Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2016, Cilt: 12 Sayı: 1, 1 - 10, 14.10.2016

Öz

Kaynakça

  • Abedi G and Ahmadi E (2013). Design and evaluation a pendulum device to study postharvest mechanical damage in fruits: bruise modeling of red delicious apple. Australian Journal of Crop Science, 7: 962-968.
  • ANSYS Documentation (2015). Release notes: Explicit dynamics analysis. Release 16.2. ANSYS Inc.
  • ASAE S368.4 W/Corr. 1 DEC2000 (R2012). Compression test of food materials of convex shape. American Society of Agricultural Engineers (ASAE) Standards.
  • Berardinelli A, Donati V, Giunchi A, Guarnieri A and Ragni L (2005). Damage to pears caused by simulated transport. Journal of Food Engineering, 66: 219-226.
  • Björkmon M (2010). Evaluation of finite element tools for transient structural dynamic simulations of firing systems. MsC Thesis, Department of Applied Mechanics, Chalmers University of Technology, Göteborg Sweden.
  • Blahovec J and Paprštein F (2005). Susceptibility of pear varieties to bruising. Postharvest Biology and Technology, 38: 231-238.
  • Blahovec J, Mareš V and Paprštein F (2004). Static and dynamic tests of pear bruise sensitivity. Res. Agr. Eng., 50: 54-60.
  • Blahovec J, Vlckova M and Paprstein F (2002). Static Low-Level Bruising in Pears. Res. Agr. Eng., 48: 41-46.
  • Cardenas WM and Stroshine RL (1991). Melon material properties and finite element analysis of melon compression with application to robot gripping. Trans. ASAE, 34: 920 929.
  • Celik HK, Kabas O, Ozmerzi A and Akinci I (2008). Drop test simulation of a sample tomato with finite element method. J. Sci. Food Agric., 88: 1537-1541.
  • Celik HK, Rennie AEW and Akinci I (2011). Deformation behaviour simulation of an apple under drop case by finite element method. Journal of Food Engineering, 104: 293 298.
  • Chen H and De Baerdemaeker J (1993a). Modal analysis of the dynamic behaviour of pineapples and its relation to fruit firmness. Trans. ASAE, 36: 1439-1444.
  • Chen H and De Baerdemaeker J (1993b). Finite-element-based modal analysis of fruit firmness. Trans. ASAE, 36: 1827-1833.
  • Chen H, De Baerdemaeker J and Bellon V (1996). Finite element study of the melon for nondestructive sensing of firmness. Trans. ASABE, 39: 1057-1065.
  • Chotika T, Biermann J-W and Koetniyom S (2011). Energy Absorption Analysis of Various Vehicles under Crash Test Simulation. The Second TSME International Conference on Mechanical Engineering 19-21 October 2011, Krabi Thailand.
  • Dilek D ve Gedikli H (2014). Kare Kesitli İçi Boş Tailor-Welded Tüplerin Çarpışma Performansının Sonlu Elemanlar Yöntemiyle Belirlenmesi. Mühendis ve Makina, 55: 56-64.
  • Eissa A, Alghannam A and Azam M (2012). Mathematical Evaluation Changes in Rheological and Mechanical Properties of Pears during Storage under Variable Conditions. Journal of Food Science and Engineering, 2: 564-575.
  • Elitok K, Güler MA, Avcı FH and Stelzmann U (2006). LS-DYNA ile ECE-R66 Yönetmeligi’ne Uygun Otobüs Devrilme Analizi. TurkCADCAM.net Dergisi, p 13.
  • Erdoğan D ve Yurtlu YB (2005). Effect of Storage Time on Some Mechanical Properties and Bruise Susceptibility of Pears and Apples. Turk J Agric For, 29: 469-482.
  • Fabbri A and Cevoli CC (2016). Rheological parameters estimation of non-Newtonian food fluids by finite elements model inversion. Journal of Food Engineering, 169: 172 178.
  • Fabbri A, Cevoli C, Cocci E and Rocculi P (2011). Determination of the CO2 mass diffusivity of egg components by finite element model inversion. Food Research International, 44: 204-208.
  • Fenyvesi L, Fenyvesi D and Csatár A (2013). Stress Analysis in Fruits. Hindawi Publishing Corporation Advances in Mechanical Engineering, 2013: 1-6.
  • Garcı́a J, Ruiz-Altisent M and Barreiro P (1995). Factors Influencing Mechanical Properties and Bruise Susceptibility of Apples and Pears. Journal of Agricultural Engineering Research, 61: 11-17.
  • Guessasma S and Nouri H (2015). Compression behaviour of bread crumb up to densification investigated using X-ray tomography and finite element computation. Food Research International, 72: 140-148.
  • Hallquist JO (2006). LS-Dyna Theory Manual. Livermore Software Technology Corporation, California.
  • Herna´ndez LF and Belle´s PM (2007). A 3-D finite element analysis of the sunflower (Helianthus annuus L.) fruit. Biomechanical approach for the improvement of its hullability. Journal of Food Engineering, 78: 861 869.
  • Ihueze CC, Okafor CE and Ogbobe PO (2013). Finite design for critical stresses of compressed biomaterials under transportation. Proceedings of the World Congress on Engineering 2013, 3-5 July 2013, vol. III, London U.K.
  • Komarnicki P, Stopa R, Szyjewicz D and Młotek M (2016). Evaluation of bruise resistance of pears to impact load. Postharvest Biology and Technology, 114: 36-44.
  • Lee H-H (2012). Finite element simulation with ANSYS Workbench 14. SDC Publications.
  • Lewis R, Yoxall A, Canty L and Romo E (2007). Development of engineering design tools to help reduce apple bruising. Journal of Food Engineering, 83: 356-365.
  • Lu R and Abbott JA (1997). Finite element modelling of transient responses of apples to impulse excitation. Trans. ASAE, 40: 1395-1406. Munjiza A, Rougier E and Knight EE (2015). Large strain finite element method. John Wiley & Sons, UK.
  • Opara U and Pathare P (2014). Bruise damage measurement and analysis of fresh horticultural produce-A review. Postharvest Biology and Technology, 91: 9-24.
  • Ozturk I, Ercisli S, Kalkan F ve Demir B (2009). Some chemical and physico-mechanical properties of pear cultivars. African Journal of Biotechnology, 8: 687-693.
  • Pandey PC (2016). Continuum Damage Mechanics: Review of Plasticity Concepts, NPTEL - Civil Engineering Lecture Notes - Module 4 (Lectures 15-20). http://www.nptel.ac.in/courses/105108072/4 (date of access: 01.01.2016).
  • Sarig Y (1991). Review: Impact loading associated with agricultural products. International Journal of Impact Engineering, 11: 251-275. Sitkei G (1986). Mechanics of agricultural materials. Elsevier Science Publisher, Hungary.
  • SolidWorks Documentation (2010). SolidWorks simulation premium: nonlinear-Training Manual Serial No: 22658021044 ENG0001. Dassault Systemes SolidWorks Corporation, USA.
  • Stewart JR, Gullerud AS and Heinstein MW (2006). Solution verification for explicit transient Dynamics problems in the presence of hourglass and contact forces. Comput. Methods Appl. Mech. Engrg., 195: 1499-1516.
  • Tinoco HA, Ocampo DA, Peña FM and Sanz-Uribe JR (2014). Finite element modal analysis of the fruit-peduncle of Coffea Arabica L. var. Colombia estimating its geometrical and mechanical properties. Computers and Electronics in Agriculture, 108: 17-27.
  • Van Zeebroeck M, Tijskens E, Liedekerke P, Deli V, Baerdemaeker J and Ramon H (2003). Determination of the dynamical behaviour of biological materials during impact using a pendulum device. Journal of Sound and Vibration, 266: 465-480.
  • Van Zeebroeck M, Van linden V, Ramon H, De Baerdemaeker J, Nicolaï B and Tijskens E (2007). Impact damage of apples during transport and handling. Postharvest Biology and Technology, 45: 157-167.
  • Wakabayashi N, Ona M, Suzuki T and Igarashi Y (2008). Nonlinear finite element analyses: Advances and challenges in dental applications. Journal of Dentistry, 36: 463-471.
  • Wallmeier M, Linvill E, Hauptmann M, Majschak J-P and Östlund S (2015). Explicit FEM analysis of the deep drawing of paperboard. Mechanics of Materials, 89: 202-215.
  • Wu SR and Gu L (2012). Introduction to the explicit finite element method for nonlinear transient Dynamics. Wiley Publication, p 352. Yousefi S, Farsi H and Kheiralipour K (2016). Drop test of pear fruit: Experimental measurement and finite element modelling. Biosystems Engineering, 147: 17-25.

Çarpma Etkisi Altında Kalan Armut Meyvelerinin (Ankara çeşidi) Zedelenme Hacminin Doğrusal Olmayan Dinamik Sonlu Elemanlar Analizi ile Belirlenmesi

Yıl 2016, Cilt: 12 Sayı: 1, 1 - 10, 14.10.2016

Öz

Özellikle meyve ve sebzeler gibi tarımsal ürünlerin
hasat, taşıma, sınıflandırma, paketleme ve hasat sonrası işlemleri gibi
süreçlerde kullanılan makine sistemlerinin tasarımında odaklanılan temel
tasarım amaçlarından birisi, bu sistemlerin ilgili işlemler sırasında işlenen
ürüne her hangi bir şekilde mekanik bir zarar vermemesidir. Bu tip süreçlerde
rastlanılan en yaygın mekanik zarar türü, ürünün çarpma etkisi altında mekanik
olarak zedelenmesidir. Bu zedelenme ürünün dış etkenlerle etkileşimi veya birbirleri
ile teması nedeniyle olabilmektedir. Bu tip durumlara maruz kalan ürünlerin
zedelenme miktarının ve zedelenme ilerleyişinin hassas bir şekilde
belirlenmesi, bu süreçlerde kullanılan makine sistemlerinin tasarımında önemli
bir rol oynamaktadır. Bu araştırmada, birbirleri ile çarpışma etkisi altında
kalan örnek bir tarımsal ürünün (Armut-Ankara çeşidi) çarpışma sürecinde maruz
kaldığı yapısal gerilmelerin zamana bağlı değişimi ve çarpışma sonucu ortaya
çıkan zedelenme hacimleri, ileri düzey doğrusal olmayan dinamik sonlu elamanlar
analizi ile belirlenmiştir. Araştırmada, ele alınan örnek ürünün bazı
mühendislik özellikleri fiziksel ölçüm ve testler ile belirlenmiştir. Örnek
ürün, tersine mühendislik yaklaşımı ile dijital ortama aktarılmış ve sonlu
elemanlar yöntemi temelli, doğrusal olmayan dinamik analiz yaklaşımı ile
çarpışma durumu simule edilmiştir. Gerçekleştirilen simülasyonda, iki ürünün
1 [m] yükseklikten birbirleri üzerine düşme senaryosu simule edilmiştir.
Simülasyon sonucu oldukça faydalı görsel ve sayısal çıktılar elde edilmiştir.
Sonuç olarak, tanımlanan çarpışma durumunda ortaya çıkan maksimum eşdeğer
gerilme değeri çarpan ve çarpılan ürünler için sırasıyla 0.395 [MPa] ve
0.538 [MPa], zedelenme hacimleri ise sırasıyla 6278.40 [mm3] ve
30197.41 [mm3] olarak hesaplanmıştır.

Kaynakça

  • Abedi G and Ahmadi E (2013). Design and evaluation a pendulum device to study postharvest mechanical damage in fruits: bruise modeling of red delicious apple. Australian Journal of Crop Science, 7: 962-968.
  • ANSYS Documentation (2015). Release notes: Explicit dynamics analysis. Release 16.2. ANSYS Inc.
  • ASAE S368.4 W/Corr. 1 DEC2000 (R2012). Compression test of food materials of convex shape. American Society of Agricultural Engineers (ASAE) Standards.
  • Berardinelli A, Donati V, Giunchi A, Guarnieri A and Ragni L (2005). Damage to pears caused by simulated transport. Journal of Food Engineering, 66: 219-226.
  • Björkmon M (2010). Evaluation of finite element tools for transient structural dynamic simulations of firing systems. MsC Thesis, Department of Applied Mechanics, Chalmers University of Technology, Göteborg Sweden.
  • Blahovec J and Paprštein F (2005). Susceptibility of pear varieties to bruising. Postharvest Biology and Technology, 38: 231-238.
  • Blahovec J, Mareš V and Paprštein F (2004). Static and dynamic tests of pear bruise sensitivity. Res. Agr. Eng., 50: 54-60.
  • Blahovec J, Vlckova M and Paprstein F (2002). Static Low-Level Bruising in Pears. Res. Agr. Eng., 48: 41-46.
  • Cardenas WM and Stroshine RL (1991). Melon material properties and finite element analysis of melon compression with application to robot gripping. Trans. ASAE, 34: 920 929.
  • Celik HK, Kabas O, Ozmerzi A and Akinci I (2008). Drop test simulation of a sample tomato with finite element method. J. Sci. Food Agric., 88: 1537-1541.
  • Celik HK, Rennie AEW and Akinci I (2011). Deformation behaviour simulation of an apple under drop case by finite element method. Journal of Food Engineering, 104: 293 298.
  • Chen H and De Baerdemaeker J (1993a). Modal analysis of the dynamic behaviour of pineapples and its relation to fruit firmness. Trans. ASAE, 36: 1439-1444.
  • Chen H and De Baerdemaeker J (1993b). Finite-element-based modal analysis of fruit firmness. Trans. ASAE, 36: 1827-1833.
  • Chen H, De Baerdemaeker J and Bellon V (1996). Finite element study of the melon for nondestructive sensing of firmness. Trans. ASABE, 39: 1057-1065.
  • Chotika T, Biermann J-W and Koetniyom S (2011). Energy Absorption Analysis of Various Vehicles under Crash Test Simulation. The Second TSME International Conference on Mechanical Engineering 19-21 October 2011, Krabi Thailand.
  • Dilek D ve Gedikli H (2014). Kare Kesitli İçi Boş Tailor-Welded Tüplerin Çarpışma Performansının Sonlu Elemanlar Yöntemiyle Belirlenmesi. Mühendis ve Makina, 55: 56-64.
  • Eissa A, Alghannam A and Azam M (2012). Mathematical Evaluation Changes in Rheological and Mechanical Properties of Pears during Storage under Variable Conditions. Journal of Food Science and Engineering, 2: 564-575.
  • Elitok K, Güler MA, Avcı FH and Stelzmann U (2006). LS-DYNA ile ECE-R66 Yönetmeligi’ne Uygun Otobüs Devrilme Analizi. TurkCADCAM.net Dergisi, p 13.
  • Erdoğan D ve Yurtlu YB (2005). Effect of Storage Time on Some Mechanical Properties and Bruise Susceptibility of Pears and Apples. Turk J Agric For, 29: 469-482.
  • Fabbri A and Cevoli CC (2016). Rheological parameters estimation of non-Newtonian food fluids by finite elements model inversion. Journal of Food Engineering, 169: 172 178.
  • Fabbri A, Cevoli C, Cocci E and Rocculi P (2011). Determination of the CO2 mass diffusivity of egg components by finite element model inversion. Food Research International, 44: 204-208.
  • Fenyvesi L, Fenyvesi D and Csatár A (2013). Stress Analysis in Fruits. Hindawi Publishing Corporation Advances in Mechanical Engineering, 2013: 1-6.
  • Garcı́a J, Ruiz-Altisent M and Barreiro P (1995). Factors Influencing Mechanical Properties and Bruise Susceptibility of Apples and Pears. Journal of Agricultural Engineering Research, 61: 11-17.
  • Guessasma S and Nouri H (2015). Compression behaviour of bread crumb up to densification investigated using X-ray tomography and finite element computation. Food Research International, 72: 140-148.
  • Hallquist JO (2006). LS-Dyna Theory Manual. Livermore Software Technology Corporation, California.
  • Herna´ndez LF and Belle´s PM (2007). A 3-D finite element analysis of the sunflower (Helianthus annuus L.) fruit. Biomechanical approach for the improvement of its hullability. Journal of Food Engineering, 78: 861 869.
  • Ihueze CC, Okafor CE and Ogbobe PO (2013). Finite design for critical stresses of compressed biomaterials under transportation. Proceedings of the World Congress on Engineering 2013, 3-5 July 2013, vol. III, London U.K.
  • Komarnicki P, Stopa R, Szyjewicz D and Młotek M (2016). Evaluation of bruise resistance of pears to impact load. Postharvest Biology and Technology, 114: 36-44.
  • Lee H-H (2012). Finite element simulation with ANSYS Workbench 14. SDC Publications.
  • Lewis R, Yoxall A, Canty L and Romo E (2007). Development of engineering design tools to help reduce apple bruising. Journal of Food Engineering, 83: 356-365.
  • Lu R and Abbott JA (1997). Finite element modelling of transient responses of apples to impulse excitation. Trans. ASAE, 40: 1395-1406. Munjiza A, Rougier E and Knight EE (2015). Large strain finite element method. John Wiley & Sons, UK.
  • Opara U and Pathare P (2014). Bruise damage measurement and analysis of fresh horticultural produce-A review. Postharvest Biology and Technology, 91: 9-24.
  • Ozturk I, Ercisli S, Kalkan F ve Demir B (2009). Some chemical and physico-mechanical properties of pear cultivars. African Journal of Biotechnology, 8: 687-693.
  • Pandey PC (2016). Continuum Damage Mechanics: Review of Plasticity Concepts, NPTEL - Civil Engineering Lecture Notes - Module 4 (Lectures 15-20). http://www.nptel.ac.in/courses/105108072/4 (date of access: 01.01.2016).
  • Sarig Y (1991). Review: Impact loading associated with agricultural products. International Journal of Impact Engineering, 11: 251-275. Sitkei G (1986). Mechanics of agricultural materials. Elsevier Science Publisher, Hungary.
  • SolidWorks Documentation (2010). SolidWorks simulation premium: nonlinear-Training Manual Serial No: 22658021044 ENG0001. Dassault Systemes SolidWorks Corporation, USA.
  • Stewart JR, Gullerud AS and Heinstein MW (2006). Solution verification for explicit transient Dynamics problems in the presence of hourglass and contact forces. Comput. Methods Appl. Mech. Engrg., 195: 1499-1516.
  • Tinoco HA, Ocampo DA, Peña FM and Sanz-Uribe JR (2014). Finite element modal analysis of the fruit-peduncle of Coffea Arabica L. var. Colombia estimating its geometrical and mechanical properties. Computers and Electronics in Agriculture, 108: 17-27.
  • Van Zeebroeck M, Tijskens E, Liedekerke P, Deli V, Baerdemaeker J and Ramon H (2003). Determination of the dynamical behaviour of biological materials during impact using a pendulum device. Journal of Sound and Vibration, 266: 465-480.
  • Van Zeebroeck M, Van linden V, Ramon H, De Baerdemaeker J, Nicolaï B and Tijskens E (2007). Impact damage of apples during transport and handling. Postharvest Biology and Technology, 45: 157-167.
  • Wakabayashi N, Ona M, Suzuki T and Igarashi Y (2008). Nonlinear finite element analyses: Advances and challenges in dental applications. Journal of Dentistry, 36: 463-471.
  • Wallmeier M, Linvill E, Hauptmann M, Majschak J-P and Östlund S (2015). Explicit FEM analysis of the deep drawing of paperboard. Mechanics of Materials, 89: 202-215.
  • Wu SR and Gu L (2012). Introduction to the explicit finite element method for nonlinear transient Dynamics. Wiley Publication, p 352. Yousefi S, Farsi H and Kheiralipour K (2016). Drop test of pear fruit: Experimental measurement and finite element modelling. Biosystems Engineering, 147: 17-25.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

H. Kürşat Çelik

İbrahim Akıncı Bu kişi benim

Yayımlanma Tarihi 14 Ekim 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 12 Sayı: 1

Kaynak Göster

APA Çelik, H. K., & Akıncı, İ. (2016). Çarpma Etkisi Altında Kalan Armut Meyvelerinin (Ankara çeşidi) Zedelenme Hacminin Doğrusal Olmayan Dinamik Sonlu Elemanlar Analizi ile Belirlenmesi. Tarım Makinaları Bilimi Dergisi, 12(1), 1-10.

Tarım Makinaları Bilimi Dergisi, Tarım Makinaları Derneği tarafından yılda 3 sayı olarak yayınlanan hakemli bilimsel bir dergidir.