Araştırma Makalesi
BibTex RIS Kaynak Göster

Effect of some soil physical parameters on soil respiration and microbial biomass carbon

Yıl 2025, Cilt: 13 Sayı: 2, 102 - 109, 29.12.2025
https://doi.org/10.33409/tbbbd.1717614

Öz

In this study, the relationships between some physical (moisture, temperature and penetration resistance) and biological (respiration-CO2 and microbial biomass carbon-MBC) properties were investigated for 0-15 and 15-30 cm soil depth in different land uses with dry and irrigated agriculture. The moisture, temperature and penetration resistance contents of the soils varied between 2-79-16.66%, 14.00-26.00% and 0.40-4.46 MPa in the study,. The average CO2 and microbial biomass carbon levels of the soils were found to be 0.91 mg CO2/g dry soil and 54 mgMBC/g dry soil. Increases in microbial biomass carbon (r: 0.264; r: 0.282) were detected with increases in soil temperature and moisture content. Soil temperature and microbial biomass carbon were found to be the parameters that showed significant variation depending on soil depth. The properties that showed significant variation depending on different land uses were determined as soil respiration and microbial biomass carbon (p<0.05). No results were found to show that soil penetration resistance has an effect on its biological properties. The study revealed that soil moisture and temperature have an effect on biological parameters and that they also vary depending on land uses.

Proje Numarası

1919B012334259

Kaynakça

  • Alaboz P, Işıldar A A, 2021. Pedotransfer functions for estimation of soil moisture constants from penetration resistance measurements and some soil properties. Journal of Agricultural Sci. 27(2): 138-145.
  • Anderson JPE, Domsch KH, 1978. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biology and Biochemistry, 10(3): 215-221.
  • Aydemir O, Akgül M, Canbolat MY, Işıldar AA, 2005. Toprak bilgisi. Süleyman Demirel Üniversitesi Ziraat Fakültesi Yayınları No:10.
  • Bai ZG, Dent DL, Olsson L, Schaepman ME, 2008. Proxy global assessment of land degradation. Soil Use Manage. 24(3): 223-234.
  • Borowik A, Wyszkowska J, 2016. Soil moisture as a factor affecting the microbiological and biochemical activity of soil. Plant Soil Environ. 62(6): 250-255.
  • Brockett BF, Prescott CE, Grayston SJ, 2012. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biol Biochem. 44(1):9-20.
  • Demiralay M, 1993. Toprak Fiziksel Analizleri. Erzurum: Atatürk Üniversitesi Ziraat Fakültesi Yayınları.
  • Feng W, Zou X, Schaefer D, 2009. Above- and belowground carbon inputs affect seasonal variations of soil microbial biomass in a subtropical monsoon forest of southwest China. Soil Biol Biochem. 41,978–983 https://doi.org/10.1016/j. soilbio.2008.10.002.
  • Ferreira CS, Seifollahi-Aghmiuni S, Destouni G, Ghajarnia N, Kalantari Z, 2022. Soil degradation in the European Mediterranean region: Processes, status and consequences. Science of the Total Environment, 805, 150106.
  • Fterich A, Mahdhi M, Mars M, 2014. The effects of Acacia tortilis subsp. raddiana, soil texture and soil depth on soil microbial and biochemical characteristics in arid zones of Tunisia. Land Degrad Dev.25(2): 143-152.
  • Grunwald S, Lowery B, Rooney DJ, McSweeney K, 2001. Profilo Cone Penetrometer Data Used to Distinguish Between Soil Materials. Soil Tillage Res. 62: 27-40.
  • Hirte J, Leue M, Leinweber P, 2017. Impact of compaction and organic matter addition on pore structure, microbial biomass and enzyme activity of arable soils. J. Plant Nutr. Soil Sci. 180(2): 168-176.
  • Isermayer H, 1952. Eine Einfache Methode zur Bestimmung der Bodenatmung und der Karbonate im Böden Z. Pflanzenaehr. Bodenkd. 5: 56-60.
  • Ishak L, McHenry M, Brown P, 2014. Soil compaction and its effects on soil microbial communities in Capsicum growing soil. Paper presented at the XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes, (IHC2014), 1123. https://doi.org/10.17660/ActaHortic.2016.1123.17
  • Jin Z, Qi, Y, Dong Y, 2007. Diurnal and seasonal dynamics of soil respiration in desert shrubland of Artemisia ordosica on Ordos Plateau of Inner Mongolia. China. J For Res 18:231–235. https://doi.org/10.1007/s11276-007-0047-3
  • Lai L, Zhao X, Jiang L, Wang Y, Luo L, Zheng Y, Rimmington G M, 2012. Soil respiration in different agricultural and natural ecosystems in an arid region.
  • Li SY, Wu JS, Yang LZ, Li DC, Wu XP, 2017. Microbial community structure and enzyme activities in response to temperature and moisture gradients in a paddy soil. Sci. Rep. 7(1): 1-11.
  • Ma S, Chen J, Ji C, Liu C, Wang S, 2019. Temperature sensitivity of soil respiration is affected by prevailing environmental conditions during the six-year warming and nitrogen addition in a meadow steppe. Soil Biol Biochem.130: 52-60.
  • Meena A, Hanief M, Dinakaran J, Rao KS, 2020. Soil moisture controls the spatiotemporal pattern of soil respiration under different land use systems in semiarid ecosystems of Delhi, India. Ecol Process 9:15 https://doi.org/10.1186/s13717-020-0218-0 Minitab, 2025. https://www.minitab.com/en-us/. Erişim tarihi: 24.11.2025.
  • Naylor D, McClure R, Jansson J, 2022. Trends in microbial community composition and function by soil depth. Microorganisms, 10(3), 540.
  • Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, Jones JW, 2014. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl. Acad. Sci. U.S.A. 111(9): 3268-3273.
  • Schindlbacher A, Rodler A, Kuffner M, Kitzler B, Sessitsch A, Zechmeister-Boltenstern S, 2011. Experimental warming effects on the microbial community of a temperate mountain forest soil. Soil Biol Biochem. 43(7): 1417-1425.
  • Singh G, Bhattacharyya R, Das TK, Sharma AR, Ghosh A, Das S, Jha P, 2018. Crop rotation and residue management effects on soil enzyme activities, glomalin and aggregate stability under zero tillage in the Indo-Gangetic Plain's. Soil Tillage Res. 184: 291-300.
  • Sun T, Wang Y, Lucas-Borja ME, Jing X, Feng W, 2021. Divergent vertical distributions of microbial biomass with soil depth among groups and land uses. Journal of Environmental Management, 292: 112755.
  • Turgut B, Öztaş T, Aksakal EL, 2010. Bazı Toprak Özelliklerinin Penetrasyon Direnç Değerlerine Doğrudan ve Dolaylı Etkileri. Süleyman Demirel Üniv. Ziraat Fak. Derg. 5(2): 45-53.
  • Walker TW, Kaiser C, Strasser F, Herbold C W, Leblans NI, Woebken D, Janssens IA, Sigurdsson BD, Richter, A. 2018. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nature climate chan. 8(10): 885-889.
  • Wei H, Chen X, Xiao G, Guenet B, Vicca S, Shen W, 2015. Are variations in heterotrophic soil respiration related to changes in substrate availability and microbial biomass carbon in the subtropical forests? Sci Rep 5,18370 https://doi.org/10.1038/srep18370
  • Whalley WR, Watts CW, Gregory AS, Mooney SJ, Clark LJ, Whitmore AP, 2008. The effect of soil strength on yield of wheat. Plant Soil. 306(1-2): 237-247.
  • Xu Y, Seshadri B, Sarkar B, Rumpel C, Sparks D, Bolan NS, 2018. Microbial control of soil carbon turnover. In: The Future of Soil Carbon. Its Conservation and Formation, pp 165–194 https://doi.org/10.1016/B978-0-12-811687-6.00006-7
  • Yang K, Zhu J, Zhang M, Yan Q, Sun OJ, 2010. Soil microbial biomass carbon and nitrogen in forest ecosystems of Northeast China: a comparison between natural secondary forest and larch plantation. J Plant Ecol 3:175–182 https://doi.org/10.1093/jpe/rtq022
  • Zhang N, Xiao Q, Guo Y, Chen F, Sun P, Miao Y, Zhang C 2025. Soil Respiration Characteristics and Karst Carbon Sink Potential in Woodlands and Grasslands. Forests, 16(3), 424.

Bazı toprak fiziksel parametrelerinin toprak solunumu ve mikrobiyal biyokütle karbonuna etkisi

Yıl 2025, Cilt: 13 Sayı: 2, 102 - 109, 29.12.2025
https://doi.org/10.33409/tbbbd.1717614

Öz

Bu çalışmada; kuru ve sulu tarım yapılan farklı arazi kullanımlarında 0-15 ve 15-30 cm toprak derinliği için bazı fiziksel (Nem, sıcaklık ve penetrasyon direnci) ve biyolojik (Solunum- CO2 ve mikrobiyal biyokütle karbonu-MBC) özellikler arasındaki ilişkiler incelenmiştir. Çalışmada toprakların nem, sıcaklık ve penetrasyon direnci içerikleri %2-79-16.66, %14.00-26.00 ve 0.40-4.46 MPa arasında değişkenlik sergilemiştir. Toprakların ortalama CO2 ve mikrobiyal biyokütle karbonu seviyeleri ise 0.91 mg CO2/g kuru toprak ve 54 mg MBC/g kuru toprak olarak bulunmuştur. Toprak sıcaklığı ve nem içeriğindeki artışlarla mikrobiyal biyokütle karbonunda da artışlar (r:0.264; r:0.282) tespit edilmiştir. Toprak derinliğine bağlı önemli seviyede değişkenlik gösteren parametreler toprak sıcaklığı ve mikrobiyal biyokütle karbon olarak bulunmuştur. Farklı arazi kullanımlarına bağlı önemli seviyede değişkenlik gösteren özellikler toprak solunumu ve mikrobiyal biyokütle karbon olarak belirlenmiştir (p<0.05). Toprak penetrasyon direncinin biyolojik özellikleri üzerinde etkili olduğunu gösteren sonuçlara ulaşılamamıştır. Çalışma sonucunda toprak nemi ve sıcaklığının biyolojik parametreler üzerinde etkili olduğu arazi kullanımlarına bağlı olarak da değişkenlikler sergilediği ortaya konmuştur.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

1919B012334259

Teşekkür

Bu çalışma TÜBİTAK- 2209/A Üniversite Öğrencileri Araştırma Projeleri Destekleme Programı tarafından verilen destekle yürütülmüştür.

Kaynakça

  • Alaboz P, Işıldar A A, 2021. Pedotransfer functions for estimation of soil moisture constants from penetration resistance measurements and some soil properties. Journal of Agricultural Sci. 27(2): 138-145.
  • Anderson JPE, Domsch KH, 1978. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biology and Biochemistry, 10(3): 215-221.
  • Aydemir O, Akgül M, Canbolat MY, Işıldar AA, 2005. Toprak bilgisi. Süleyman Demirel Üniversitesi Ziraat Fakültesi Yayınları No:10.
  • Bai ZG, Dent DL, Olsson L, Schaepman ME, 2008. Proxy global assessment of land degradation. Soil Use Manage. 24(3): 223-234.
  • Borowik A, Wyszkowska J, 2016. Soil moisture as a factor affecting the microbiological and biochemical activity of soil. Plant Soil Environ. 62(6): 250-255.
  • Brockett BF, Prescott CE, Grayston SJ, 2012. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biol Biochem. 44(1):9-20.
  • Demiralay M, 1993. Toprak Fiziksel Analizleri. Erzurum: Atatürk Üniversitesi Ziraat Fakültesi Yayınları.
  • Feng W, Zou X, Schaefer D, 2009. Above- and belowground carbon inputs affect seasonal variations of soil microbial biomass in a subtropical monsoon forest of southwest China. Soil Biol Biochem. 41,978–983 https://doi.org/10.1016/j. soilbio.2008.10.002.
  • Ferreira CS, Seifollahi-Aghmiuni S, Destouni G, Ghajarnia N, Kalantari Z, 2022. Soil degradation in the European Mediterranean region: Processes, status and consequences. Science of the Total Environment, 805, 150106.
  • Fterich A, Mahdhi M, Mars M, 2014. The effects of Acacia tortilis subsp. raddiana, soil texture and soil depth on soil microbial and biochemical characteristics in arid zones of Tunisia. Land Degrad Dev.25(2): 143-152.
  • Grunwald S, Lowery B, Rooney DJ, McSweeney K, 2001. Profilo Cone Penetrometer Data Used to Distinguish Between Soil Materials. Soil Tillage Res. 62: 27-40.
  • Hirte J, Leue M, Leinweber P, 2017. Impact of compaction and organic matter addition on pore structure, microbial biomass and enzyme activity of arable soils. J. Plant Nutr. Soil Sci. 180(2): 168-176.
  • Isermayer H, 1952. Eine Einfache Methode zur Bestimmung der Bodenatmung und der Karbonate im Böden Z. Pflanzenaehr. Bodenkd. 5: 56-60.
  • Ishak L, McHenry M, Brown P, 2014. Soil compaction and its effects on soil microbial communities in Capsicum growing soil. Paper presented at the XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes, (IHC2014), 1123. https://doi.org/10.17660/ActaHortic.2016.1123.17
  • Jin Z, Qi, Y, Dong Y, 2007. Diurnal and seasonal dynamics of soil respiration in desert shrubland of Artemisia ordosica on Ordos Plateau of Inner Mongolia. China. J For Res 18:231–235. https://doi.org/10.1007/s11276-007-0047-3
  • Lai L, Zhao X, Jiang L, Wang Y, Luo L, Zheng Y, Rimmington G M, 2012. Soil respiration in different agricultural and natural ecosystems in an arid region.
  • Li SY, Wu JS, Yang LZ, Li DC, Wu XP, 2017. Microbial community structure and enzyme activities in response to temperature and moisture gradients in a paddy soil. Sci. Rep. 7(1): 1-11.
  • Ma S, Chen J, Ji C, Liu C, Wang S, 2019. Temperature sensitivity of soil respiration is affected by prevailing environmental conditions during the six-year warming and nitrogen addition in a meadow steppe. Soil Biol Biochem.130: 52-60.
  • Meena A, Hanief M, Dinakaran J, Rao KS, 2020. Soil moisture controls the spatiotemporal pattern of soil respiration under different land use systems in semiarid ecosystems of Delhi, India. Ecol Process 9:15 https://doi.org/10.1186/s13717-020-0218-0 Minitab, 2025. https://www.minitab.com/en-us/. Erişim tarihi: 24.11.2025.
  • Naylor D, McClure R, Jansson J, 2022. Trends in microbial community composition and function by soil depth. Microorganisms, 10(3), 540.
  • Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, Jones JW, 2014. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl. Acad. Sci. U.S.A. 111(9): 3268-3273.
  • Schindlbacher A, Rodler A, Kuffner M, Kitzler B, Sessitsch A, Zechmeister-Boltenstern S, 2011. Experimental warming effects on the microbial community of a temperate mountain forest soil. Soil Biol Biochem. 43(7): 1417-1425.
  • Singh G, Bhattacharyya R, Das TK, Sharma AR, Ghosh A, Das S, Jha P, 2018. Crop rotation and residue management effects on soil enzyme activities, glomalin and aggregate stability under zero tillage in the Indo-Gangetic Plain's. Soil Tillage Res. 184: 291-300.
  • Sun T, Wang Y, Lucas-Borja ME, Jing X, Feng W, 2021. Divergent vertical distributions of microbial biomass with soil depth among groups and land uses. Journal of Environmental Management, 292: 112755.
  • Turgut B, Öztaş T, Aksakal EL, 2010. Bazı Toprak Özelliklerinin Penetrasyon Direnç Değerlerine Doğrudan ve Dolaylı Etkileri. Süleyman Demirel Üniv. Ziraat Fak. Derg. 5(2): 45-53.
  • Walker TW, Kaiser C, Strasser F, Herbold C W, Leblans NI, Woebken D, Janssens IA, Sigurdsson BD, Richter, A. 2018. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nature climate chan. 8(10): 885-889.
  • Wei H, Chen X, Xiao G, Guenet B, Vicca S, Shen W, 2015. Are variations in heterotrophic soil respiration related to changes in substrate availability and microbial biomass carbon in the subtropical forests? Sci Rep 5,18370 https://doi.org/10.1038/srep18370
  • Whalley WR, Watts CW, Gregory AS, Mooney SJ, Clark LJ, Whitmore AP, 2008. The effect of soil strength on yield of wheat. Plant Soil. 306(1-2): 237-247.
  • Xu Y, Seshadri B, Sarkar B, Rumpel C, Sparks D, Bolan NS, 2018. Microbial control of soil carbon turnover. In: The Future of Soil Carbon. Its Conservation and Formation, pp 165–194 https://doi.org/10.1016/B978-0-12-811687-6.00006-7
  • Yang K, Zhu J, Zhang M, Yan Q, Sun OJ, 2010. Soil microbial biomass carbon and nitrogen in forest ecosystems of Northeast China: a comparison between natural secondary forest and larch plantation. J Plant Ecol 3:175–182 https://doi.org/10.1093/jpe/rtq022
  • Zhang N, Xiao Q, Guo Y, Chen F, Sun P, Miao Y, Zhang C 2025. Soil Respiration Characteristics and Karst Carbon Sink Potential in Woodlands and Grasslands. Forests, 16(3), 424.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Toprak Fiziği
Bölüm Araştırma Makalesi
Yazarlar

Dudu Cengiz 0009-0009-0781-6292

Pelin Alaboz 0000-0001-7345-938X

Proje Numarası 1919B012334259
Gönderilme Tarihi 11 Haziran 2025
Kabul Tarihi 3 Aralık 2025
Yayımlanma Tarihi 29 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 2

Kaynak Göster

APA Cengiz, D., & Alaboz, P. (2025). Bazı toprak fiziksel parametrelerinin toprak solunumu ve mikrobiyal biyokütle karbonuna etkisi. Toprak Bilimi ve Bitki Besleme Dergisi, 13(2), 102-109. https://doi.org/10.33409/tbbbd.1717614
AMA Cengiz D, Alaboz P. Bazı toprak fiziksel parametrelerinin toprak solunumu ve mikrobiyal biyokütle karbonuna etkisi. tbbbd. Aralık 2025;13(2):102-109. doi:10.33409/tbbbd.1717614
Chicago Cengiz, Dudu, ve Pelin Alaboz. “Bazı toprak fiziksel parametrelerinin toprak solunumu ve mikrobiyal biyokütle karbonuna etkisi”. Toprak Bilimi ve Bitki Besleme Dergisi 13, sy. 2 (Aralık 2025): 102-9. https://doi.org/10.33409/tbbbd.1717614.
EndNote Cengiz D, Alaboz P (01 Aralık 2025) Bazı toprak fiziksel parametrelerinin toprak solunumu ve mikrobiyal biyokütle karbonuna etkisi. Toprak Bilimi ve Bitki Besleme Dergisi 13 2 102–109.
IEEE D. Cengiz ve P. Alaboz, “Bazı toprak fiziksel parametrelerinin toprak solunumu ve mikrobiyal biyokütle karbonuna etkisi”, tbbbd, c. 13, sy. 2, ss. 102–109, 2025, doi: 10.33409/tbbbd.1717614.
ISNAD Cengiz, Dudu - Alaboz, Pelin. “Bazı toprak fiziksel parametrelerinin toprak solunumu ve mikrobiyal biyokütle karbonuna etkisi”. Toprak Bilimi ve Bitki Besleme Dergisi 13/2 (Aralık2025), 102-109. https://doi.org/10.33409/tbbbd.1717614.
JAMA Cengiz D, Alaboz P. Bazı toprak fiziksel parametrelerinin toprak solunumu ve mikrobiyal biyokütle karbonuna etkisi. tbbbd. 2025;13:102–109.
MLA Cengiz, Dudu ve Pelin Alaboz. “Bazı toprak fiziksel parametrelerinin toprak solunumu ve mikrobiyal biyokütle karbonuna etkisi”. Toprak Bilimi ve Bitki Besleme Dergisi, c. 13, sy. 2, 2025, ss. 102-9, doi:10.33409/tbbbd.1717614.
Vancouver Cengiz D, Alaboz P. Bazı toprak fiziksel parametrelerinin toprak solunumu ve mikrobiyal biyokütle karbonuna etkisi. tbbbd. 2025;13(2):102-9.