BibTex RIS Kaynak Göster

JET MOTORLARINDA UYGULANAN EFÜZYON FİLM SOĞUTMA AKIŞ KARAKTERİSTİKLERİNİN PIV YÖNTEMİYLE İNCELENMESİ

Yıl 2018, Cilt: 3 Sayı: 2, 55 - 62, 01.12.2018

Öz

Efüzyon soğutma tekniği, modern yanma odalarında kullanılan en gelişmiş soğutma teknolojisidir. Bu çalışmada 1/9 ölçekte boyutlandırılmış bir yanma odası cidarında, efüzyon film soğutmanın ana akım üzerine etkileri Parçacık Görüntülemeli Hız Ölçümü (PIV) yöntemi kullanılarak deneysel olarak incelenmiştir. Bu amaçla bu çalışmada, ana akım Reynols (Re) sayısı 15000 değerine sabitlenmiş, 2.25 mm delik çaplı efüzyon plakası için, delik açıları 30° ve 45° değişiyor iken, efüzyon plakasından 7 farklı üfleme debisi için testler gerçekleştirilmiş ve soğutma filmi oluşumu incelenmiştir. PIV deneylerinden elde edilen veriler incelenerek, çapraz akışta jet karışımlarında meydana gelen akış haritası çıkarılmıştır ve film oluşma karakteristiği belirlenmiştir. Akış haritası sonuçlarına göre, soğutucu deliklerden düşük debili üflemelerde jetler ana akıma yenik düşmekte, tam tersine yüksek debilerde jetler ana akımla eş baskın özellikte olduğu için, film oluşumu gözlemlenmiştir. Ayrıca soğutma deliklerinin açılarının artışının film oluşumuna olumsuz etkisi gösterilmiştir

Kaynakça

  • Andrei, Luca, Antonio Andreini, Cosimo Bianchini, Gianluca Caciolli, Bruno Facchini, Lorenzo Mazzei, Alessio Picchi, and Fabio Turrini. “Effusion Cooling Plates for Combustor Liners: Investigations on the Effect of Density Ratio.” Energy Procedia 45. Elsevier B.V.: 1402–11. https://doi.org/10.1016/j.egypro.2014.01.147.
  • Andreini, Antonio, Riccardo Becchi, Bruno Facchini, Alessio Picchi, and Antonio Peschiulli. 2017. “The Effect of Effusion
  • Holes Inclination Angle on the Adiabatic Film Cooling Effectiveness in a Three-Sector Gas Turbine Combustor Rig with a Realistic Swirling Flow.” International Journal of Thermal Sciences 121 (x). Elsevier Masson SAS: https://doi.org/10.1016/j.ijthermalsci.2017.07. –88.
  • Cho, Hyung Hee, Dong Ho Rhee, and R. J. Goldstein. Arrangements on Local Heat/Mass Transfer for Impingement/Effusion Cooling With Small Turbomachinery https://doi.org/10.1115/1.2812325. Hole Hole Spacing.” (4):
  • Goldstein, R. J., Eckert, E. R G, and F. Burggraf. “Effects of Hole Geometry and Density on International Journal of Heat and Mass Transfer https://doi.org/10.1016/0017-9310(74)90007- Film Cooling.” (5): –607.
  • Goldstein, R. J., D.R.Pedersen, E.R.G. R. G. Eckert, R. J. Goldstein, D. R. Pedersen, E.R.G. R. G. Eckert, and R. J. Goldstein. 1977. “Film
  • Cooling With Large Density Differences Between the Mainstream and the Secondary Fluid Measured by the Heat-Mass Transfer Analogy.” ASME Journal of Heat Transfer 99 (November): https://doi.org/10.1115/1.3450752. –27.
  • Gustafsson, K. M. Bernhard, and T. Gunnar Johansson. 2001. “An Experimental Study of Surface Effusion-Cooled
  • Engineering for Gas Turbines and Power 123 (2): 308. https://doi.org/10.1115/1.1364496.
  • Huang, Zheng, Yan Bin Xiong, Yuan Qing Liu, Pei Xue Jiang, and Yin Hai Zhu. 2015.
  • “Experimental Investigation of Full-Coverage Effusion Cooling through Perforated Flat Plates.” Applied Thermal Engineering 76. Elsevier Ltd: https://doi.org/10.1016/j.applthermaleng.2014 11.056. –85.
  • Ito, S, R Goldstein, and E Eckert. 1978. “Film
  • Cooling of a Gas Turbine Blade.” J. Eng. Power https://doi.org/10.1115/1.3446382. ): –81.
  • Ji, Yongbin, Bing Ge, Zhongran Chi, and Shusheng Zang. 2018. “Overall Cooling Effectiveness of
  • Effusion Cooled Annular Combustor Liner at Reacting Flow Conditions.” Applied Thermal Engineering 130. Elsevier Ltd: 877–88. https://doi.org/10.1016/j.applthermaleng.2017 11.074.
  • Kadotani, K., and R. J. Goldstein. 1979. “On the Nature of Jets Entering A Turbulent Flow: Part
  • B—Film Cooling Performance.” Journal of Engineering for Power 101 (3): 466. https://doi.org/10.1115/1.3446602.
  • Krewinkel, R. 2013. “A Review of Gas Turbine
  • Effusion Cooling Studies.” International Journal of Heat and Mass Transfer 66. Elsevier https://doi.org/10.1016/j.ijheatmasstransfer.20 07.071. –22.
  • Lampard, D. 1980. “Effectiveness Following
  • Injection through a Row of Holes” 102 (July): –88. Ligrani, P. M., J. M. Wigle, and S. W. Jackson. 1994.
  • “Film-Cooling From Holes With Compound Angle Downstream of a Single Row of Holes With d Spanwise Spacing.” Journal of Heat Transfer https://doi.org/10.1115/1.2911407. (2):
  • Ligrani, Phil, Matt Goodro, Mike Fox, and Hee-Koo Moon. 2012. “Full-Coverage Film Cooling:
  • Film Effectiveness and Heat Transfer Coefficients for Dense and Sparse Hole Arrays at Different Blowing Ratios.” Journal of Turbomachinery https://doi.org/10.1115/1.4006304. (6):
  • Schmidt, D. L., B. Sen, and D. G. Bogard. 1996.
  • “Film Cooling With Compound Angle Holes: Adiabatic Turbomachinery https://doi.org/10.1115/1.2840938. (4):
  • Shine, S. R., S. Sunil Kumar, and B. N. Suresh. 2012.
  • “A New Generalised Model for Liquid Film Cooling in Rocket Combustion Chambers.” International Journal of Heat and Mass Transfer 55 (19–20). Elsevier Ltd: 5065–75. https://doi.org/10.1016/j.ijheatmasstransfer.20 05.006.
  • Singh, Kuldeep, B. Premachandran, and M. R. Ravi. “Experimental and Numerical Studies on Film Cooling with Reverse/Backward Coolant Injection.” International Journal of Thermal Sciences 111. Elsevier Masson SAS: –408. https://doi.org/10.1016/j.ijthermalsci.2016.09.
  • Thole, Karen A., and Daniel G. Knost. 2005. “Heat
  • Transfer and Film-Cooling for the Endwall of a First Stage Turbine Vane.” International Journal of Heat and Mass Transfer 48 (25– ): https://doi.org/10.1016/j.ijheatmasstransfer.20 07.036. –69.
  • Xiao-ming, Tan, Zhang Jing-zhou, and Xu Hua- sheng. 2015. “Experimental Investigation on
  • Impingement/Effusion Cooling with Short Normal Injection Holes.” International Communications in Heat and Mass Transfer https://doi.org/10.1016/j.icheatmasstransfer.2 09.005. Ltd: –10.
  • Yao, Yu, Jing zhou Zhang, and Xiao ming Tan. “Numerical Study of Film Cooling from Converging Slot-Hole on a Gas Turbine Blade Suction Side.” International Communications in Heat and Mass Transfer 52. Elsevier Ltd: –72. https://doi.org/10.1016/j.icheatmasstransfer.2 01.008.
  • Yao, Yu, Jing Zhou Zhang, and Li Ping Wang. 2013.
  • “Film Cooling on a Gas Turbine Blade Suction Side International Journal of Thermal Sciences 65. Elsevier https://doi.org/10.1016/j.ijthermalsci.2012.10. Slot-Hole.” Masson SAS: –79.
  • Zhang, Jing-zhou, Xing-dan Zhu, Ying Huang, and Chun-hua Wang. 2017. “Investigation on Film
  • Cooling Performance from a Row of Round- to-Slot Holes on Flat Plate.” International Journal of Thermal Sciences 118. Elsevier Masson https://doi.org/10.1016/j.ijthermalsci.2017.04. –25.
  • Zhang, Luzeng, Juan Yin, and Hee Koo Moon. 2009.
  • “The Effect of Compound Angle on Nozzle Pressure Side Film Cooling.” ASME Conference Proceedings 2009 (48845): 53– https://doi.org/10.1115/GT2012-68357.

INVESTIGATION of EFFUSION COOLING FLOW CHARACTERISTICS in JET ENGINES via PIV METHOD

Yıl 2018, Cilt: 3 Sayı: 2, 55 - 62, 01.12.2018

Öz

Effusion cooling technology is the most advanced cooling technology used in modern combustion chambers. In this study, the effects of effusion film cooling on the main stream in a 1/9 scaled combustion chamber walls were investigated experimentally using Particle image velocimetry (PIV) method. For this purpose, the main stream Reynolds number (Reynolds number) was fixed to 15000. For the 2.25mm hole diameter effusion plate, the hole angles were changed by 30° and 45°, and for 7 different effusion flow rates, tests were done, and the cooling film formation was examined. By examining the data obtained from the PIV experiments, the flow map in the crossflow jet blends was obtained and the film formation characteristics were determined. According to the results of the flow map, during the low flow rate coolant flow, coolant jets were defeated by the main flow, but instead at high coolant flow rate, coolant jets became dominant and coolant film formation was observed. Furthermore, the increase in the cooling holes angles has been shown to have a negative effect on the cooling film formation

Kaynakça

  • Andrei, Luca, Antonio Andreini, Cosimo Bianchini, Gianluca Caciolli, Bruno Facchini, Lorenzo Mazzei, Alessio Picchi, and Fabio Turrini. “Effusion Cooling Plates for Combustor Liners: Investigations on the Effect of Density Ratio.” Energy Procedia 45. Elsevier B.V.: 1402–11. https://doi.org/10.1016/j.egypro.2014.01.147.
  • Andreini, Antonio, Riccardo Becchi, Bruno Facchini, Alessio Picchi, and Antonio Peschiulli. 2017. “The Effect of Effusion
  • Holes Inclination Angle on the Adiabatic Film Cooling Effectiveness in a Three-Sector Gas Turbine Combustor Rig with a Realistic Swirling Flow.” International Journal of Thermal Sciences 121 (x). Elsevier Masson SAS: https://doi.org/10.1016/j.ijthermalsci.2017.07. –88.
  • Cho, Hyung Hee, Dong Ho Rhee, and R. J. Goldstein. Arrangements on Local Heat/Mass Transfer for Impingement/Effusion Cooling With Small Turbomachinery https://doi.org/10.1115/1.2812325. Hole Hole Spacing.” (4):
  • Goldstein, R. J., Eckert, E. R G, and F. Burggraf. “Effects of Hole Geometry and Density on International Journal of Heat and Mass Transfer https://doi.org/10.1016/0017-9310(74)90007- Film Cooling.” (5): –607.
  • Goldstein, R. J., D.R.Pedersen, E.R.G. R. G. Eckert, R. J. Goldstein, D. R. Pedersen, E.R.G. R. G. Eckert, and R. J. Goldstein. 1977. “Film
  • Cooling With Large Density Differences Between the Mainstream and the Secondary Fluid Measured by the Heat-Mass Transfer Analogy.” ASME Journal of Heat Transfer 99 (November): https://doi.org/10.1115/1.3450752. –27.
  • Gustafsson, K. M. Bernhard, and T. Gunnar Johansson. 2001. “An Experimental Study of Surface Effusion-Cooled
  • Engineering for Gas Turbines and Power 123 (2): 308. https://doi.org/10.1115/1.1364496.
  • Huang, Zheng, Yan Bin Xiong, Yuan Qing Liu, Pei Xue Jiang, and Yin Hai Zhu. 2015.
  • “Experimental Investigation of Full-Coverage Effusion Cooling through Perforated Flat Plates.” Applied Thermal Engineering 76. Elsevier Ltd: https://doi.org/10.1016/j.applthermaleng.2014 11.056. –85.
  • Ito, S, R Goldstein, and E Eckert. 1978. “Film
  • Cooling of a Gas Turbine Blade.” J. Eng. Power https://doi.org/10.1115/1.3446382. ): –81.
  • Ji, Yongbin, Bing Ge, Zhongran Chi, and Shusheng Zang. 2018. “Overall Cooling Effectiveness of
  • Effusion Cooled Annular Combustor Liner at Reacting Flow Conditions.” Applied Thermal Engineering 130. Elsevier Ltd: 877–88. https://doi.org/10.1016/j.applthermaleng.2017 11.074.
  • Kadotani, K., and R. J. Goldstein. 1979. “On the Nature of Jets Entering A Turbulent Flow: Part
  • B—Film Cooling Performance.” Journal of Engineering for Power 101 (3): 466. https://doi.org/10.1115/1.3446602.
  • Krewinkel, R. 2013. “A Review of Gas Turbine
  • Effusion Cooling Studies.” International Journal of Heat and Mass Transfer 66. Elsevier https://doi.org/10.1016/j.ijheatmasstransfer.20 07.071. –22.
  • Lampard, D. 1980. “Effectiveness Following
  • Injection through a Row of Holes” 102 (July): –88. Ligrani, P. M., J. M. Wigle, and S. W. Jackson. 1994.
  • “Film-Cooling From Holes With Compound Angle Downstream of a Single Row of Holes With d Spanwise Spacing.” Journal of Heat Transfer https://doi.org/10.1115/1.2911407. (2):
  • Ligrani, Phil, Matt Goodro, Mike Fox, and Hee-Koo Moon. 2012. “Full-Coverage Film Cooling:
  • Film Effectiveness and Heat Transfer Coefficients for Dense and Sparse Hole Arrays at Different Blowing Ratios.” Journal of Turbomachinery https://doi.org/10.1115/1.4006304. (6):
  • Schmidt, D. L., B. Sen, and D. G. Bogard. 1996.
  • “Film Cooling With Compound Angle Holes: Adiabatic Turbomachinery https://doi.org/10.1115/1.2840938. (4):
  • Shine, S. R., S. Sunil Kumar, and B. N. Suresh. 2012.
  • “A New Generalised Model for Liquid Film Cooling in Rocket Combustion Chambers.” International Journal of Heat and Mass Transfer 55 (19–20). Elsevier Ltd: 5065–75. https://doi.org/10.1016/j.ijheatmasstransfer.20 05.006.
  • Singh, Kuldeep, B. Premachandran, and M. R. Ravi. “Experimental and Numerical Studies on Film Cooling with Reverse/Backward Coolant Injection.” International Journal of Thermal Sciences 111. Elsevier Masson SAS: –408. https://doi.org/10.1016/j.ijthermalsci.2016.09.
  • Thole, Karen A., and Daniel G. Knost. 2005. “Heat
  • Transfer and Film-Cooling for the Endwall of a First Stage Turbine Vane.” International Journal of Heat and Mass Transfer 48 (25– ): https://doi.org/10.1016/j.ijheatmasstransfer.20 07.036. –69.
  • Xiao-ming, Tan, Zhang Jing-zhou, and Xu Hua- sheng. 2015. “Experimental Investigation on
  • Impingement/Effusion Cooling with Short Normal Injection Holes.” International Communications in Heat and Mass Transfer https://doi.org/10.1016/j.icheatmasstransfer.2 09.005. Ltd: –10.
  • Yao, Yu, Jing zhou Zhang, and Xiao ming Tan. “Numerical Study of Film Cooling from Converging Slot-Hole on a Gas Turbine Blade Suction Side.” International Communications in Heat and Mass Transfer 52. Elsevier Ltd: –72. https://doi.org/10.1016/j.icheatmasstransfer.2 01.008.
  • Yao, Yu, Jing Zhou Zhang, and Li Ping Wang. 2013.
  • “Film Cooling on a Gas Turbine Blade Suction Side International Journal of Thermal Sciences 65. Elsevier https://doi.org/10.1016/j.ijthermalsci.2012.10. Slot-Hole.” Masson SAS: –79.
  • Zhang, Jing-zhou, Xing-dan Zhu, Ying Huang, and Chun-hua Wang. 2017. “Investigation on Film
  • Cooling Performance from a Row of Round- to-Slot Holes on Flat Plate.” International Journal of Thermal Sciences 118. Elsevier Masson https://doi.org/10.1016/j.ijthermalsci.2017.04. –25.
  • Zhang, Luzeng, Juan Yin, and Hee Koo Moon. 2009.
  • “The Effect of Compound Angle on Nozzle Pressure Side Film Cooling.” ASME Conference Proceedings 2009 (48845): 53– https://doi.org/10.1115/GT2012-68357.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA38UG42JM
Bölüm Araştırma Makalesi
Yazarlar

Sinan Eren Yalçın Bu kişi benim

Evren Yılmaz Yakın Bu kişi benim

Melih Cemal Kuşhan

Tahir Hikmet Karakoç Bu kişi benim

Yayımlanma Tarihi 1 Aralık 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 3 Sayı: 2

Kaynak Göster

APA Yalçın, S. E., Yakın, E. Y., Kuşhan, M. C., Karakoç, T. H. (2018). JET MOTORLARINDA UYGULANAN EFÜZYON FİLM SOĞUTMA AKIŞ KARAKTERİSTİKLERİNİN PIV YÖNTEMİYLE İNCELENMESİ. Sürdürülebilir Havacılık Araştırmaları Dergisi, 3(2), 55-62.
AMA Yalçın SE, Yakın EY, Kuşhan MC, Karakoç TH. JET MOTORLARINDA UYGULANAN EFÜZYON FİLM SOĞUTMA AKIŞ KARAKTERİSTİKLERİNİN PIV YÖNTEMİYLE İNCELENMESİ. SÜHAD. Aralık 2018;3(2):55-62.
Chicago Yalçın, Sinan Eren, Evren Yılmaz Yakın, Melih Cemal Kuşhan, ve Tahir Hikmet Karakoç. “JET MOTORLARINDA UYGULANAN EFÜZYON FİLM SOĞUTMA AKIŞ KARAKTERİSTİKLERİNİN PIV YÖNTEMİYLE İNCELENMESİ”. Sürdürülebilir Havacılık Araştırmaları Dergisi 3, sy. 2 (Aralık 2018): 55-62.
EndNote Yalçın SE, Yakın EY, Kuşhan MC, Karakoç TH (01 Aralık 2018) JET MOTORLARINDA UYGULANAN EFÜZYON FİLM SOĞUTMA AKIŞ KARAKTERİSTİKLERİNİN PIV YÖNTEMİYLE İNCELENMESİ. Sürdürülebilir Havacılık Araştırmaları Dergisi 3 2 55–62.
IEEE S. E. Yalçın, E. Y. Yakın, M. C. Kuşhan, ve T. H. Karakoç, “JET MOTORLARINDA UYGULANAN EFÜZYON FİLM SOĞUTMA AKIŞ KARAKTERİSTİKLERİNİN PIV YÖNTEMİYLE İNCELENMESİ”, SÜHAD, c. 3, sy. 2, ss. 55–62, 2018.
ISNAD Yalçın, Sinan Eren vd. “JET MOTORLARINDA UYGULANAN EFÜZYON FİLM SOĞUTMA AKIŞ KARAKTERİSTİKLERİNİN PIV YÖNTEMİYLE İNCELENMESİ”. Sürdürülebilir Havacılık Araştırmaları Dergisi 3/2 (Aralık 2018), 55-62.
JAMA Yalçın SE, Yakın EY, Kuşhan MC, Karakoç TH. JET MOTORLARINDA UYGULANAN EFÜZYON FİLM SOĞUTMA AKIŞ KARAKTERİSTİKLERİNİN PIV YÖNTEMİYLE İNCELENMESİ. SÜHAD. 2018;3:55–62.
MLA Yalçın, Sinan Eren vd. “JET MOTORLARINDA UYGULANAN EFÜZYON FİLM SOĞUTMA AKIŞ KARAKTERİSTİKLERİNİN PIV YÖNTEMİYLE İNCELENMESİ”. Sürdürülebilir Havacılık Araştırmaları Dergisi, c. 3, sy. 2, 2018, ss. 55-62.
Vancouver Yalçın SE, Yakın EY, Kuşhan MC, Karakoç TH. JET MOTORLARINDA UYGULANAN EFÜZYON FİLM SOĞUTMA AKIŞ KARAKTERİSTİKLERİNİN PIV YÖNTEMİYLE İNCELENMESİ. SÜHAD. 2018;3(2):55-62.