Araştırma Makalesi
BibTex RIS Kaynak Göster

PURIFICATION OF TEXTILE DYE BY PHOTOCATALYTIC OXIDATION PROCESS USING METAL MODIFIED CHITOSAN BALLS

Yıl 2025, Sayı: 8 ÇEVRE, 143 - 151, 05.02.2025

Öz

In this study, cobalt, iron (II), iron (III) and copper metals were determined to be loaded into the chitosan biopolymer obtained from chitin produced by biosynthesis in nature to be used as a catalyst in the photocatalytic oxidation process to remove the dyestuff, and peroxymonosulfate (PMS) was selected as the oxidant. After the determined metals were loaded into the prepared chitosan beads, the photocatalytic process was studied with the solutions prepared at 20 mg/L concentration using direct orange 46 dye, catalysts loaded with four different metals and PMS, and the removal data measured with a spectrophotometer were recorded. In the light of these studies, since it was observed that cobalt-loaded chitosan beads accelerated the reactions and gave very good results, studies were continued with these catalysts at 50 and 100 mg/L concentrations. Studies were also carried out to optimize the amount of catalyst and PMS, to observe the efficiency whether light was used in the process or not, and to compare the effect of UVA or UVA LED lights when light was required. Finally, the same processes were applied to real wastewater of a textile company, using cobalt-loaded chitosan beads as catalysts. As a result, it was observed that high efficiency was achieved by using cobalt-loaded chitosan beads as catalysts in the photocatalytic process.

Kaynakça

  • Albadarin, A. B., Collins, M. N., Naushed, M., Shirazian, S., Walker, G., Mangwandi, C. (2017). Activated Lignin-Chitosan Extruded Blends for Efficient Adsorption of Methylene Blue. Chemical Engineering Journal, 307: 264-272.
  • Bekci, Z., Özveri, C., Seki, Y., Yurdakoç, K. (2008). Sorption of Malachite Green on Chitosan Bead. J. Hazard Mater, 154(1-3): 254-261.
  • Buasri, A., Rochanakit K., Wongvitvichot W. (2015). The Application of Calcium Oxide and Magnesium Oxide from Natural Dolomitic Rock for Biodiesel Synthesis, Energy Procedia, 79,562-566.
  • Chatzisymeon, E., Xekoukoulotakis, N.P., Coz, A., Kalogerakis, N. and Mantzavinos, D. (2006). Electrochemical Treatment of Textile Dyes and Dyehouse Effluents, Journal of Hazardous Materials B137, 998–1007.
  • Cho, J., Heuzey, M.C., Begin, A. ve Carreau, P.J. (2006). Viscoelastic Properties of Chitosan Solutions: Effect of Concentration and Ionic Strength. J. Food Eng. 74, 500– 515.
  • Croisier, F., Jérôme, C. (2013). Chitosan-Based Biomaterials for Tissue Engineering. European Polymer Journal, 49(4): 780-792.
  • Çetinkaya, H., (2022), Kitosan-Borik Asit Kompoziti ile Atıksulardan Eritrosin B Boyasının Giderilmesi: Deneysel Ve Teorik Çalışmalar, Yüksek Lisans Tezi, Sivas Cumhuriyet Üniversitesi Fen Bilimleri Enstitüsü.
  • Demir, A, Öktem T, Seventekin N. (2008). Kitosanın Tekstil Sanayinde Antimikrobiyal Madde Olarak Kullanımının Araştırılması, Tekstil ve Konfeksiyon, 9.
  • Duman, S.S, Şenel S. (2004). Kitosan ve Veteriner Alandaki Uygulamaları, Veteriner Cerrahi Dergisi, 10 (3-4), 62-72.
  • Gottardi, G., Galli, E. (1985). Mineral and Rocks Natural Zeolites, Springer Verlag, 1- 16.
  • Hernandez-Rodriguez, M.J. Fernandez-Rodriguez, C. Dona- Rodriguez, J.M. Gonzalez Diaz, O.M. Zerbani, D. and Pena, J.P. (2014). “Treatmentofeffluents from Wool Dyeing Process by Photo- Fenton at Solar Pilot Plant”. Journal of Environmental Chemical Engineering, 2/1, 163-171.
  • Hu, P. D., and Long,M. C. (2016). Cobalt-Catalyzed Sulfate Radical- Based Advanced Oxidation: A Review on Heterogeneous Catalysts and Applications. Appl. Catal. B Environ. 181, 103–117. Doi: 10.1016/j. apcatb.2015.07.024.
  • Jia, L. Liu,W. Cao, J. Wu, Z. and Yang, C. (2020). “Modified Multi- Walled Carbon Nanotubes Assisted from Fractionation for Effective Removal of Acid Orange 7 from the Dyestuff Wastewater”. Journal of Environmental Management. V.262, 15 May 2020, 110260.
  • Karaton Kuzgun, N., Gürel İnanlı, A. (2012). Kitosan Üretimi ve Özellikleri ile Kitosanın Kullanım Alanları, Türk Bilimsel Derlemeler Dergisi 6 (2): 16-21, 6.
  • Khedr, S. A., Shouman M. A., Attia A. A. (2012). Adsorption Studies on The Removal of Cationic Dye from Shrimp Shell Using Chitin, 3(1): 507-519.
  • Kobya, M., Can, O.T. and Bayramoglu, M. (2003). Treatment of Textile Wastewaters by Electrocoagulation Using Iron and Aluminum Electrodes, Journal of Hazardous Materials, B100, 163–178.
  • Kubiak-Wójcicka, K., Machula S. (2020). Influence of Climate Changes on the State of Water Resources in Poland and Their Usage, Geoscience, 10, 312, 21.
  • Manu, B. and Chaudhari, S. (2002). Anaerobic Decolorisation of Simulated Textile Wastewater Containing Azo Dyes. Bioresource Technology, 82, 225-31.
  • Meyer, U. (1981). Biodegradation of Synthetic Organic Colorants, In Microbial Degradation of Xenobiotics and Recalcitrant Compounds, FEMS Symposium,12, 371-378 Academic Press, New York.
  • Okello, C., Tomasello B, Greggio N, Wambiji N, Antonellini M. (2015). Impact of Population Growth and Climate Change on the Freshwater Resources of Lamu Island, Kenya, Water dergisi, 7, 1264-1290, 27.
  • Oktav, Bulut M, Elibüyük U. (2017). Yengeç Kitininden Kitosan Üretimi, Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(2), 213-219, 7.
  • Shahidi F., Arachchi J.K.V, Jeon, Y.J. (1999). Food Applications of Chitin and Chitosans, Trends in Food Science &Technology, 37-51.
  • Sharma, K.P., Sharma, S., Sharma, S., Singh, P.K., Kumar, S., Grover, R. and Sharma, P.K. (2007). A Comparative Study on Characterization of Textile Wastewaters (untreated and treated) Toxicity by Chemical And Biological Tests, Chemosphere, 69, 48–54.
  • Tao, P., Wang X, Zhao Q, Guo H, Liu L, Qi X, Cui W. (2023). Framework Ti-Rich Titanium Silicalite-1 Zeolite Nanoplates for Enhanced Photocatalytic H2 Production from CH3OH, Applied Catalysis B: Environmental, 122392.
  • Tav, A. (2019). Karides Kabuklarından Farklı Yöntemler İle Kitosan Üretimi ve Karakterizasyonu, Yüksek Lisans Tezi, Yalova Üniversitesi Fen Bilimleri Enstitüsü.
  • Xia, X., Zhu F., Li J., Yang H., Wei L., Li Q., Jiang J., Zhang G., Zhao Q. (2020). A Review Study on Sulfate-Radical-Based Advanced Oxidation Processes for Domestic/Industrial Wastewater Treatment: Degradation, Efficiency, and Mechanism, Front. Chem. 8. https:// doi.org/10.3389/fchem.2020.592056.
  • Yılmaz, E., Tekinay, A.A., Çevik, N. (2006). Deniz Ürünleri Kaynaklı Fonksiyonel Gıda Maddeleri. Journal of Fisheries & Aquatic Sciences, 23(1/1): 523-527.
  • Yun, W. C., Lin, K. Y. A., Tong, W. C., Lin, Y. F., and Du, Y. (2019). Enhanced Degradation of Paracetamol in Water Using Sulfate Radicalbased Advanced Oxidation Processes Catalyzed by 3-Dimensional Co3O4 Nanoflower. CEJ, 373, 1329–1337. Doi: 10.1016/j. cej.2019.05.142.
  • Zollinger, H. (2001). Color Chemistry: Synthesis, Properties and Applications of Organic Dyes and Pigments, Wiley-VCH, Weinheim- Federal Republic of Germany, 3. Cilt.

TEKSTİL BOYAR MADDESİNİN METAL MODİFİYELİ KİTOSAN BİLYELER KULLANILARAK FOTOKATALİTİK OKSİDASYON PROSESİ İLE ARITIMI

Yıl 2025, Sayı: 8 ÇEVRE, 143 - 151, 05.02.2025

Öz

ÖZ
Bu çalışmada boyar maddenin giderilmesi amacıyla fotokatalitik oksidasyon prosesinde katalizör olarak kullanılmak üzere doğada biyosentez ile üretilen kitinden elde edilen kitosan biyopolimerine yüklenmek üzere kobalt, demir (II), demir (III) ve bakır metalleri belirlendi ve oksidant olarak peroksimonosülfat (PMS) seçildi. Belirlenen metaller hazırlanan kitosan bilyelerine yüklendikten sonra direct orange 46 boyası kullanılarak 20 mg/L konsantrasyonda hazırlanan çözeltiler dört farklı metalle yüklenen katalizörler ve PMS ile fotokatalitik prosesi çalışılarak spektrofotometre ile ölçülen giderim verileri kaydedildi. Bu çalışmalar ışığında kobalt yüklü kitosan bilyelerinin tepkimeleri hızlandırıp oldukça iyi sonuçlar verdiği gözlemlendiğinden bu katalizörler ile 50 ve 100 mg/L konsantrasyonlar ile çalışmalara devam edildi. Ayrıca katalizör ve PMS miktarını optimize etmek ve proseste ışık kullanılıp kullanılmaması durumlarındaki verimleri gözlemlemek, ışık kullanılması gereken durumlarda UVA veya UVA led ışıklarının etkisini karşılaştırmak üzere de çalışmalar yapıldı. Son olarak bir tekstil firmasının gerçek atık suyu için kobalt yüklü kitosan bilyelerin katalizör olarak kullanılması ile aynı prosesler uygulandı. Sonuçta kobalt yüklü kitosan bilyelerin fotokatalitik prosesinde katalizör olarak kullanılmasıyla yüksek verimler elde edildiği gözlemlendi.

Kaynakça

  • Albadarin, A. B., Collins, M. N., Naushed, M., Shirazian, S., Walker, G., Mangwandi, C. (2017). Activated Lignin-Chitosan Extruded Blends for Efficient Adsorption of Methylene Blue. Chemical Engineering Journal, 307: 264-272.
  • Bekci, Z., Özveri, C., Seki, Y., Yurdakoç, K. (2008). Sorption of Malachite Green on Chitosan Bead. J. Hazard Mater, 154(1-3): 254-261.
  • Buasri, A., Rochanakit K., Wongvitvichot W. (2015). The Application of Calcium Oxide and Magnesium Oxide from Natural Dolomitic Rock for Biodiesel Synthesis, Energy Procedia, 79,562-566.
  • Chatzisymeon, E., Xekoukoulotakis, N.P., Coz, A., Kalogerakis, N. and Mantzavinos, D. (2006). Electrochemical Treatment of Textile Dyes and Dyehouse Effluents, Journal of Hazardous Materials B137, 998–1007.
  • Cho, J., Heuzey, M.C., Begin, A. ve Carreau, P.J. (2006). Viscoelastic Properties of Chitosan Solutions: Effect of Concentration and Ionic Strength. J. Food Eng. 74, 500– 515.
  • Croisier, F., Jérôme, C. (2013). Chitosan-Based Biomaterials for Tissue Engineering. European Polymer Journal, 49(4): 780-792.
  • Çetinkaya, H., (2022), Kitosan-Borik Asit Kompoziti ile Atıksulardan Eritrosin B Boyasının Giderilmesi: Deneysel Ve Teorik Çalışmalar, Yüksek Lisans Tezi, Sivas Cumhuriyet Üniversitesi Fen Bilimleri Enstitüsü.
  • Demir, A, Öktem T, Seventekin N. (2008). Kitosanın Tekstil Sanayinde Antimikrobiyal Madde Olarak Kullanımının Araştırılması, Tekstil ve Konfeksiyon, 9.
  • Duman, S.S, Şenel S. (2004). Kitosan ve Veteriner Alandaki Uygulamaları, Veteriner Cerrahi Dergisi, 10 (3-4), 62-72.
  • Gottardi, G., Galli, E. (1985). Mineral and Rocks Natural Zeolites, Springer Verlag, 1- 16.
  • Hernandez-Rodriguez, M.J. Fernandez-Rodriguez, C. Dona- Rodriguez, J.M. Gonzalez Diaz, O.M. Zerbani, D. and Pena, J.P. (2014). “Treatmentofeffluents from Wool Dyeing Process by Photo- Fenton at Solar Pilot Plant”. Journal of Environmental Chemical Engineering, 2/1, 163-171.
  • Hu, P. D., and Long,M. C. (2016). Cobalt-Catalyzed Sulfate Radical- Based Advanced Oxidation: A Review on Heterogeneous Catalysts and Applications. Appl. Catal. B Environ. 181, 103–117. Doi: 10.1016/j. apcatb.2015.07.024.
  • Jia, L. Liu,W. Cao, J. Wu, Z. and Yang, C. (2020). “Modified Multi- Walled Carbon Nanotubes Assisted from Fractionation for Effective Removal of Acid Orange 7 from the Dyestuff Wastewater”. Journal of Environmental Management. V.262, 15 May 2020, 110260.
  • Karaton Kuzgun, N., Gürel İnanlı, A. (2012). Kitosan Üretimi ve Özellikleri ile Kitosanın Kullanım Alanları, Türk Bilimsel Derlemeler Dergisi 6 (2): 16-21, 6.
  • Khedr, S. A., Shouman M. A., Attia A. A. (2012). Adsorption Studies on The Removal of Cationic Dye from Shrimp Shell Using Chitin, 3(1): 507-519.
  • Kobya, M., Can, O.T. and Bayramoglu, M. (2003). Treatment of Textile Wastewaters by Electrocoagulation Using Iron and Aluminum Electrodes, Journal of Hazardous Materials, B100, 163–178.
  • Kubiak-Wójcicka, K., Machula S. (2020). Influence of Climate Changes on the State of Water Resources in Poland and Their Usage, Geoscience, 10, 312, 21.
  • Manu, B. and Chaudhari, S. (2002). Anaerobic Decolorisation of Simulated Textile Wastewater Containing Azo Dyes. Bioresource Technology, 82, 225-31.
  • Meyer, U. (1981). Biodegradation of Synthetic Organic Colorants, In Microbial Degradation of Xenobiotics and Recalcitrant Compounds, FEMS Symposium,12, 371-378 Academic Press, New York.
  • Okello, C., Tomasello B, Greggio N, Wambiji N, Antonellini M. (2015). Impact of Population Growth and Climate Change on the Freshwater Resources of Lamu Island, Kenya, Water dergisi, 7, 1264-1290, 27.
  • Oktav, Bulut M, Elibüyük U. (2017). Yengeç Kitininden Kitosan Üretimi, Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(2), 213-219, 7.
  • Shahidi F., Arachchi J.K.V, Jeon, Y.J. (1999). Food Applications of Chitin and Chitosans, Trends in Food Science &Technology, 37-51.
  • Sharma, K.P., Sharma, S., Sharma, S., Singh, P.K., Kumar, S., Grover, R. and Sharma, P.K. (2007). A Comparative Study on Characterization of Textile Wastewaters (untreated and treated) Toxicity by Chemical And Biological Tests, Chemosphere, 69, 48–54.
  • Tao, P., Wang X, Zhao Q, Guo H, Liu L, Qi X, Cui W. (2023). Framework Ti-Rich Titanium Silicalite-1 Zeolite Nanoplates for Enhanced Photocatalytic H2 Production from CH3OH, Applied Catalysis B: Environmental, 122392.
  • Tav, A. (2019). Karides Kabuklarından Farklı Yöntemler İle Kitosan Üretimi ve Karakterizasyonu, Yüksek Lisans Tezi, Yalova Üniversitesi Fen Bilimleri Enstitüsü.
  • Xia, X., Zhu F., Li J., Yang H., Wei L., Li Q., Jiang J., Zhang G., Zhao Q. (2020). A Review Study on Sulfate-Radical-Based Advanced Oxidation Processes for Domestic/Industrial Wastewater Treatment: Degradation, Efficiency, and Mechanism, Front. Chem. 8. https:// doi.org/10.3389/fchem.2020.592056.
  • Yılmaz, E., Tekinay, A.A., Çevik, N. (2006). Deniz Ürünleri Kaynaklı Fonksiyonel Gıda Maddeleri. Journal of Fisheries & Aquatic Sciences, 23(1/1): 523-527.
  • Yun, W. C., Lin, K. Y. A., Tong, W. C., Lin, Y. F., and Du, Y. (2019). Enhanced Degradation of Paracetamol in Water Using Sulfate Radicalbased Advanced Oxidation Processes Catalyzed by 3-Dimensional Co3O4 Nanoflower. CEJ, 373, 1329–1337. Doi: 10.1016/j. cej.2019.05.142.
  • Zollinger, H. (2001). Color Chemistry: Synthesis, Properties and Applications of Organic Dyes and Pigments, Wiley-VCH, Weinheim- Federal Republic of Germany, 3. Cilt.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Yönetimi (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Zülal Demirkaya

Gizem Başaran Dindaş

Nihal Bektaş 0000-0002-8257-9452

Hüseyin Cengiz Yatmaz 0000-0002-5085-5256

Yayımlanma Tarihi 5 Şubat 2025
Gönderilme Tarihi 11 Aralık 2024
Kabul Tarihi 4 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Sayı: 8 ÇEVRE

Kaynak Göster

APA Demirkaya, Z., Başaran Dindaş, G., Bektaş, N., Yatmaz, H. C. (2025). TEKSTİL BOYAR MADDESİNİN METAL MODİFİYELİ KİTOSAN BİLYELER KULLANILARAK FOTOKATALİTİK OKSİDASYON PROSESİ İLE ARITIMI. Şura Akademi(8 ÇEVRE), 143-151.