Araştırma Makalesi
BibTex RIS Kaynak Göster

Kentsel Mikro İklim Modelleme Araçlarının Değerlendirilmesi

Yıl 2021, Cilt: 3 Sayı: 2, 79 - 86, 29.11.2021
https://doi.org/10.51765/tayod.943829

Öz

Kentsel alanlar, iklim değişikliğinin yarattığı olumsuz etkilere karşı savunmasızdır ve bundan dolayı bu etkilere yoğun bir şekilde maruz kalmaktadırlar. Bu sebeple, şehir planlama sürecinde önemli gündem konularından biri iklim değişikliğinin etkilerini azaltmak amacı doğrultusunda kentler tasarlamaktır. Kentsel iklimin etkilerini ölçmek ve azaltabilmek için kentsel mikro iklim (mikro klima) modellemelerinin doğruluğu yüksek bir şekilde yapılması önemlidir. Günümüze kadar yapılan çalışmalar sonucunda, birçok iklim modelleme yöntemi ve uygulaması geliştirilmiştir. Tüm uygulamalar farklı amaçlara hizmet ettiklerinden, çıktıları ve modelleme için kullandıkları parametreler de farklılaşmaktadır. Bu yüzden modelleme yapılacak uygulama seçilirken, kullanım maksadı net olarak tanımlanmalı ve en yetkin uygulama tercih edilmelidir. Bu çalışmada, planlama ve kentsel tasarım sürecinde kullanılabilecek mikro iklim modelleme uygulamalarının değerlendirilmesi temel amaç olarak belirlenmiştir. Arazi yönetim sürecine katılım sağlayan her aktörün kullanım amacı (profesyonel kullanım, eğitim amaçlı kullanım vb.) gözetilerek uygulamalara dair literatürde yer alan çalışmalar derlenerek değerlendirmeler yapılmıştır. Yazında yer alan ve iklim modellemesi yapan uygulamalar kullanım ücreti, sıcaklık, termal konfor, ölçek, rüzgâr hızı/yönü, hava kalitesi vb. ölçütler üzerinden analiz edilmiştir. Yapılan analiz sonucunda, ENVI-met, ANSYS Fluent, RayMan, UMEP, PALM-4U ve Rhino/ Grasshopper (Ladybug, HoneyBee, DragonFly, Butterfly eklentileri) yazılımları, incelenmiş ve üstünlükleri ve yetersizlikleri, hedeflenen kullanıcı gruplara yönelik olarak, ortaya konmuştur.

Destekleyen Kurum

TMMOB Harita ve Kadastro Mühendisleri Odası

Proje Numarası

49

Kaynakça

  • Adelia, A. S., Nfevat, I., Acero, J. A., Li, S. & Ruefenacht, L. (2020). Tool comparison for urban microclimate modelling. Technical Report https://doi.org/10.3929/ethz-b-000407999
  • Albdour, M. S. & Baranyai, B. (2019). An overview of microclimate tools for predicting the thermal comfort, meteorological parameters and design strategies in outdoor spaces. Pollack Periodica, 14(2), 109–118.
  • Bruse, M. & Fleer, H. (1998). Simulating Surface-Plant-Air Interactions Inside Urban Environments with A Three Dimensional Numerical Model. Environmental Modelling and Software, 13(3–4), 373–384. https://doi.org/10.1016/S1364-8152(98)00042-5
  • Gál, C. V. & Kántor, N. (2020). Urban Climate Modeling Mean Radiant Temperature in Outdoor Spaces, A Comparative Numerical Simulation and Validation Study. Urban Climate, 32, 100571.
  • Grimmond, C.S.B., Roth, M., Oke, T.R., Au, Y.C., Best, M., Betts, R., Carmichael, G., Cleugh, H., Dabberdt W., Emmanuel, R., Freitas, E., Fortuniak, K., Hanna, S., Klein, P., Kalkstein, L.S., Liu, C.H., Nickson, A., Pearlmutter, D., Sailor, D. & Voogt, J. (2010). Climate and More Sustainable Cities: Climate Information for Improved Planning and Management of Cities (Producers/Capabilities Perspective). Procedia Environmental Sciences, 1, 247–274.
  • Hunt, A. & Watkiss, P. (2011). Climate change impacts and adaptation in cities: A review of the literature. Climatic Change, 104(1), 13–49.
  • Jänicke, B. (2018). Review of Models and Tools for Climate-sensitive Urban Design Background Lack of an overview. 10th International Conference on Urban Climate (ICUC 10), 6 – 10 Ağustos 2018, New York.
  • Lindberg, F., Grimmond, C. S. B., Gabey, A., Huang, B., Kent, C. W., Sun, T., Theeuwes, N. E., Järvi, L., Ward, H. C., Capel-Timms, I., Chang, Y., Jonsson, P., Krave, N., Liu, D., Meyer, D., Olofson, K. F. G., Tan, J., Wästberg, D., Xue, L. & Zhang, Z. (2018). Urban Multi-scale Environmental Predictor (UMEP): An integrated tool for city-based climate services. Environmental Modelling and Software, 99, 70–87.
  • Maleki, A., Kiesel, K., Vuckovic, M. & Mahdavi, A. (2014). Empirical and Computational Issues of Microclimate Simulation Empirical and Computational Issues of Microclimate Simulation. Information and Communication Technology, 14-17 Nisan 2014, Bali.
  • Matzarakis, A. (2012). Linking urban micro scale models- The models RayMan and SkyHelios. 8th International Conference on Urban Climates, 10-13 Mayıs 2012, Dublin.
  • Matzarakis, A. (2012). RayMan and SkyHelios model- two tools for urban climatology. 8. Fachtagung Des Ausschusses Umweltmeteorologie Der Deutschen Meteorologischen Gesellschaft, Leipzig.
  • Roudsari, M. S., Pak, M., Smith, A. & Gill, G. (2013). Ladybug: A Parametric Environmental Plugin for Grasshopper to Help Designers Create an Environmentally-Conscious Design. 13th Conference of International Buildings Performance Simulation Association, 26-28 Ağustos 2013, Chambery.
  • Smyth, A. & Dumanski, Julian. (1995). A framework for evaluating sustainable land management. Canadian Journal of Soil Science, 75. 401-406
  • Taleghani, M. (2018). Outdoor thermal comfort by different heat mitigation strategies- A review. Renewable and Sustainable Energy Reviews, 81, 2011–2018.
  • Tsoka, S., Tsikaloudaki, A. & Theodosiou, T. (2018). Analyzing the ENVI-met microclimate model’s performance and assessing cool materials and urban vegetation applications–A review. Sustainable Cities and Society, 43, 55–76.
  • Tsoka, S., Tsikaloudaki, K., & Theodosiou, T. (2020). Investigation Methods and Mitigation. Energies, 2020, 13, 1414.
  • Tuğaç, Ç. (2018). Türkiye İçin İklim Değişikliğine Dayanıklı Kentsel Planlama Modeli Önerisi: Eko-Kompakt Kentler. Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, 32(4), 1047–1068.
  • UNEP, & UN-Habitat. (2009). Climate Change: The Role of Cities. Involvement- Influence- Implementation. https://unhabitat.org/ [Erişim Tarihi: 29.9.2021]
  • Winkler, M., Steuri, B., Stalder, S. & Antretter, F. (2020). Evaluating the Practicability of the new Urban Climate Model PALM-4U using a Living-Lab Approach. 12th Nordic Symposium on Building Physics, 6-9 Eylül 2020, Tallin.
  • Wong, N. H., Jusuf, S. K. & Tan, C. L. (2011). Integrated urban microclimate assessment method as a sustainable urban development and urban design tool. Landscape and Urban Planning, 100(4).

Evaluation of Urban Microclimate Modeling Tools

Yıl 2021, Cilt: 3 Sayı: 2, 79 - 86, 29.11.2021
https://doi.org/10.51765/tayod.943829

Öz

Urban areas are vulnerable to the negative effects of climate change and are therefore highly exposed to them, so one of the important topics on the agenda in the urban planning process is to align cities with the aim of reducing the effects of climate change. It is important to model urban microclimate with high precision in order to measure and reduce the impact of the urban climate to identify problems. By virtue of previous studies, many methods and applications for climate modeling have been developed. They serve different purposes, their output and the parameters used for modeling also differ, so, when choosing the application, the intended use must be clearly defined. The main objective of this study is to evaluate microclimate modeling applications that can be used in the urban planning and design process. The evaluation has been performed on the applications by taking into account the intended use (professional, educational, etc.) of each actor involved in the land management process. The software applications mentioned in the literature are elaborated in relation to the use of parameters such as temperature, comfort, scale, wind speed/direction, etc. Consequently, the software programs ENVI-met, ANSYS Fluent, RayMan, UMEP, PALM4U, and Rhino / Grasshopper (Ladybug, HoneyBee, DragonFly, Butterfly Plugins) have been examined and their advantages and disadvantages for the target user are unveiled.

Proje Numarası

49

Kaynakça

  • Adelia, A. S., Nfevat, I., Acero, J. A., Li, S. & Ruefenacht, L. (2020). Tool comparison for urban microclimate modelling. Technical Report https://doi.org/10.3929/ethz-b-000407999
  • Albdour, M. S. & Baranyai, B. (2019). An overview of microclimate tools for predicting the thermal comfort, meteorological parameters and design strategies in outdoor spaces. Pollack Periodica, 14(2), 109–118.
  • Bruse, M. & Fleer, H. (1998). Simulating Surface-Plant-Air Interactions Inside Urban Environments with A Three Dimensional Numerical Model. Environmental Modelling and Software, 13(3–4), 373–384. https://doi.org/10.1016/S1364-8152(98)00042-5
  • Gál, C. V. & Kántor, N. (2020). Urban Climate Modeling Mean Radiant Temperature in Outdoor Spaces, A Comparative Numerical Simulation and Validation Study. Urban Climate, 32, 100571.
  • Grimmond, C.S.B., Roth, M., Oke, T.R., Au, Y.C., Best, M., Betts, R., Carmichael, G., Cleugh, H., Dabberdt W., Emmanuel, R., Freitas, E., Fortuniak, K., Hanna, S., Klein, P., Kalkstein, L.S., Liu, C.H., Nickson, A., Pearlmutter, D., Sailor, D. & Voogt, J. (2010). Climate and More Sustainable Cities: Climate Information for Improved Planning and Management of Cities (Producers/Capabilities Perspective). Procedia Environmental Sciences, 1, 247–274.
  • Hunt, A. & Watkiss, P. (2011). Climate change impacts and adaptation in cities: A review of the literature. Climatic Change, 104(1), 13–49.
  • Jänicke, B. (2018). Review of Models and Tools for Climate-sensitive Urban Design Background Lack of an overview. 10th International Conference on Urban Climate (ICUC 10), 6 – 10 Ağustos 2018, New York.
  • Lindberg, F., Grimmond, C. S. B., Gabey, A., Huang, B., Kent, C. W., Sun, T., Theeuwes, N. E., Järvi, L., Ward, H. C., Capel-Timms, I., Chang, Y., Jonsson, P., Krave, N., Liu, D., Meyer, D., Olofson, K. F. G., Tan, J., Wästberg, D., Xue, L. & Zhang, Z. (2018). Urban Multi-scale Environmental Predictor (UMEP): An integrated tool for city-based climate services. Environmental Modelling and Software, 99, 70–87.
  • Maleki, A., Kiesel, K., Vuckovic, M. & Mahdavi, A. (2014). Empirical and Computational Issues of Microclimate Simulation Empirical and Computational Issues of Microclimate Simulation. Information and Communication Technology, 14-17 Nisan 2014, Bali.
  • Matzarakis, A. (2012). Linking urban micro scale models- The models RayMan and SkyHelios. 8th International Conference on Urban Climates, 10-13 Mayıs 2012, Dublin.
  • Matzarakis, A. (2012). RayMan and SkyHelios model- two tools for urban climatology. 8. Fachtagung Des Ausschusses Umweltmeteorologie Der Deutschen Meteorologischen Gesellschaft, Leipzig.
  • Roudsari, M. S., Pak, M., Smith, A. & Gill, G. (2013). Ladybug: A Parametric Environmental Plugin for Grasshopper to Help Designers Create an Environmentally-Conscious Design. 13th Conference of International Buildings Performance Simulation Association, 26-28 Ağustos 2013, Chambery.
  • Smyth, A. & Dumanski, Julian. (1995). A framework for evaluating sustainable land management. Canadian Journal of Soil Science, 75. 401-406
  • Taleghani, M. (2018). Outdoor thermal comfort by different heat mitigation strategies- A review. Renewable and Sustainable Energy Reviews, 81, 2011–2018.
  • Tsoka, S., Tsikaloudaki, A. & Theodosiou, T. (2018). Analyzing the ENVI-met microclimate model’s performance and assessing cool materials and urban vegetation applications–A review. Sustainable Cities and Society, 43, 55–76.
  • Tsoka, S., Tsikaloudaki, K., & Theodosiou, T. (2020). Investigation Methods and Mitigation. Energies, 2020, 13, 1414.
  • Tuğaç, Ç. (2018). Türkiye İçin İklim Değişikliğine Dayanıklı Kentsel Planlama Modeli Önerisi: Eko-Kompakt Kentler. Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, 32(4), 1047–1068.
  • UNEP, & UN-Habitat. (2009). Climate Change: The Role of Cities. Involvement- Influence- Implementation. https://unhabitat.org/ [Erişim Tarihi: 29.9.2021]
  • Winkler, M., Steuri, B., Stalder, S. & Antretter, F. (2020). Evaluating the Practicability of the new Urban Climate Model PALM-4U using a Living-Lab Approach. 12th Nordic Symposium on Building Physics, 6-9 Eylül 2020, Tallin.
  • Wong, N. H., Jusuf, S. K. & Tan, C. L. (2011). Integrated urban microclimate assessment method as a sustainable urban development and urban design tool. Landscape and Urban Planning, 100(4).
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makaleleri
Yazarlar

Bihter Kızılca 0000-0002-7490-7831

Proje Numarası 49
Yayımlanma Tarihi 29 Kasım 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 3 Sayı: 2

Kaynak Göster

APA Kızılca, B. (2021). Kentsel Mikro İklim Modelleme Araçlarının Değerlendirilmesi. Türkiye Arazi Yönetimi Dergisi, 3(2), 79-86. https://doi.org/10.51765/tayod.943829