BibTex RIS Cite

Diferansiyel Denklemlerin Öğreniminde Yaşanan Zorluklar ve Alternatif Öğretim Yaklaşımları

Year 2016, Volume: 6 Issue: 2, 154 - 171, 30.04.2016
https://doi.org/10.19126/suje.15063

Abstract

Bu çalışma, yükseköğretim matematiğinin önemli ders ve alanlarından biri olan diferansiyel denklemler için eğitim alanında yapılan araştırmaların bir derlemesini içermektedir.  Diferansiyel denklemler konusunda uluslararası alanda yapılan çok sayıda araştırma olmasına rağmen Türkçe eğitim literatüründeki çalışmaların sınırlı olması bir eksikliktir. Çalışma kapsamında, diferansiyel denklemler konusunun öğrenimi sürecinde öğrencilerin yaşadıkları zorluklar ve bu alanın öğretimi sürecinde kullanılabilecek alternatif yaklaşımlar değerlendirilmiştir. Diferansiyel denklemlerin öğrenimi ve öğretimi sürecinde karşılaşılan zorluklar dört başlık altında sunulmuştur. Bunlar; kavramsal anlama yerine işlemsel anlama, muhakeme zorluğu, kavram yanılgısı ve temsiller arası geçiş zorluğudur. Özellikle cebir temelli rutin hesap uygulamaları yerine diferansiyel denklemlerin nümerik ve geometrik anlamlarını açığa çıkaran sorgulayıcı ve teknoloji destekli yeni eğilimler paylaşılmıştır. Bu derleme çalışması, Türkçe literatüre yapacağı katkının yanı sıra; matematik eğitimi araştırmacıları için de bilgi ve farkındalık oluşturması nedeniyle önemlidir.

References

  • Allen, K. (2006). Students’ participation in a differerential equations class: parametric reasoning to understand systems. Unpublished doctoral dissertation. The Purdue University.
  • Arslan, S. (2008). Diferansiyel denklemlerin öğretiminde farklı yaklaşımlar ve nitel yaklaşımın gerek-liliği. Milli Eğitim Dergisi, 179, 153-163.
  • Arslan, S. (2010). Traditional ınstruction of differential equations and conceptual learning. Teaching Mathematics and Its Applications, 29(2), 94-107.
  • Artigue, M. (1992). Cognitive difficulties and teaching practices. ın g. harel & e. dubinsky (Ed.), The concept of function: Aspects of epistemology and pedagogy (pp. 109–132), Washington, DC: The Mat-hematical Association of America.
  • Brousseau, G. & Gibel, P. (2005). Didactical handling of students’ reasoning processes in problem sol-ving situations. Educational Studies in Mathematics, 59(2), 13–58.
  • Buendia, G. & Cordero, F. (2013). The use of graphs in specific situations of the initial conditions of linear differential equations. International Journal of Mathematical Education in Science and Techno-logy, 44(6), 927-937.
  • Burtch, C. M. (2005). Conjecturing as a classroom activity in differerential equations. Unpublished doctoral dissertation. The Arizona State Universıty.
  • Camacho-Machín, M., & Guerrero-Ortiz, C. (2015). Identifying and exploring relationships between contextual situations and ordinary differential equations. International Journal of Mathematical Education in Science and Technology, 46(8), 1077-1095.
  • Dana-Picard, T., & Kidron, I. (2007). Exploring the phase space of a system of differential equations: different mathematical registers. International Journal of Science and Mathematics Education, 6(4), 695–717.
  • Delice, A. ve Sevimli, E. (2016). Matematik eğitiminde çoklu temsiller. Bingölbali, E., Arslan, S. ve Zembat, İ. Ö (Ed.), Matematik eğitiminde teoriler (ss. 519, 535), Ankara: Pegem Akademi Yayıncılık.
  • Donovan, E. J. (2002). Students’ understanding of First-Order Differential Equations. Unpublished doctoral dissertation. Universıty of New York.
  • Duvall, A. S. (2005). A case study of two students’ concept images of parameter in a multi-representational diffe-rerential equations course. Unpublished doctoral dissertation. Universıty of Northern Colorado.
  • Habre, S. (2000). Exploring students’ strategies to solve ordinary differential equations in a reformed setting. Journal of Mathematical Behavior, 18 (4), 455–472.
  • Habre, S. (2003). Investigating students’ approval of a geometric approach to differential equations and their solutions. The International Journal of Mathematical Education in Science and Technology, 34(5), 651-662.
  • Habre, S. (2012). Improving understanding in ordinary differential equations through writing in a dynamical environment. Teaching Mathematics and Its Applications, 31(3), 153-166.
  • Haapasalo, L., & Kadijevich, D. (2000). Two types of mathematical knowledge and their relation. Jour-nal für Mathematik-Didaktik, 21(2), 139-157.
  • Hiebert, J., & Carpenter, T. P. (1992). Learning and teaching with understanding. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 65-97), New York: Macmillan.
  • Hunt, B. R., Lardy, L. J., Lipsman, R.L., Osborn, J. E., & Rosenberg , J. M. (2009). Differential equations with maple (3rd edition), USA: John Wiley & Sons Inc.
  • Keene, K. (2007). A characterization of dynamic reasoning: Reasoning with time as parameter. Journal of Mathematical Behavior, 26(3), 230–246.
  • Kwon, O. N., Rasmussen, C., & Allen, K. (2005). Students’ retention of mathematical knowledge and skills in differential equations. School Science and Mathematics, 105(5), 1–13.
  • Kwon, O. N. (2009). Conceptualizing the realistic mathematics education aproach in the teaching and learning of ordinary differential equations. http://www.cimm.ucr.ac.cr/ojs/index.php/eudoxus/article/view/430. adresinden erişilmiştir.
  • Lithner, J. (2004). Mathematical reasoning in calculus textbooks exercises. Journal of Mathematical Be-havior, 23, 405-427.
  • Miller, R. H., & Upton, S. B. (2008). Computer manipulative in an ordinary differential equation cour-se: development, implementation and assessment. Journal of Science Education and Technology, 11(2), 124-137.
  • Rasmussen, C. (1997). Qualitative and numerical methods for analyzing differential equations: A case study of students’ understandings and difficulties. Unpublished doctoral dissertation. University of Mary-land.
  • Rasmussen, C. (2001). New directions in differential equations: A framework for interpreting students’ understandings and difficulties. Journal of Mathematical Behavior, 20, 55–87.
  • Rasmussen, C., Kwon, O. N., Allen, K., Marrongelle, K., & Burtch, M. (2006). Capitalizing on advances in mathematics and K-12 mathematics education in undergraduate mathematics: An inquiry-oriented approach differential equations. Asia Pacific Education Review, 7(1), 85–93.
  • Rasmussen, C., & Kwon, O. N. (2007). An inquiry-oriented approach to undergraduate mathematics. The Journal of Mathematical Behavior, 26(3), 189–194.
  • Raychaudhuri, D. (2008). Dynamics of a definition: a framework to analyse student construction of the concept of solution to a differential equation. International Journal of Mathematical Education in Sci-ence and Technology, 39(2), 161–177.
  • Raychaudhuri, D. (2014). Adaptation and extension of the framework of reducing abstraction in the case of differential equations. International Journal of Mathematical Education in Science and Techno-logy, 45(1), 35-57.
  • Sezer, M. ve Daşcıoğlu, A. (2010). Diferansiyel Denklemler I. Bursa: Dora Yayınları.
  • Upton, S. D. (2004). Students’ solution strategies to differerential equations problems in mathematical and non-mathematical contexts. Unpublished doctoral dissertation. The Arizona State Universıty.
  • Wagner, J. F., Speer, N. M., & Rossa, B. (2007). Beyond mathematical content knowledge: A mathemati-cian’s knowledge needed for teaching an inquiry-oriented differential equations course. The Jo-urnal of Mathematical Behavior, 26(3), 247-266.
  • Zandieh, M., & McDonald, M. (1999). Student understanding of equilibrium solutions in differential equations. In F. Hitt & M. Santos (Eds.), Proceedings of the 21st PME(NA) (pp. 253–258). Columbus, OH: ERIC.
  • Zembat İ. Ö. (2010). Kavram Yanılgısı Nedir?. Özmantar, M. F., Bingölbali, E. ve Akkoç, H. (Ed.), Ma-tematiksel Kavram Yanılgıları ve Çözüm Önerileri (ss. 1-8). Ankara: Pegem Akademi Yayıncılık.
Year 2016, Volume: 6 Issue: 2, 154 - 171, 30.04.2016
https://doi.org/10.19126/suje.15063

Abstract

References

  • Allen, K. (2006). Students’ participation in a differerential equations class: parametric reasoning to understand systems. Unpublished doctoral dissertation. The Purdue University.
  • Arslan, S. (2008). Diferansiyel denklemlerin öğretiminde farklı yaklaşımlar ve nitel yaklaşımın gerek-liliği. Milli Eğitim Dergisi, 179, 153-163.
  • Arslan, S. (2010). Traditional ınstruction of differential equations and conceptual learning. Teaching Mathematics and Its Applications, 29(2), 94-107.
  • Artigue, M. (1992). Cognitive difficulties and teaching practices. ın g. harel & e. dubinsky (Ed.), The concept of function: Aspects of epistemology and pedagogy (pp. 109–132), Washington, DC: The Mat-hematical Association of America.
  • Brousseau, G. & Gibel, P. (2005). Didactical handling of students’ reasoning processes in problem sol-ving situations. Educational Studies in Mathematics, 59(2), 13–58.
  • Buendia, G. & Cordero, F. (2013). The use of graphs in specific situations of the initial conditions of linear differential equations. International Journal of Mathematical Education in Science and Techno-logy, 44(6), 927-937.
  • Burtch, C. M. (2005). Conjecturing as a classroom activity in differerential equations. Unpublished doctoral dissertation. The Arizona State Universıty.
  • Camacho-Machín, M., & Guerrero-Ortiz, C. (2015). Identifying and exploring relationships between contextual situations and ordinary differential equations. International Journal of Mathematical Education in Science and Technology, 46(8), 1077-1095.
  • Dana-Picard, T., & Kidron, I. (2007). Exploring the phase space of a system of differential equations: different mathematical registers. International Journal of Science and Mathematics Education, 6(4), 695–717.
  • Delice, A. ve Sevimli, E. (2016). Matematik eğitiminde çoklu temsiller. Bingölbali, E., Arslan, S. ve Zembat, İ. Ö (Ed.), Matematik eğitiminde teoriler (ss. 519, 535), Ankara: Pegem Akademi Yayıncılık.
  • Donovan, E. J. (2002). Students’ understanding of First-Order Differential Equations. Unpublished doctoral dissertation. Universıty of New York.
  • Duvall, A. S. (2005). A case study of two students’ concept images of parameter in a multi-representational diffe-rerential equations course. Unpublished doctoral dissertation. Universıty of Northern Colorado.
  • Habre, S. (2000). Exploring students’ strategies to solve ordinary differential equations in a reformed setting. Journal of Mathematical Behavior, 18 (4), 455–472.
  • Habre, S. (2003). Investigating students’ approval of a geometric approach to differential equations and their solutions. The International Journal of Mathematical Education in Science and Technology, 34(5), 651-662.
  • Habre, S. (2012). Improving understanding in ordinary differential equations through writing in a dynamical environment. Teaching Mathematics and Its Applications, 31(3), 153-166.
  • Haapasalo, L., & Kadijevich, D. (2000). Two types of mathematical knowledge and their relation. Jour-nal für Mathematik-Didaktik, 21(2), 139-157.
  • Hiebert, J., & Carpenter, T. P. (1992). Learning and teaching with understanding. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 65-97), New York: Macmillan.
  • Hunt, B. R., Lardy, L. J., Lipsman, R.L., Osborn, J. E., & Rosenberg , J. M. (2009). Differential equations with maple (3rd edition), USA: John Wiley & Sons Inc.
  • Keene, K. (2007). A characterization of dynamic reasoning: Reasoning with time as parameter. Journal of Mathematical Behavior, 26(3), 230–246.
  • Kwon, O. N., Rasmussen, C., & Allen, K. (2005). Students’ retention of mathematical knowledge and skills in differential equations. School Science and Mathematics, 105(5), 1–13.
  • Kwon, O. N. (2009). Conceptualizing the realistic mathematics education aproach in the teaching and learning of ordinary differential equations. http://www.cimm.ucr.ac.cr/ojs/index.php/eudoxus/article/view/430. adresinden erişilmiştir.
  • Lithner, J. (2004). Mathematical reasoning in calculus textbooks exercises. Journal of Mathematical Be-havior, 23, 405-427.
  • Miller, R. H., & Upton, S. B. (2008). Computer manipulative in an ordinary differential equation cour-se: development, implementation and assessment. Journal of Science Education and Technology, 11(2), 124-137.
  • Rasmussen, C. (1997). Qualitative and numerical methods for analyzing differential equations: A case study of students’ understandings and difficulties. Unpublished doctoral dissertation. University of Mary-land.
  • Rasmussen, C. (2001). New directions in differential equations: A framework for interpreting students’ understandings and difficulties. Journal of Mathematical Behavior, 20, 55–87.
  • Rasmussen, C., Kwon, O. N., Allen, K., Marrongelle, K., & Burtch, M. (2006). Capitalizing on advances in mathematics and K-12 mathematics education in undergraduate mathematics: An inquiry-oriented approach differential equations. Asia Pacific Education Review, 7(1), 85–93.
  • Rasmussen, C., & Kwon, O. N. (2007). An inquiry-oriented approach to undergraduate mathematics. The Journal of Mathematical Behavior, 26(3), 189–194.
  • Raychaudhuri, D. (2008). Dynamics of a definition: a framework to analyse student construction of the concept of solution to a differential equation. International Journal of Mathematical Education in Sci-ence and Technology, 39(2), 161–177.
  • Raychaudhuri, D. (2014). Adaptation and extension of the framework of reducing abstraction in the case of differential equations. International Journal of Mathematical Education in Science and Techno-logy, 45(1), 35-57.
  • Sezer, M. ve Daşcıoğlu, A. (2010). Diferansiyel Denklemler I. Bursa: Dora Yayınları.
  • Upton, S. D. (2004). Students’ solution strategies to differerential equations problems in mathematical and non-mathematical contexts. Unpublished doctoral dissertation. The Arizona State Universıty.
  • Wagner, J. F., Speer, N. M., & Rossa, B. (2007). Beyond mathematical content knowledge: A mathemati-cian’s knowledge needed for teaching an inquiry-oriented differential equations course. The Jo-urnal of Mathematical Behavior, 26(3), 247-266.
  • Zandieh, M., & McDonald, M. (1999). Student understanding of equilibrium solutions in differential equations. In F. Hitt & M. Santos (Eds.), Proceedings of the 21st PME(NA) (pp. 253–258). Columbus, OH: ERIC.
  • Zembat İ. Ö. (2010). Kavram Yanılgısı Nedir?. Özmantar, M. F., Bingölbali, E. ve Akkoç, H. (Ed.), Ma-tematiksel Kavram Yanılgıları ve Çözüm Önerileri (ss. 1-8). Ankara: Pegem Akademi Yayıncılık.
There are 34 citations in total.

Details

Journal Section Articles
Authors

EYÜP Sevimli

Publication Date April 30, 2016
Published in Issue Year 2016 Volume: 6 Issue: 2

Cite

APA Sevimli, E. (2016). Diferansiyel Denklemlerin Öğreniminde Yaşanan Zorluklar ve Alternatif Öğretim Yaklaşımları. Sakarya University Journal of Education, 6(2), 154-171. https://doi.org/10.19126/suje.15063