Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of the relationships between soil phosphorus forms and related enzymes and their spatial variations: A case study in Zonguldak hazelnut fields

Yıl 2025, Cilt: 13 Sayı: 2, 126 - 135, 29.12.2025

Öz

Phosphorus (P) is an essential element required for plant growth, present in very low concentrations in soil solution and rarely sufficient for optimum plant growth. The aim of this study was to obtain basic information about the variability of soil P forms concentration and phosphatase activities in hazelnut growing areas and to investigate the relationship between phosphorus forms and related enzymes and some physicochemical properties. In the study, soil samples were taken from hazelnut planting areas from 0-30 cm depth. Available phosphorus (eP), calcium-bound phosphorus (Ca_P), iron-bound phosphorus (Fe_P), aluminum-bound phosphorus (Al_P), soluble and weakly bound phosphorus (Psoluble), reductant-soluble phosphorus (Preductant) fractions, alkaline phosphatase (ALPA) and acid phosphatase enzyme (ACPA) analyses were performed in the soil samples.The data were evaluated using classical statistical and geostatistical methods. In the study, the general order of change of inorganic phosphorus fractions was determined as Ca_P> Al_P> Preductant> Fe_P>Psoluble. In the study, statistically significant relationships were determined between the amount of available P in soils and some soil properties and phosphorus fractions.

Destekleyen Kurum

Tarımsal Araştırmalar ve Politikalar Genel Müdürlüğü

Teşekkür

Bu çalışma, TAGEM/TSKAD/17/A09/P02/02 “Tarımsal Araştırmalar ve Politikalar Genel Müdürlüğü” Proje No'lu proje kapsamında üretilmiştir.

Kaynakça

  • Abdala DB, da Silva IR, Vergütz L, Sparks DL, 2015. Long-term manure application effects on phosphorus speciation, kinetics and distribution in highly weathered agricultural soils. Chemosphere, 119, 504-514.
  • Alovisi AMT, Neto AEF, Serra AP, Alovisi AA, Tokura LK., Lourente, ERP, da Silva RS, da Silva CFB, Fernandes JS, 2016. Phosphorus and Silicon Fertilizer Rates Effects on Dynamics of Soil Phosphorus Fractions in Oxisol Under Common Bean Cultivation. African Journal of Agricultural Research, 11(30), 2697-2707.
  • Atreya KS, Sharma RM, Bajracharya NP, 2008. Developing a sustainable agro-system for central Nepal using reduced tillage and straw mulching. J Environ Manag, 88:547–555.
  • Barton AP, Fullen MA, Mitchell DJ, 2004. Effects of soil conservation measures on erosion rates and crop productivity on subtropical Ultisols in Yunnan province, China. Agric Ecosyst Environ, 104: 343–357.
  • Bouyoucos GJ, 1951. A recalibration of the hydrometer method for making mechanical analysis of soils. Agron J, 43(9):434–438.
  • Burrough PA, McDonnell RA,1998. Principles of Geographical Information Systems. Oxford, Oxford University Press.
  • Cambardella CA, Moorman TB, Novak JM, Parkin TB, Karlen DL, Turco RF, Konopka AE, 1994. Field-scale variability of soil properties in Central Iowa soils. Soil Sci Soc Am J, 58:1501–1511.
  • Chen H, 2003. Phosphatase activity and P fractions in soils of an 18-year-old Chinese fir (Cunninghamia lanceolata) plantation. Forest Ecology and Management, 178(3), 301-310.
  • Fageria NK, 2008.The use of nutrients in crop plants. CRC Press. New York. 2008; 448.
  • FAO, 1990. Micronutrient. Assessment at the Country Level: An International Study . FAO Soil Bulletin by Mikko Sillanpaa, Rome.
  • Geypens M, Vanongeval L, Vogels N, Meykens J, 1999. Spatial variability of agricultural fertility parameters in a gleyic podzol of Belgium. Precis Agric, 1:319–326.
  • Hangul EG, 2020. Climatic Features of Zonguldak and Devrek. Marmara University, Institute of Social Sciences, Department of Geography, Department of Geography, Master Science thesis, İstanbul.
  • Hedley MJ, Stewart JWB, Chauhan BS, 1982. Changes in inorganic and organic soil-phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal, 46: 970-976.
  • Hui D, Mayes MA,Wang G, 2013. Kinetic parameters of phosphatase: a quantitative synthesis. Soil Biol Biochem, 65:105–113.
  • Kaiser DE, Mallarino AP, Haq MU, 2009. Runoff phosphorus loss immediately after poultry manure application as influenced by the application rate and tillage. J Environ Qual, 33:299–308.
  • Keshavarzı A, Sarmadian A, 2012. Mapping of spatial distribution of soil salinity and alkalinity in a semi-arid region. Annals of Warsaw University of Life Sciences, Land Reclamation, 44(1): 3–14.
  • Kızılkaya R, Bayraklı F, Sürücü A, 2007. Relationship between phosphatase activity and phosphorus fractions in agricultural soils.İnternational Journal of Soil Science, 2 (2):107-118.
  • Korkmaz K, 2005. Kireçli Toprakların Fosfor Durumlarının Belirlenmesi ve Fosfor Uygulamasının Mısır Verimine Etkisi. Doktora Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, 136s, Adana.
  • Kovar JL, Pierzynski GM, 2009. Methods of phosphorus analysis for soils, sediments, residuals, and waters second edition. Southern cooperative series bulletin, 408.
  • Kuo S, 1996. Phosphorus. In: Sparks, DL (ed.). Methods of soil analysis, Part 3, Chemical methods. Soil Science Society of America, Series No: 5, WI, USA. pp. 869-920.
  • Margalef O, Sardans J, Maspons J, Molowny‐Horas R, Fernández‐Martínez M, Janssens IA, Peñuelas J. 2021. The effect of global change on soil phosphatase activity. Global Change Biology, 27(22), 5989-6003.
  • Marklein AR, Houlton BZ, 2012. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytologist, 193(3), 696-704.
  • Nelson DW, Sommers LE, 1982. Total carbon, organic carbon, and or¬ganic matter. In: Page AL, Miller RH, Keeney DR, editors. Methods of Soil Analysis, Part 2, 2nd ed. Chemical and Microbiological Properties. Madison, WI: Agron, p. 539–579.
  • Olsen SR, Cole CV, Watanabe FS, Dean LA, 1954. Estimation of avail¬able phosphorus in soils by extraction with sodium bicarbonate. Circular, 939:19.
  • Olibone D, Rosolem CA, 2010. Phosphate fertilization and phosphorus forms under no-till. Sci Agric 67:465–471 Ribaudo MO, Gollehon NR, Agapoff J (2003) Land application of manure by animal feeding operations: is more land needed? J Soil Water Conserv, 62:375–389.
  • Pirmoradian N, Rezaei M, Davatgar N, Tajdari K, Abolpour B, 2010. Comparing of interpolation methods in rice cultivation vulnerability mapping due to groundwater quality in Guilan, north of Iran. International Conference on Environmental Engineering and Applications (ICEEA) 147– 150, Singapore.
  • Rawajfih Z, Khresat S, Ryan J, 2010. Soil Phosphorus Fractions in Calcareous Vertisols and Aridisols of Northern Jordan. Jordan Journal of Agricultural Sciences, 6(3), 411-422.
  • Ribaudo M, Kaplan JD, Christensen LA, Gollehon N, Johansson R, Breneman VE, Peters M, 2003. Manure management for water quality costs to animal feeding operations of applying manure nutrients to land. USDA-ERS Agricultural Economic Report, 824.
  • Saito H, McKenna A, Zimmerman DA, Coburn TC, 2005. Geostatistical interpolation of object counts collected from multiple strip transects: ordinary kriging versus finite domain kriging. Stoch. Env. Res. Risk Asst. 19, 71–85.
  • Samadi A, 2006. Contribution of inorganic phosphorus fractions to plant nutrition in alkaline-calcareous soils. J. Agric. Sci. Technol. 8: 77-89.
  • Shen J, Rengel Z, Tang C, Zhang F, 2003. Role of phosphorus nutrition in development of cluster roots and release of carboxylates in soil-grown lupinus albus. Plant and Soil, 248:199-206.
  • Soil Survey Staff, 1992. Procedures for Collecting Soil Samples and Methods of Analysis For Soil Survey. Soil Surv. Invest. Rep. I. U.S. Gov. Print. Office, Washington, DC, USA.
  • Sun B, Zhou S, Zhao Q, 2003. Evaluation of spatial and temporal changes of soil quality based on geostatistical analysis in the hill region of subtropical China. Geoderma, 115:85–99.
  • Tabatabai MA, Bremner JM, 1970. Arylsulfatase activity of soils. Soil Sci Soc Amer J, 34(2):225–229.
  • Tamer N, Namlı A, 2018. Organik ve Organomineral Gübrelerin Toprağın Enzim Aktivitesi İle Buğday Verimi Üzerine Etkileri. Çalıştayı Bildiriler, 81.
  • Ülgen N, Yurtsever N, 1995. Türkiye Gübre ve Gübreleme Rehberi (4. Baskı). T.C. Başbakanlık Köy Hizmetleri Genel Müdürlüğü Toprak ve Gübre Araştırma Enstitüsü Müdürlüğü Yayınları, Genel Yayın No: 209, Teknik Yayınlar No: T.66, s.230, Ankara.
  • Vance CP, Uhde-Stone C, Alllan DL, 2003. Phosphorus acquistation and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol, 157:423–447.
  • Vitousek PM, Porder S, Houlton BZ, Chadwick OA, 2010. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen– phosphorus interactions. Ecol Appl, 20(1):5–15.
  • Voort J, 2010. The effect of carbon on grass-encroachment in the Dutch coastal dunes. Master Thesis Research. Institute for Biodiversity and Ecosystem Dynamic
  • Waldrip, HM, He Z, Griffin TS, 2012. Effects of organic dairy manure on soil phosphatase activity, available soil phosphorus, and growth of sorghum-sudangrass. Soil science, 177(11), 629-637.
  • WRB Recommendations, 2014. Soil Resources Reports 106. Rome: FAO UN.

Toprak fosfor formları ve ilgili enzimler arasındaki ilişkilerinin belirlenmesi ve mekansal değişimleri: Zonguldak fındık alanları örnek bir çalışma

Yıl 2025, Cilt: 13 Sayı: 2, 126 - 135, 29.12.2025

Öz

Fosfor (P), bitki büyümesi için gerekli olan, toprak çözeltisinde çok düşük konsantrasyonda bulunan ve optimum bitki büyümesi için nadiren yeterli olan temel bir elementtir. Bu çalışmanın amacı, fındık yetiştiriciliği yapılan alanlarda toprak P formları konsantrasyonu ve fosfataz aktivitelerinin değişkenliği hakkında temel bilgileri elde etmek, fosfor formları ve ilgili enzimler ile bazı fiziko-kimyasal özellikler arasındaki ilişkiyi incelemektir. Çalışmada toprak örnekleri fındık ekim alanlarından 0-30 cm derinlikten alınmıştır. Alınan toprak örneklerinde yarayışlı fosfor (eP), kalsiyuma bağlı fosfor (Ca_P), demire bağlı fosfor (Fe_P), alüminyuma bağlı fosfor (Al_P), çözünebilir ve zayıf bağlı fosfor (Pçözünür), indergende çözünen fosfor (Pindirgen)fraksiyonları, alkali fosfataz (ALPA) ve asit fosfataz enzimi (ACPA) analizleri ile toprakların bazı fizikokimyasal özellikleri belirlenmiştir. Veriler, klasik istatistiksel ve jeoistatistiksel yöntemler kullanılarak değerlendirilmiştir. Çalışmada genel olarak inorganik fosfor fraksiyonlarının değişim sırası Ca_P> Al_P> Pindirgenen> Fe_P>Pçözünür şeklinde belirlenmiştir. Çalışmada, toprakların yarayışlı P miktarı ile bazı toprak özellikleri ve fosfor fraksiyonları arasında istatistiksel olarak önemli ilişkiler tespit edilmiştir.

Kaynakça

  • Abdala DB, da Silva IR, Vergütz L, Sparks DL, 2015. Long-term manure application effects on phosphorus speciation, kinetics and distribution in highly weathered agricultural soils. Chemosphere, 119, 504-514.
  • Alovisi AMT, Neto AEF, Serra AP, Alovisi AA, Tokura LK., Lourente, ERP, da Silva RS, da Silva CFB, Fernandes JS, 2016. Phosphorus and Silicon Fertilizer Rates Effects on Dynamics of Soil Phosphorus Fractions in Oxisol Under Common Bean Cultivation. African Journal of Agricultural Research, 11(30), 2697-2707.
  • Atreya KS, Sharma RM, Bajracharya NP, 2008. Developing a sustainable agro-system for central Nepal using reduced tillage and straw mulching. J Environ Manag, 88:547–555.
  • Barton AP, Fullen MA, Mitchell DJ, 2004. Effects of soil conservation measures on erosion rates and crop productivity on subtropical Ultisols in Yunnan province, China. Agric Ecosyst Environ, 104: 343–357.
  • Bouyoucos GJ, 1951. A recalibration of the hydrometer method for making mechanical analysis of soils. Agron J, 43(9):434–438.
  • Burrough PA, McDonnell RA,1998. Principles of Geographical Information Systems. Oxford, Oxford University Press.
  • Cambardella CA, Moorman TB, Novak JM, Parkin TB, Karlen DL, Turco RF, Konopka AE, 1994. Field-scale variability of soil properties in Central Iowa soils. Soil Sci Soc Am J, 58:1501–1511.
  • Chen H, 2003. Phosphatase activity and P fractions in soils of an 18-year-old Chinese fir (Cunninghamia lanceolata) plantation. Forest Ecology and Management, 178(3), 301-310.
  • Fageria NK, 2008.The use of nutrients in crop plants. CRC Press. New York. 2008; 448.
  • FAO, 1990. Micronutrient. Assessment at the Country Level: An International Study . FAO Soil Bulletin by Mikko Sillanpaa, Rome.
  • Geypens M, Vanongeval L, Vogels N, Meykens J, 1999. Spatial variability of agricultural fertility parameters in a gleyic podzol of Belgium. Precis Agric, 1:319–326.
  • Hangul EG, 2020. Climatic Features of Zonguldak and Devrek. Marmara University, Institute of Social Sciences, Department of Geography, Department of Geography, Master Science thesis, İstanbul.
  • Hedley MJ, Stewart JWB, Chauhan BS, 1982. Changes in inorganic and organic soil-phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal, 46: 970-976.
  • Hui D, Mayes MA,Wang G, 2013. Kinetic parameters of phosphatase: a quantitative synthesis. Soil Biol Biochem, 65:105–113.
  • Kaiser DE, Mallarino AP, Haq MU, 2009. Runoff phosphorus loss immediately after poultry manure application as influenced by the application rate and tillage. J Environ Qual, 33:299–308.
  • Keshavarzı A, Sarmadian A, 2012. Mapping of spatial distribution of soil salinity and alkalinity in a semi-arid region. Annals of Warsaw University of Life Sciences, Land Reclamation, 44(1): 3–14.
  • Kızılkaya R, Bayraklı F, Sürücü A, 2007. Relationship between phosphatase activity and phosphorus fractions in agricultural soils.İnternational Journal of Soil Science, 2 (2):107-118.
  • Korkmaz K, 2005. Kireçli Toprakların Fosfor Durumlarının Belirlenmesi ve Fosfor Uygulamasının Mısır Verimine Etkisi. Doktora Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, 136s, Adana.
  • Kovar JL, Pierzynski GM, 2009. Methods of phosphorus analysis for soils, sediments, residuals, and waters second edition. Southern cooperative series bulletin, 408.
  • Kuo S, 1996. Phosphorus. In: Sparks, DL (ed.). Methods of soil analysis, Part 3, Chemical methods. Soil Science Society of America, Series No: 5, WI, USA. pp. 869-920.
  • Margalef O, Sardans J, Maspons J, Molowny‐Horas R, Fernández‐Martínez M, Janssens IA, Peñuelas J. 2021. The effect of global change on soil phosphatase activity. Global Change Biology, 27(22), 5989-6003.
  • Marklein AR, Houlton BZ, 2012. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytologist, 193(3), 696-704.
  • Nelson DW, Sommers LE, 1982. Total carbon, organic carbon, and or¬ganic matter. In: Page AL, Miller RH, Keeney DR, editors. Methods of Soil Analysis, Part 2, 2nd ed. Chemical and Microbiological Properties. Madison, WI: Agron, p. 539–579.
  • Olsen SR, Cole CV, Watanabe FS, Dean LA, 1954. Estimation of avail¬able phosphorus in soils by extraction with sodium bicarbonate. Circular, 939:19.
  • Olibone D, Rosolem CA, 2010. Phosphate fertilization and phosphorus forms under no-till. Sci Agric 67:465–471 Ribaudo MO, Gollehon NR, Agapoff J (2003) Land application of manure by animal feeding operations: is more land needed? J Soil Water Conserv, 62:375–389.
  • Pirmoradian N, Rezaei M, Davatgar N, Tajdari K, Abolpour B, 2010. Comparing of interpolation methods in rice cultivation vulnerability mapping due to groundwater quality in Guilan, north of Iran. International Conference on Environmental Engineering and Applications (ICEEA) 147– 150, Singapore.
  • Rawajfih Z, Khresat S, Ryan J, 2010. Soil Phosphorus Fractions in Calcareous Vertisols and Aridisols of Northern Jordan. Jordan Journal of Agricultural Sciences, 6(3), 411-422.
  • Ribaudo M, Kaplan JD, Christensen LA, Gollehon N, Johansson R, Breneman VE, Peters M, 2003. Manure management for water quality costs to animal feeding operations of applying manure nutrients to land. USDA-ERS Agricultural Economic Report, 824.
  • Saito H, McKenna A, Zimmerman DA, Coburn TC, 2005. Geostatistical interpolation of object counts collected from multiple strip transects: ordinary kriging versus finite domain kriging. Stoch. Env. Res. Risk Asst. 19, 71–85.
  • Samadi A, 2006. Contribution of inorganic phosphorus fractions to plant nutrition in alkaline-calcareous soils. J. Agric. Sci. Technol. 8: 77-89.
  • Shen J, Rengel Z, Tang C, Zhang F, 2003. Role of phosphorus nutrition in development of cluster roots and release of carboxylates in soil-grown lupinus albus. Plant and Soil, 248:199-206.
  • Soil Survey Staff, 1992. Procedures for Collecting Soil Samples and Methods of Analysis For Soil Survey. Soil Surv. Invest. Rep. I. U.S. Gov. Print. Office, Washington, DC, USA.
  • Sun B, Zhou S, Zhao Q, 2003. Evaluation of spatial and temporal changes of soil quality based on geostatistical analysis in the hill region of subtropical China. Geoderma, 115:85–99.
  • Tabatabai MA, Bremner JM, 1970. Arylsulfatase activity of soils. Soil Sci Soc Amer J, 34(2):225–229.
  • Tamer N, Namlı A, 2018. Organik ve Organomineral Gübrelerin Toprağın Enzim Aktivitesi İle Buğday Verimi Üzerine Etkileri. Çalıştayı Bildiriler, 81.
  • Ülgen N, Yurtsever N, 1995. Türkiye Gübre ve Gübreleme Rehberi (4. Baskı). T.C. Başbakanlık Köy Hizmetleri Genel Müdürlüğü Toprak ve Gübre Araştırma Enstitüsü Müdürlüğü Yayınları, Genel Yayın No: 209, Teknik Yayınlar No: T.66, s.230, Ankara.
  • Vance CP, Uhde-Stone C, Alllan DL, 2003. Phosphorus acquistation and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol, 157:423–447.
  • Vitousek PM, Porder S, Houlton BZ, Chadwick OA, 2010. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen– phosphorus interactions. Ecol Appl, 20(1):5–15.
  • Voort J, 2010. The effect of carbon on grass-encroachment in the Dutch coastal dunes. Master Thesis Research. Institute for Biodiversity and Ecosystem Dynamic
  • Waldrip, HM, He Z, Griffin TS, 2012. Effects of organic dairy manure on soil phosphatase activity, available soil phosphorus, and growth of sorghum-sudangrass. Soil science, 177(11), 629-637.
  • WRB Recommendations, 2014. Soil Resources Reports 106. Rome: FAO UN.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bitki Besleme ve Toprak Verimliliği
Bölüm Araştırma Makalesi
Yazarlar

Ayşe Ertaş 0000-0003-1385-2125

Orhan Dengiz 0000-0020-4586-6016

Aylin Erkoçak 0000-0001-8475-494X

Gönderilme Tarihi 11 Temmuz 2025
Kabul Tarihi 10 Aralık 2025
Yayımlanma Tarihi 29 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 2

Kaynak Göster

APA Ertaş, A., Dengiz, O., & Erkoçak, A. (2025). Toprak fosfor formları ve ilgili enzimler arasındaki ilişkilerinin belirlenmesi ve mekansal değişimleri: Zonguldak fındık alanları örnek bir çalışma. Toprak Bilimi ve Bitki Besleme Dergisi, 13(2), 126-135. https://doi.org/10.33409/tbbbd.1739229
AMA Ertaş A, Dengiz O, Erkoçak A. Toprak fosfor formları ve ilgili enzimler arasındaki ilişkilerinin belirlenmesi ve mekansal değişimleri: Zonguldak fındık alanları örnek bir çalışma. tbbbd. Aralık 2025;13(2):126-135. doi:10.33409/tbbbd.1739229
Chicago Ertaş, Ayşe, Orhan Dengiz, ve Aylin Erkoçak. “Toprak fosfor formları ve ilgili enzimler arasındaki ilişkilerinin belirlenmesi ve mekansal değişimleri: Zonguldak fındık alanları örnek bir çalışma”. Toprak Bilimi ve Bitki Besleme Dergisi 13, sy. 2 (Aralık 2025): 126-35. https://doi.org/10.33409/tbbbd.1739229.
EndNote Ertaş A, Dengiz O, Erkoçak A (01 Aralık 2025) Toprak fosfor formları ve ilgili enzimler arasındaki ilişkilerinin belirlenmesi ve mekansal değişimleri: Zonguldak fındık alanları örnek bir çalışma. Toprak Bilimi ve Bitki Besleme Dergisi 13 2 126–135.
IEEE A. Ertaş, O. Dengiz, ve A. Erkoçak, “Toprak fosfor formları ve ilgili enzimler arasındaki ilişkilerinin belirlenmesi ve mekansal değişimleri: Zonguldak fındık alanları örnek bir çalışma”, tbbbd, c. 13, sy. 2, ss. 126–135, 2025, doi: 10.33409/tbbbd.1739229.
ISNAD Ertaş, Ayşe vd. “Toprak fosfor formları ve ilgili enzimler arasındaki ilişkilerinin belirlenmesi ve mekansal değişimleri: Zonguldak fındık alanları örnek bir çalışma”. Toprak Bilimi ve Bitki Besleme Dergisi 13/2 (Aralık2025), 126-135. https://doi.org/10.33409/tbbbd.1739229.
JAMA Ertaş A, Dengiz O, Erkoçak A. Toprak fosfor formları ve ilgili enzimler arasındaki ilişkilerinin belirlenmesi ve mekansal değişimleri: Zonguldak fındık alanları örnek bir çalışma. tbbbd. 2025;13:126–135.
MLA Ertaş, Ayşe vd. “Toprak fosfor formları ve ilgili enzimler arasındaki ilişkilerinin belirlenmesi ve mekansal değişimleri: Zonguldak fındık alanları örnek bir çalışma”. Toprak Bilimi ve Bitki Besleme Dergisi, c. 13, sy. 2, 2025, ss. 126-35, doi:10.33409/tbbbd.1739229.
Vancouver Ertaş A, Dengiz O, Erkoçak A. Toprak fosfor formları ve ilgili enzimler arasındaki ilişkilerinin belirlenmesi ve mekansal değişimleri: Zonguldak fındık alanları örnek bir çalışma. tbbbd. 2025;13(2):126-35.