayfa 582 – 600.
  • Bejan, A., Tsatsaronis, G., Moran, M., (1996) Thermal Design and Optimization, John -Wiley&Sons, Inc.
  • Frangapoulos, C., (2006), Exergy, energy system analysis, and optimization, in Encyklopedia of Life Supporting System.
  • Gadreau, K., Fraser, R. A., Murphy, S., (2012) The Characteristics of Exergy Reference Environment and Its Implications for Sustainability Based Decision Making, Energies, cilt 5, sayfa 2197 – 2213.
  • Göğüş, Y. A., Çamdalı, Ü., Kavsaoğlu, M. Ş., (2002) Exergy Balance of a General System with Variation of Environmenta lConditions and Some Applications, Energy, cilt 27, sayfa, 625 – 646.
  • Grimley, P. M., (2006) Indicators of sustainable development in civil aviation, Ph.D. Thesis, Loughborough University.
  • Hepbaşlı, A., (2012) Low exergy (LowEx) heating and cooling systems for sustainable buildings and societies, Renewable and Sustainable Energy Reviews, cilt 16 sayfa 73– 104.
  • Liu, G., (2014) Development of a General Sustainability Indicator for Renewable Energy Systems, A Review, Renewable and Sustainable Energy Reviews, cilt, 31, sayfa, 611 – 621.
  • Kılkış, Ş., Kılkış, Ş., (2016a) Benchmarking Airports Based on a Sustainability Ranking Index, Journal of Cleaner Production, cilt, 130, sayfa, 248 – 259.
  • Kılkış, Ş., Kılkış, Ş., (2016b) Multicriteria Analysis of Integrated Airline – Main Hub Airports Based on a Sustainable Aviation Sector Index, International Symposium on SustainableAviation, 29 Mayıs – 1 Haziran 2016, İstanbul, Türkiye.
  • Kjelstrup, S., Dewulf, J., Norden, B., (2015) A Themodynamic Metric for Assessing Sustainable use of Natural Resources, International Journal of Thermodynamics, cilt 18, sayfa 66 – 72.
  • Midilli, A., Dinçer, İ., (2009) Development of Some Exergetic Parameters for PEM Fuel Cells for Measuring Environmental Impact and Sustainability, International Journal of Hydrogen Energy, cilt, 34, sayfa 3858 – 3872.
  • Ordonez, J. C., Bejan, A., (2003) “Minimum power requirement for environmental control of aircraft, Energy, cilt 28, sayfa 1183–1202.
  • Rocco, M.V., Colombo, E., Sciubba, E., (2014) Advances in exergy analysis: a novel assessment of the Extended Exergy Accounting Method, Applied Energy, cilt 113 sayfa 1405–1420.
  • Romero, J. C., Linares, P., (2014) Exergy as a Global Energy Sustainability Indicator. A Review of the State of the Art, Renewable and Sustainable Energy Reviews, cilt, 33, sayfa, 427 – 442.
  • Rosen, M.A., Dinçer, İ., Kanoğlu, M., (2008) Role of exergy in increasing efficiency and sustainability and reducing environmental impact. Energy Policy, 36 (1), 128-137. Sciubba, E., (2005) Exergo-economics:
  • Thermodynamic Foundation of a Rational Resource EnergyResearch, cilt 29, sayfa 613 – 636. Journal of Sciubba, E., Frankl, P.
  • Sciubba, E., (2011) A Revised Calculation of the Econometricfactors and for the Extended Exergy Accounting Method, Ecol Model, cilt 222, sayfa 1060 – 1066.
  • Sciubba, E., (2013) Can an Environmental Indicator, Valid Both at the Local and Global Scales, be Derived on a Thermodynamic Basis; Ecological Indicators, cilt 29, sayfa 125 – 137.
  • Schlör H., Fischer W., Hake J.-F., (2013) Methods of measuring sustainable development of the German energy sector, Applied Energy 101 (2013) Sayfa 172–181.
  • Sewalt, M. P. G., Toxopeus, M. E., Hirs, G. G., (2001) Thermodynamics Based Sustainability Concept, International Journal of Applied Thermodynamics, cilt 4, sayfa 35 – 41.
  • Şöhret, Y., Açıkkalp, E., Hepbaşlı, A., Karakoç, T. H., (2015) Advanced Exergy Analysis of Aircraft GasTurbine Engine: Splitting Exergy Destructure into parts, Energy, cilt 90, sayfa 1219 – 1228.
  • Tona, C., Raviolo, P. A., Pellegrini, L. F., Junior S. de O. (2010) Exergy and Thermoeconomic Analysis of a Turbofan Engine during a Typical Commercial Flight, Energy, cilt 35, sayfa 952 – 959.
  • Van Gool W. (1997) Exergy policy: fairly tales and factualities, Innovation and technology strategies- and policies, Dordrecht, Kluwer.
  • Zhang, T., Liu, X., Zhang, L., Jiang, J., Zhou, M., Jiang, Y., (2013), Performance analysis of the air- conditioning International Airport, Energy and Buildings, cilt 59, sayfa 11–20. in Xi’an Xianyang
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA72BG62VG
Bölüm Araştırma Makalesi
Yazarlar

Emre Alpman

A. Yalçın Göğüş

Yayımlanma Tarihi 1 Mart 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 2 Sayı: 1

Kaynak Göster

APA Alpman, E., & Göğüş, A. Y. (2017). Havacılıkta Sürdürülebilir Gelişme Göstergeleri. Sürdürülebilir Havacılık Araştırmaları Dergisi, 2(1), 1-11.
AMA Alpman E, Göğüş AY. Havacılıkta Sürdürülebilir Gelişme Göstergeleri. SÜHAD. Mart 2017;2(1):1-11.
Chicago Alpman, Emre, ve A. Yalçın Göğüş. “Havacılıkta Sürdürülebilir Gelişme Göstergeleri”. Sürdürülebilir Havacılık Araştırmaları Dergisi 2, sy. 1 (Mart 2017): 1-11.
EndNote Alpman E, Göğüş AY (01 Mart 2017) Havacılıkta Sürdürülebilir Gelişme Göstergeleri. Sürdürülebilir Havacılık Araştırmaları Dergisi 2 1 1–11.
IEEE E. Alpman ve A. Y. Göğüş, “Havacılıkta Sürdürülebilir Gelişme Göstergeleri”, SÜHAD, c. 2, sy. 1, ss. 1–11, 2017.
ISNAD Alpman, Emre - Göğüş, A. Yalçın. “Havacılıkta Sürdürülebilir Gelişme Göstergeleri”. Sürdürülebilir Havacılık Araştırmaları Dergisi 2/1 (Mart 2017), 1-11.
JAMA Alpman E, Göğüş AY. Havacılıkta Sürdürülebilir Gelişme Göstergeleri. SÜHAD. 2017;2:1–11.
MLA Alpman, Emre ve A. Yalçın Göğüş. “Havacılıkta Sürdürülebilir Gelişme Göstergeleri”. Sürdürülebilir Havacılık Araştırmaları Dergisi, c. 2, sy. 1, 2017, ss. 1-11.
Vancouver Alpman E, Göğüş AY. Havacılıkta Sürdürülebilir Gelişme Göstergeleri. SÜHAD. 2017;2(1):1-11.