PDF Mendeley EndNote BibTex Kaynak Göster

MHA TASARIMLARINA İLHAM VEREN KANATLI BÖCEKLERİN UÇUŞ ÖZELLİKLERİ

Yıl 2017, Cilt 2, Sayı 2, 65 - 74, 01.12.2017

Öz

Son yıllarda çırpan kanatlı mikro insansız hava araçları aerodinamiği üzerine çokça incelemeler yapılmaktadır. Kuşlar, böcekler gibi doğal uçan hayvanların uçuş mekanizmaları analiz edilerek insan yapımı robotik insansız hava araçları üretilmektedir. Genel olarak düşük Reynolds sayısındaki akışların incelendiği çalışmalar hem biyolojik uçan hayvanları hem de insan yapımı Mikro Hava Araçları (MHA) kapsamaktadır. Bu çalışmada kanatlı böceklerin uçuşları ve özellikleri mikro hava araçları tasarımına ilham teşkil etmeleri adına özetlenmiştir. Çalışmada ayrıca deneysel çalışmalarda kullanılabilecek boyut analizi gösterilmiştir

Kaynakça

  • Babinsky, H., Baik, Y., Bansmer, S., Beran, P., Bernal, L., Gunaydinoglu, E., Jones, A., Kang, C.‐K., Konrath R., Kurtulus, D. F., Ol, M., Paquet, J‐B., Radespiel, R., Reichert, T., Rival. D. Shyy W., Ukeiley, L., Visbal, M.R., Yuan W. (2010) Unsteady Aerodynamics for Micro Air Vehicles, NATO Technical Report, RTO‐ TR‐AVT‐149,
  • NATO Research and Technology Organisation, Mart 2010.
  • 92-837-0118-7, Beker C., Turgut A. E. , Ozcan O., Arikan K. B., Kurtulus D. F. (2017) Design of a Novel Foldable Flapping Wing Micro Air Vehicle, AIAC-2017-138, 9’uncu Ankara Uluslararası Havacılık-Uzay Konferansı, 20-22 Eylül 2017, Ankara.
  • Birch, J. M., Dickinson, M. H. (2001) Spanwise flow and the attachment of the leading-edge vortex on insect wings, Nature 412, sayfa 729- 733.
  • Byrne D. N. (1988) Relationship between wing loading, wingbeat frequency and body mass in homopterous insects, J. exp. Biol.; 135, sayfa 9-23.
  • Casey T. M. (1981) A comparison of mechanical and energetic estimates of flight cost for hovering sphinx moths, J. exp. Biol., 91, sayfa 117-129
  • Comez Y.F., Senol M.G., Kurtulus D.F., Arikan K.B. (2015) Unsteady Aerodynamic Analysis of a Flapping Wing Actuated with PZT Material, Workshop Measurements
  • Aerodynamics, Poitiers, Ekim 2015. on Unsteady Flows
  • France, 27-29 Dickinson, M. H., Lehmann Fritz-Olaf, Sane S., P. (1999) Wing Rotation and the Aerodynamic Basis of Insect Flight. Science, Vol.284, sayfa 1954-60,1999.
  • Dickinson, M.H., Götz, K. G. (1993) Unsteady Aerodynamic Performance of Model Wings at Low Reynolds Numbers. J.exp. Biol.; Vol.174, sayfa 45-64.
  • Dickinson, M. H. (1994) The Effects of Wing Rotation Performance at Low Reynolds Numbers. Journal of Experimental Biology, Vol. 192, Issue 1, sayfa 179-206.
  • Aerodynamics Fearing, R.S., Chiang, K.H., Dickinson, M.H., Pick, D.L., Sitti, M., Yan, J. (2000) Wing transmission for a micromechanical flying insect. Automation. Robotics
  • and Fox R, McDonald A. T., Pritchard P. J., Leylegian J. C., Mitchell J. W. (2015), Fluid Mechanics, 9. Baskı, John Wiley and Sons, 7. Bölüm.
  • Hines, L. (2012) Design and control of a flapping flight micro aerial vehicle, Doktora Tezi, Mart 2012.
  • Kurtulus DF (2005) Numerical and Experimental Analysis of Flapping Motion in Hover. Application to Micro Air Vehicles. Doktora Tezi (Çift taraflı), Poitiers University/ENSMA- ODTÜ, 17 Haziran 2005, Poitiers, Fransa
  • Kurtulus D.F., David L., Farcy A., Alemdaroglu N. (2008)
  • Flapping Motion in Hover. Experiments in Fluids, Vol. 44, sayfa 23–36
  • of Kurtulus DF, David L, Farcy A, Alemdaroglu N (2007) Flapping Airfoil Analysis of Micro Air Vehicles using Star-CD, Star-CD Dynamics, Vol:27,
  • (http://www.cdadapco.com/press_room/dynam
  • ics/27/airfoil.html)
  • 23 Kurtulus DF (2015) On the unsteady behavior of the flow around NACA 0012 airfoil with steady external conditions at Re=1000, International Journal of Micro Air Vehicles, Vol. 7, No 3, sayfa 301-326, Eylül 2015
  • Kurtulus DF (2016) On the wake pattern of symmetric airfoils for different incidence angles at Re=1000, International Journal of Micro Air Vehicles, Vol 8, No:2, sayfa 109- 139 New World Encyclopedia
  • (2008) http://www.newworldencyclopedia.org/entry/N eoptera
  • Ol M., Beran P., Radespiel R., Kurtulus D.F., Watkins S., Rival D., Yuan W., Luc-Bouhali A., Konrath R., Tropea C., Voersmann P.,Wolf T., Iosilevski G., Lentink D., Ruijsink R., Bayrak M., Caylar S., Icen I, Temiz K, Vardar K., Babinsky H., Bomphrey R., Jones C., Sibilski K., Abate G., Babcock J., Banda S., Bernal L., Chankaya K., Cox C., Fahroo F., Flynn A., Kobayashi M., Shkarayev S., Surampudi S., Flight Physics in Micro Air Vehicles and in Nature, Final Report of Workshop AVT-182, RTO TECHNICAL MEMORANDUM, Ağustos 2012.
  • RTO-TM-AVT-182, Sane, S., Dickinson, M. H. (2001) The Control of Flight Force by a Flapping Wing: Lift and Drag Production. J. of Exp. Biology; 204; sayfa 2607-2626.
  • Senol M. G. (2016) Design and Testing of a Four- bar Flapping Wing Mechanism, Yüksek Tezi, ODTÜ Fen Bilimleri Enstitüsü Havacılık ve Uzay Mühendisliği Anabilim Dalı, Şubat 2016. Senol M. G., Arıkan K.B., Kurtulus D.F. (2017) Experimental and Numerical Results of a Flapping
  • th AIAA Aerospace Sciences Meeting , AIAA Scitech Forum, AIAA 2017-0498, 9-13 Ocak 2017 Bar
  • Mechanism, Senol M.G., Comez F.Y., Kurtulus D.F., Arikan K.B.(2015), Testing of Flapping Wing Four- Bar Mechanism, Workshop on Non-Intrusive Measurements
  • Aerodynamics, Poitiers, October 2015. Flows France, 27-29 Shyy W., Aono H. , Kang C, Hao Liu H. (2013), An
  • Aerodynamics, Cambridge Aerospace Series, 1. Baskı, 2013 Flapping
  • Wing Shyy W, Kang C, Chirarattananon P, Ravi S, Liu H. (2016) Aerodynamics, sensing and control of insect-scale flapping-wing flight. Proceedings Mathematical, Physical, and Engineering Sciences 472(2186):20150712.
  • Society. Syaifuddin, M., Park, Yoon, J. K., Goo, N.S. (2005) Design and evaluation of LIPCA-actuated flapping Materials, Vol. 5764. Structures
  • and Syaifuddin, M., Park, H.C., Lee, S.K., Byun, D.Y. (2006) An improved flapping wing system actuated by the LIPCA, Smart Structures and Materials, Vol. 6173.
  • Tanaka, H., Matsumoto, K. and Shimoyama, I. (2008)
  • Micromolded Plastic Butterfly Wings on Butterfly Ornithopter, IEEE/RSJ International Conference on Intelligent Robots and Systems, Eylül 2008. Performance
  • of Truong, Q.T., Nguyen, Q.V., Park, H.C., Byun, D.Y., Goo, N.S. (2011) Modification of a four- bar linkage system for a higher optimal flapping frequency. Journal of Intelligent Material Systems and Structures
  • Wang, C., Zhou, C., Zhang, X. and Liu, C. (2010) An optimization on single-crank-double-rocker flapping wing mechanism, Fourth International Conference on Genetic and Evolutionary Computing, Temmuz 2010.
  • Wood, R.J. (2007) Design, fabrication and analysis of a 3 DOF, 3 cm flapping-wing MAV. IEEE/RSJ
  • Intelligent Robots and Systems. conference on Wigglesworth V. B. (1972) The Principles of Insect Physiology, Chapman and Hall Ltd., New York, 7. Baskı

FLIGHT PROPERTIES OF WINGED INSECTS WHICH INSPIRES THE DESIGNS OF MAVS

Yıl 2017, Cilt 2, Sayı 2, 65 - 74, 01.12.2017

Öz

In the last years, there has been lots of investigation on the aerodynamics of flapping wing micro air vehicles. By analysing the flapping mechanics of natural flyers like birds and insects, human made robotical unmanned aircrafts are manufactured. In general, the works which investigates the flows at low Reynolds numbers covers both the biological flyers and human-made Micro Air Vehicles (MAV). In this work, the flight and properties of winged insects are summarized for the purpose of giving inspiration for the designs of Micro Air Vehicles. In addition, dimensional analysis which could be used for the experimental works is shown

Kaynakça

  • Babinsky, H., Baik, Y., Bansmer, S., Beran, P., Bernal, L., Gunaydinoglu, E., Jones, A., Kang, C.‐K., Konrath R., Kurtulus, D. F., Ol, M., Paquet, J‐B., Radespiel, R., Reichert, T., Rival. D. Shyy W., Ukeiley, L., Visbal, M.R., Yuan W. (2010) Unsteady Aerodynamics for Micro Air Vehicles, NATO Technical Report, RTO‐ TR‐AVT‐149,
  • NATO Research and Technology Organisation, Mart 2010.
  • 92-837-0118-7, Beker C., Turgut A. E. , Ozcan O., Arikan K. B., Kurtulus D. F. (2017) Design of a Novel Foldable Flapping Wing Micro Air Vehicle, AIAC-2017-138, 9’uncu Ankara Uluslararası Havacılık-Uzay Konferansı, 20-22 Eylül 2017, Ankara.
  • Birch, J. M., Dickinson, M. H. (2001) Spanwise flow and the attachment of the leading-edge vortex on insect wings, Nature 412, sayfa 729- 733.
  • Byrne D. N. (1988) Relationship between wing loading, wingbeat frequency and body mass in homopterous insects, J. exp. Biol.; 135, sayfa 9-23.
  • Casey T. M. (1981) A comparison of mechanical and energetic estimates of flight cost for hovering sphinx moths, J. exp. Biol., 91, sayfa 117-129
  • Comez Y.F., Senol M.G., Kurtulus D.F., Arikan K.B. (2015) Unsteady Aerodynamic Analysis of a Flapping Wing Actuated with PZT Material, Workshop Measurements
  • Aerodynamics, Poitiers, Ekim 2015. on Unsteady Flows
  • France, 27-29 Dickinson, M. H., Lehmann Fritz-Olaf, Sane S., P. (1999) Wing Rotation and the Aerodynamic Basis of Insect Flight. Science, Vol.284, sayfa 1954-60,1999.
  • Dickinson, M.H., Götz, K. G. (1993) Unsteady Aerodynamic Performance of Model Wings at Low Reynolds Numbers. J.exp. Biol.; Vol.174, sayfa 45-64.
  • Dickinson, M. H. (1994) The Effects of Wing Rotation Performance at Low Reynolds Numbers. Journal of Experimental Biology, Vol. 192, Issue 1, sayfa 179-206.
  • Aerodynamics Fearing, R.S., Chiang, K.H., Dickinson, M.H., Pick, D.L., Sitti, M., Yan, J. (2000) Wing transmission for a micromechanical flying insect. Automation. Robotics
  • and Fox R, McDonald A. T., Pritchard P. J., Leylegian J. C., Mitchell J. W. (2015), Fluid Mechanics, 9. Baskı, John Wiley and Sons, 7. Bölüm.
  • Hines, L. (2012) Design and control of a flapping flight micro aerial vehicle, Doktora Tezi, Mart 2012.
  • Kurtulus DF (2005) Numerical and Experimental Analysis of Flapping Motion in Hover. Application to Micro Air Vehicles. Doktora Tezi (Çift taraflı), Poitiers University/ENSMA- ODTÜ, 17 Haziran 2005, Poitiers, Fransa
  • Kurtulus D.F., David L., Farcy A., Alemdaroglu N. (2008)
  • Flapping Motion in Hover. Experiments in Fluids, Vol. 44, sayfa 23–36
  • of Kurtulus DF, David L, Farcy A, Alemdaroglu N (2007) Flapping Airfoil Analysis of Micro Air Vehicles using Star-CD, Star-CD Dynamics, Vol:27,
  • (http://www.cdadapco.com/press_room/dynam
  • ics/27/airfoil.html)
  • 23 Kurtulus DF (2015) On the unsteady behavior of the flow around NACA 0012 airfoil with steady external conditions at Re=1000, International Journal of Micro Air Vehicles, Vol. 7, No 3, sayfa 301-326, Eylül 2015
  • Kurtulus DF (2016) On the wake pattern of symmetric airfoils for different incidence angles at Re=1000, International Journal of Micro Air Vehicles, Vol 8, No:2, sayfa 109- 139 New World Encyclopedia
  • (2008) http://www.newworldencyclopedia.org/entry/N eoptera
  • Ol M., Beran P., Radespiel R., Kurtulus D.F., Watkins S., Rival D., Yuan W., Luc-Bouhali A., Konrath R., Tropea C., Voersmann P.,Wolf T., Iosilevski G., Lentink D., Ruijsink R., Bayrak M., Caylar S., Icen I, Temiz K, Vardar K., Babinsky H., Bomphrey R., Jones C., Sibilski K., Abate G., Babcock J., Banda S., Bernal L., Chankaya K., Cox C., Fahroo F., Flynn A., Kobayashi M., Shkarayev S., Surampudi S., Flight Physics in Micro Air Vehicles and in Nature, Final Report of Workshop AVT-182, RTO TECHNICAL MEMORANDUM, Ağustos 2012.
  • RTO-TM-AVT-182, Sane, S., Dickinson, M. H. (2001) The Control of Flight Force by a Flapping Wing: Lift and Drag Production. J. of Exp. Biology; 204; sayfa 2607-2626.
  • Senol M. G. (2016) Design and Testing of a Four- bar Flapping Wing Mechanism, Yüksek Tezi, ODTÜ Fen Bilimleri Enstitüsü Havacılık ve Uzay Mühendisliği Anabilim Dalı, Şubat 2016. Senol M. G., Arıkan K.B., Kurtulus D.F. (2017) Experimental and Numerical Results of a Flapping
  • th AIAA Aerospace Sciences Meeting , AIAA Scitech Forum, AIAA 2017-0498, 9-13 Ocak 2017 Bar
  • Mechanism, Senol M.G., Comez F.Y., Kurtulus D.F., Arikan K.B.(2015), Testing of Flapping Wing Four- Bar Mechanism, Workshop on Non-Intrusive Measurements
  • Aerodynamics, Poitiers, October 2015. Flows France, 27-29 Shyy W., Aono H. , Kang C, Hao Liu H. (2013), An
  • Aerodynamics, Cambridge Aerospace Series, 1. Baskı, 2013 Flapping
  • Wing Shyy W, Kang C, Chirarattananon P, Ravi S, Liu H. (2016) Aerodynamics, sensing and control of insect-scale flapping-wing flight. Proceedings Mathematical, Physical, and Engineering Sciences 472(2186):20150712.
  • Society. Syaifuddin, M., Park, Yoon, J. K., Goo, N.S. (2005) Design and evaluation of LIPCA-actuated flapping Materials, Vol. 5764. Structures
  • and Syaifuddin, M., Park, H.C., Lee, S.K., Byun, D.Y. (2006) An improved flapping wing system actuated by the LIPCA, Smart Structures and Materials, Vol. 6173.
  • Tanaka, H., Matsumoto, K. and Shimoyama, I. (2008)
  • Micromolded Plastic Butterfly Wings on Butterfly Ornithopter, IEEE/RSJ International Conference on Intelligent Robots and Systems, Eylül 2008. Performance
  • of Truong, Q.T., Nguyen, Q.V., Park, H.C., Byun, D.Y., Goo, N.S. (2011) Modification of a four- bar linkage system for a higher optimal flapping frequency. Journal of Intelligent Material Systems and Structures
  • Wang, C., Zhou, C., Zhang, X. and Liu, C. (2010) An optimization on single-crank-double-rocker flapping wing mechanism, Fourth International Conference on Genetic and Evolutionary Computing, Temmuz 2010.
  • Wood, R.J. (2007) Design, fabrication and analysis of a 3 DOF, 3 cm flapping-wing MAV. IEEE/RSJ
  • Intelligent Robots and Systems. conference on Wigglesworth V. B. (1972) The Principles of Insect Physiology, Chapman and Hall Ltd., New York, 7. Baskı

Ayrıntılar

Diğer ID JA68SC34FN
Bölüm Araştırma Makalesi
Yazarlar

Dilek Funda KURTULUŞ Bu kişi benim
ODTÜ Havacılık ve Uzay Mühendisliği Bölümü

Yayımlanma Tarihi 1 Aralık 2017
Yayınlandığı Sayı Yıl 2017, Cilt 2, Sayı 2

Kaynak Göster

Bibtex @ { suhad557334, journal = {Sürdürülebilir Havacılık Araştırmaları Dergisi}, eissn = {2548-0464}, address = {bilgi@suhad.org}, publisher = {Sürdürülebilir Havacılık Araştırma Derneği}, year = {2017}, volume = {2}, number = {2}, pages = {65 - 74}, title = {MHA TASARIMLARINA İLHAM VEREN KANATLI BÖCEKLERİN UÇUŞ ÖZELLİKLERİ}, key = {cite}, author = {Kurtuluş, Dilek Funda} }
APA Kurtuluş, D. F. (2017). MHA TASARIMLARINA İLHAM VEREN KANATLI BÖCEKLERİN UÇUŞ ÖZELLİKLERİ . Sürdürülebilir Havacılık Araştırmaları Dergisi , 2 (2) , 65-74 . Retrieved from https://dergipark.org.tr/tr/pub/suhad/issue/44809/557334
MLA Kurtuluş, D. F. "MHA TASARIMLARINA İLHAM VEREN KANATLI BÖCEKLERİN UÇUŞ ÖZELLİKLERİ" . Sürdürülebilir Havacılık Araştırmaları Dergisi 2 (2017 ): 65-74 <https://dergipark.org.tr/tr/pub/suhad/issue/44809/557334>
Chicago Kurtuluş, D. F. "MHA TASARIMLARINA İLHAM VEREN KANATLI BÖCEKLERİN UÇUŞ ÖZELLİKLERİ". Sürdürülebilir Havacılık Araştırmaları Dergisi 2 (2017 ): 65-74
RIS TY - JOUR T1 - MHA TASARIMLARINA İLHAM VEREN KANATLI BÖCEKLERİN UÇUŞ ÖZELLİKLERİ AU - Dilek Funda Kurtuluş Y1 - 2017 PY - 2017 N1 - DO - T2 - Sürdürülebilir Havacılık Araştırmaları Dergisi JF - Journal JO - JOR SP - 65 EP - 74 VL - 2 IS - 2 SN - -2548-0464 M3 - UR - Y2 - 2022 ER -
EndNote %0 Sürdürülebilir Havacılık Araştırmaları Dergisi MHA TASARIMLARINA İLHAM VEREN KANATLI BÖCEKLERİN UÇUŞ ÖZELLİKLERİ %A Dilek Funda Kurtuluş %T MHA TASARIMLARINA İLHAM VEREN KANATLI BÖCEKLERİN UÇUŞ ÖZELLİKLERİ %D 2017 %J Sürdürülebilir Havacılık Araştırmaları Dergisi %P -2548-0464 %V 2 %N 2 %R %U
ISNAD Kurtuluş, Dilek Funda . "MHA TASARIMLARINA İLHAM VEREN KANATLI BÖCEKLERİN UÇUŞ ÖZELLİKLERİ". Sürdürülebilir Havacılık Araştırmaları Dergisi 2 / 2 (Aralık 2017): 65-74 .
AMA Kurtuluş D. F. MHA TASARIMLARINA İLHAM VEREN KANATLI BÖCEKLERİN UÇUŞ ÖZELLİKLERİ. SÜHAD. 2017; 2(2): 65-74.
Vancouver Kurtuluş D. F. MHA TASARIMLARINA İLHAM VEREN KANATLI BÖCEKLERİN UÇUŞ ÖZELLİKLERİ. Sürdürülebilir Havacılık Araştırmaları Dergisi. 2017; 2(2): 65-74.
IEEE D. F. Kurtuluş , "MHA TASARIMLARINA İLHAM VEREN KANATLI BÖCEKLERİN UÇUŞ ÖZELLİKLERİ", Sürdürülebilir Havacılık Araştırmaları Dergisi, c. 2, sayı. 2, ss. 65-74, Ara. 2017