Araştırma Makalesi
BibTex RIS Kaynak Göster

Effects of some conservation agriculture practices on soil properties in agrıcultural lands of Çifteler District, Eskişehir Province

Yıl 2025, Cilt: 13 Sayı: 2, 150 - 164, 29.12.2025
https://doi.org/10.33409/tbbbd.1747660

Öz

This study was conducted over four years in two pilot experimental sites under dryland and irrigated farming conditions in the Çifteler District of Eskişehir Province. Conservation agriculture practices, including direct seeding, cover cropping, crop rotation, and compost extract application, were implemented in the trials. At the end of the fourth year, soil samples were collected from a depth of 0–20 cm to determine the effects of these practices on the physical, chemical, and biological properties of the soil. In addition, reference samples were taken from adjacent conventional farming areas for comparison purposes. Soil analyses included texture, saturation percentage, water holding capacity (WHC), pH, organic carbon (OC), and total nitrogen (N), along with biological indicators such as carbon mineralization rate (CMR), microbial biomass carbon (Cmic), basal respiration (CO2 release), metabolic quotient (qCO₂), Cmic/Corg ratio, and catalase enzyme activity. The findings indicated that compost extract application, in particular, significantly improved saturation percentage and water holding capacity. In the dryland site, soils under conservation agriculture had higher total nitrogen content compared to the reference soils; however, this difference was not evident in the irrigated site. In both pilot sites, soils under conservation management showed significantly higher levels of organic carbon (OC), microbial biomass, and catalase enzyme activity compared to conventional management (p<0.05). On the other hand, carbon mineralization values were higher in conventionally managed soils, especially during warmer periods. This suggests that conservation practices contributed to retaining carbon in the soil. Furthermore, lower qCO₂ values indicated improved microbial efficiency and better substrate utilization. To further explore the relationships between the implemented treatments and soil parameters, Principal Component Analysis (PCA) was conducted. In this context, a total of 14 different soil parameters were subjected to PCA to identify the key variables contributing to the variance among treatments and to gain a better understanding of the observed effects of different management practices on soil. As a result, conservation agriculture practices were found to play a significant role in improving the biological structure of the soil and to have the potential to enhance soil quality in both dryland and irrigated farming systems compared to conventional agriculture.

Kaynakça

  • Abak M, Sakin E. 2018. Toprakların C:N oranı ve bazı toprak özellikleri ile ilişkisi: Mardin Mazıdağı örneği . Harran Tarım ve Gıda Bilimleri Dergisi, 22 (2): 255-262.
  • Alef K, Nannipieri P. 1995. Catalase activity. In: Alef, K, Nannipieri, P. (Eds). Methods in Applied Soil Microbiology and Biochemistry. London: Academic Press, pp.362-363.
  • Anderson JPE, Domsch KH. 1978. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol. Biochem. 10, 215-221. Balota, E.L.; Colozzi-Filho, A.; Andrade, D.S., Dick, R.P. 2004. Long-term tillage and crop rotation effects on microbial biomass and C and N mineralization in a Brazilian Oxisol. Soil Tillage Res., 77:137-145.
  • Anderson TH. 2003. Microbial eco-physiological indicators to assess soil quality. Agric. Ecosyst. Environ. 98, 285–293.
  • Anderson TH, Domsch KH. 1989. Ratios of microbial biomass carbon to total organic-C in arable soils. Soil Biol. Biochem. 21, 471–479.
  • Babujia LC, Hungria M, Franchini JC, Brookes PC. 2010. Microbial biomass and activity at various soil depths in a Brazilian oxisol after two decades of no-tillage and conventional tillage. Soil Biol.y & Bioch., 42, 2174-2181.
  • Bauhus J, Khanna PK. 1999. The significance of microbial biomass in forest soils. In: Rastin N, Bauhus J, editors. Going Underground - Ecological Studies in Forest Soils. Trivandrum, India: Research Signpost; pp. 77-110.
  • Beck TH. 1971. Die Messung Katalasen Aktivitaet Böden. Z. Pflanzenernaehai. Sodenk. 130, 68 - 81.
  • Blanco Canqui H, Wortmann CS, Kreikemeier G, Wienhold BJ. 2019. Soil and crop response to addition of cover crops and cattle manure in integrated crop–livestock systems. Agricul., Ecos. Environ. 281, 121–130.
  • Bouyoucos GJ. 1951. A Recalibration of Hidrometer Method for Making Mechanical Analysis of Soils. Agronomy Journal, 143 (9).
  • Bremner JM. 1965. Methods of Soil Analysis. Part II. Chemical and Microbiological Properties. Ed. A. C. A. Black Amer. Soc. of Agron. Inc. Pub. Agron. Series No: 9 Madison, USA.
  • Brookes PC. 2001. Minireview. The soil microbial biomass: concept, measurement and applications in soil ecosystem research. Microbes Environ 16, 131–140.
  • Brookes PC. 1995. The use of microbial parameters in monitoring soil pollution by heavy metals. Biol. Fert. Soils 19, 269–279.
  • Burns RG. 1982. Enzyme activity in soil. Soil Biol. Biochem. 14, 425.
  • Busaria MA, Kukalb SS, Kaurb A, Bhattb R, Dulazi AA. 2015. Conservation tillage impacts on soil, crop and the environment. International Soil and Water Conservation Research 3, 119–129.
  • Diacono M, Montemurro F. 2010. Long-term effects of organic amendments on soil fertility. A review. Agronomy for Sustainable Development, 30(2), 401–420.
  • Dilly O. Munch JC. 1998. Ratios between estimates of microbial biomass content and microbial activity in soils. Biology and Fertility of Soils, 27, 374–379.
  • Drinkwater LE, Wagoner P, Sarrantonio M. 1998. Legume-based cropping systems have reduced carbon and nitrogen losses. Nature, 396, 262-265
  • El Maghraby FM, Shaker EM, Elbagory M, El Dein Omara A, Khalifa TH. 2024. The Synergistic Impact of Arbuscular Mycorrhizal Fungi and Compost Tea to Enhance Bacterial Community and Improve Crop Productivity under Saline–Sodic Conditio. Plants, MDPI 13(5), 629.
  • Ewel KC, Cropper WPJR, Gholz HL. 1987. Soil CO2 evolution in Florida slash pine plantations. II. Importance of root respiration. Can. J. For. Res. 17.
  • Ferreira CS, Souza ED, de Moraes MT. 2022. Cover crops and cropping systems improve water quality and soil microbial indicators in a tropical Ultisol. Soil and Tillage Research, 221, 105396.
  • Formánek P, Vranová V. 2003. The effect of spruce stand thinning on biological activity in soil. Journal of Forest Scıence, 49(11), 523–530.
  • Franzluebbers AJ. 2018. Short-term C mineralization (aka the flushof CO2) as an indicator of soil biological health. CAB Reviews:Perspectives in Agriculture, Veterinary Science, Nutrition and Nat-ural Resources, 13(017), 14.
  • Franzluebbers AJ. 1999. Potential C and N mineralization and microbial biomass from intact and increasingly disturbed soils of varying texture. Soil Biology & Biochemistry, 31(8): 1083-1090.
  • Franzluebbers AJ, Haney RL, Honeycutt CW, Schomberg HH, Hons FM. 2000. Flush of carbon dioxide following rewetting of dried soil relates to active organic pools. Soil Sci. Soc. Am. J. 64, 613–623
  • García C, Hernández T. 1997. Biological and biochemical indicators in derelict soils subject to erosion. Soil Biology and Biochemistry 29(2), 171–177.
  • Garcia CT, Hernandez JA, Pascual J, Moreno L, Ros M. 2000. Microbial activity in soils of SE Spain exposed to degradation and desertification processes. Strategies for their rehabilitation. In: Research and Perspectives of Soil Enzymology in Spain (eds. C. Garcia and M.T. Hernandez), Cosejo Superior de Investigaciones Cientificas, Madrid, pp. 93-143.
  • Göçmez S. 2006. Menemen Ovası Topraklarında İZSU Kentsel Arıtma Çamuru Uygulamalarının Mikrobiyal Aktivite ve Biyomas ile Bazı Fiziksel ve Kimyasal Toprak Özellikleri Üzerine Etkisi” Doktora Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir.
  • Grijalvaa L, Puttena W, Huesoa A, Margenotd AJ, Rijssela QM, Koorneeff G, Veen G. 2024. Soil extracellular enzyme activity increases during the transition from conventional to organic farming. Agriculture, Ecosystems and Environment, 375, 109202.
  • Haney RL. 1999. Soil C extracted with water or K2SO4: pH effect on determination of microbial biomass. Canadian Journal of Soil Science, 1999. 79(4), 529-533.
  • Hertel D, Vogel HJ, Schulz E. 2023. Rotational cover cropping enhances soil biodiversity and microbial functional diversity in a boreal agroecosystem. Frontiers in Agronomy, 5, 117–128.
  • Insam H, Haselwandter K. 1989. Metabolic quotient of the soil microflora in relation to plant succession. Oecologia, 79: 174–178.
  • Isermayer H. 1952. Eine einfache Methode zur Bestimmung der Bodenatmung und der Karbonate im Boden. Zeitschrift für Pflanzenernâhrung un Bodenkunde. 56, 26-3
  • Jackson, M. C. 1979. Soil Chemical Analysis. Prentice Hall. Inc. Eng. Cliff. USA.
  • Jenkinson, D.S., Ladd, J.N. 1981. Microbial biomass in soil: Measurement and turnover. In: Paul, E.A. Ladd, J.M., eds. Soil biochemistry. New York, Marcel Decker, p.415-471.
  • Kelting DL, Burger JA, Edwards GS. 1998. Estimating root respiration, microbial respiration in the rhizosphere, and rootfree soil respiration in forest soils. Soil Biol. Biochem. 30, 961- 968.
  • Kladivko EJ. 2001. Tillage systems and soil ecology. Soil and Tillage Research. 61(1-2), 61-76.
  • Kravkaz-Kuscu IS, Sariyildiz T, Cetin M, Yigit N, Sevik H, Savaci G. 2018. Evaluation of the soil properties and primary forest tree species in Taşköprü (Kastamonu) district. Fresenius Environmental Bulletin, 27(3), 1613-1617. Lal R. 2004. Soil carbon sequestration impacts on global climate change and food security. Science, 304(5677), 1623-1627.
  • Lemanowicz J. 2019. Activity of selected enzymes as markers of ecotoxicity in technogenic salinization soils. Environ. Sci. Pollut. Res. 26, 13014–13024.
  • Martínez-Yáñez MG, Silva-Ortega CO, Hernández-Aranda VA, Vallejo-Pérez MR, Alcalá-Briseño R, Vega-Manriquez DX, Aguilar-Benítez G, Jarquin-Gálvez R, Lara-Ávila JP. 2023. Analysis of bacterial microbiota of aerated compost teas and effect on tomato growth. Microb. Ecol. 86, 959–972.
  • Nannipieri P. 1994. The potential use of soil enzymes as indicators of productivity, sustainability and pollution. In: Pankhurst, C.E., Doube, B.M., Gupta, V.V.S.R., Grace, P.R. (Eds.), Soil Biota: Management and Sustainable Farming Systems. CSIRO, Australia, 238–244.
  • Nurbekov A, Kosimov M, Islamov S, Khaitov B, Qodirova D, Yuldasheva Z, Khudayqulov J, Ergasheva K, Nurbekova R. 2024. No-till, crop residue management and winter wheat-based crop rotation strategies under rainfed environment. Front. Agron. Volume 6.
  • Olsen SR, Cole V, Watanabe FS, Dean LA. 1954. Estimation of Available Phosphorus in Soils by Extraction With Sodium Bicarbonate. U. S. Dept. of Agr. Cir. 939. Washington. D. C.
  • Pankhurst CE, Hawke BG, McDonald HJ, Kirkby CA, Buckerfield JC, Michelsen P, 1995. Evaluation of soil biological properties as potential bioindicators of soil health. Aust J. Exp Agric, 35, 1015–28.
  • Patel K, Nirmal Kumar JI, N Kumar R ve Kumar Bhoi R. 2010. Seasonal and temporal variation in soil microbial biomass C, N and P in different types land uses of dry deciduous forest ecosystem of Udaipur, Rajasthan, Western India. Applied Ecology and Environmental Research, 8(4), 377-390.
  • Paul EA, Clark FE. 1996. Soil Microbiology and biochemistry. San Diego: Academic Press. 340p.
  • Purev D, Bayarmaa J, Ganchimeg B, Ankhtsetseg B, Anumandal O. 2012. Catalase, protease and urease activity in some types of soil. Mong. J. Chem. 13, 16–18.
  • Qu Y, Tang J, Li Z, Zhou Z, Wang J, Wang S, Cao Y. 2020. Soil enzyme activity and microbial metabolic function diversity in soda saline-alkali rice paddy fields of Northwest China. Sustainability. 12, 10095.
  • Sağlıker HA. 2018. Is parent material an important factor in soil carbon and nitrogen mineralization ? European Journal of Soil Biology, 89, 45-50.
  • Sağlıker HA, Mutlu N. 2018. Doğu Akdeniz Bölgesi Sanayi Alanı Topraklarında Karbon Mineralizasyonu. Türk Tarım – Gıda Bilim ve Teknoloji Dergisi, 6(7), 940-944.
  • Scheuerell SJ, Mahaffee WF. 2002. Compost Tea: Principles and Prospects for Plant Disease Control. Compost Science and Utilization, 10, 313-338.
  • Schloter M, Dilly O, Munch JC. 2003. Indicators for evaluating soil quality. Agriculture Ecosystem and Environment, 98, 255-262.
  • Steenwerth KL, Belina KM. 2008. Cover crops and cultivation: Impacts on soil N dynamics and microbiological function in a Mediterranean vineyard agroecosystem. Applied Soil Ecology, 40(2), 370–380.
  • Sürücü A, Kızılkaya R, Bayraklı F. 1998. Farklı organik atıkların toprakların biyolojik özelliklerine ve topraktaki Fe, Cu, Zn, Mn ve Ni yarayışlılığına etkileri. XIV. Ulusal Biyoloji Kongresi, 7-10 Eylül 1998, Samsun, Cilt I. s. 313-323.
  • Tautges NE, Chiartas JL, Gaudin ACM, O’Geen AT, Herrera I., Scow KM. 2019. Deep soil inventories reveal that impacts of cover crops and compost on soil carbon sequestration persist in the subsoil. Global Change Biology, 25(11), 3753–3766.
  • Tejada M, Gonzalez J L, Hernandez MT, Garcia C. 2006. Application of different organic amendments in a gasoline contaminated soil: effect on soil biological properties. Bioresource Technology, 97(18), 2271–2276.
  • Wang Y, Li C, Tu C, Hoyt GD, DeForest JL, Hu S. 2017. Long-term no-tillage and organic input management enhanced the diversity and stability of soil microbial community. Sci. Total Environ. 609, 341–347.
  • Yadav AN, Verma P, Kumar S, Sangwan P. 2021. Role of microbial inoculants, compost tea, and soil microbes in sustainable agriculture. In Advances in Soil Microbiology (pp. 327–348). Springer.
  • Yang L, Wen KS, Ruan X, Zhao YX, Wei F, Wang Q. 2018. Response of plant secondary metabolites to environmental factors. Molecules, 23(4), 762.
  • Zhang GH, Tang KM, Zhang XC. 2009. Temporal variation in soil detachment under different land uses in the Loess Plateau of China, Earth Surface Processes and Landforms, 34, 1302–1309.
  • Zhang XC. 2012. Effects of conservation tillage on soil aggregation and aggregate binding agents in black soil of Northeast China. Soil and Tillage Research. 24, 196-202.
  • Zhao H, Ye L, Wang Y, Zhou X, Yang J, Wang J, Cao K, Zou Z. 2016. Melatonin increases the chilling tolerance of chloroplast in cucumber seedlings by regulating photosynthetic electron flux and the ascorbate-glutathione cycle. Frontiers in Plant Science, 7, 1814.

Eskişehir İli Çifteler İlçesi tarım arazilerinde bazı koruyucu tarım uygulama yöntemlerinin toprak özellikleri üzerine etkileri

Yıl 2025, Cilt: 13 Sayı: 2, 150 - 164, 29.12.2025
https://doi.org/10.33409/tbbbd.1747660

Öz

Bu çalışmada, Eskişehir ili Çifteler ilçesinde kuru ve sulu tarım koşullarında iki pilot deneme alanında dört yıl süreli denemeler
yürütülmüştür. Denemelerde doğrudan ekim, örtü bitkisi, ekim nöbeti ve kompost özütü uygulamalarını içeren koruyucu tarım
uygulamaları gerçekleştirilmiştir. Dördüncü yılın sonunda, bu uygulamaların toprağın fiziksel, kimyasal ve biyolojik özelliklerine
etkilerini belirlemek amacıyla 0-20 cm derinlikten toprak örnekleri alınmış; ayrıca, karşılaştırma amacıyla bitişik konvansiyonel
tarım alanlarından referans örneklemeler gerçekleştirilmiştir. Topraklarda tekstür, saturasyon yüzdesi (Sat.), su tutma kapasitesi
(STK), pH, organik karbon (OC), toplam azot (N) gibi temel özelliklerin yanı sıra, karbon mineralizasyon oranı (CMO), mikrobiyal
biyokütle karbonu (Cmic), bazal solunum (CO2 çıkışı), metabolik katsayı (qCO₂), Cmic/Corg oranı ve Katalaz enzim aktivitesi gibi
biyolojik göstergeler analiz edilmiştir. Elde edilen bulgular, özellikle kompost özütü uygulamasının Sat. ve STK üzerinde anlamlı
(p<0.05) artış sağladığını göstermiştir. Kuru tarım sahasında, koruyucu tarım uygulanan topraklarda toplam azot içeriği referans
topraklara göre daha yüksek bulunmuş; ancak bu fark sulu tarım sahasında belirgin değildi. Her iki pilot alanda da koruyucu tarım
uygulanan topraklarda OC, Cmic ve Katalaz enzim aktivitesi değerleri geleneksel yönetim sistemine kıyasla istatistiksel olarak
anlamlı şekilde (p<0.05) yüksek saptanmıştır. Öte yandan, CMO değerleri konvansiyonel sistemlerde daha yüksek olup, özellikle
sıcak dönemlerde artış göstermiştir. Bu durum, koruyucu tarımın karbonun toprakta tutulmasına katkı sunduğunu
göstermektedir. Ayrıca, qCO₂ değerlerinin daha düşük olması, mikrobiyal etkinliğin ve substrat kullanım verimliliğinin arttığını
ortaya koymuştur. Uygulanan işlemler ile toprak parametreleri arasındaki ilişkileri daha ayrıntılı bir şekilde incelemek amacıyla
Temel Bileşenler Analizi (PCA) gerçekleştirilmiştir. Bu kapsamda, toplam 14 farklı toprak parametresi PCA’ya tabi tutularak,
uygulamalar arasındaki varyansa katkı sağlayan temel değişkenler belirlenmiş ve farklı yönetim uygulamalarına bağlı olarak
toprakta gözlenen etkiler daha iyi anlaşılmaya çalışılmıştır. Sonuç olarak, koruyucu tarım uygulamaları, toprak biyolojik yapısının
iyileştirilmesinde önemli rol oynamakla birlikte, kuru ve sulu tarım sisteminin ikisinde de geleneksel tarıma kıyasla toprak
kalitesini artırma potansiyeli taşıdığı tespit edilmiştir.

Destekleyen Kurum

Eti Burçak

Teşekkür

Bu çalışma WWF-Türkiye tarafından yürütülen ‘Toprağımız Hazinemiz’ projesi kapsamında toplanan verinin değerlendirilmesi ile hazırlanmıştır. Tarla denemelerinde arazilerini kullanıma sunarak çalışmaya destek olan önder çiftçilerimiz Ali Fuat Demircan ve İhsan Özen’e de teşekkür eder, katkılarından dolayı minnettarlığımızı sunarız. Projeyi finansal olarak destekleyen Eti Burçak a teşekkür ederiz.

Kaynakça

  • Abak M, Sakin E. 2018. Toprakların C:N oranı ve bazı toprak özellikleri ile ilişkisi: Mardin Mazıdağı örneği . Harran Tarım ve Gıda Bilimleri Dergisi, 22 (2): 255-262.
  • Alef K, Nannipieri P. 1995. Catalase activity. In: Alef, K, Nannipieri, P. (Eds). Methods in Applied Soil Microbiology and Biochemistry. London: Academic Press, pp.362-363.
  • Anderson JPE, Domsch KH. 1978. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol. Biochem. 10, 215-221. Balota, E.L.; Colozzi-Filho, A.; Andrade, D.S., Dick, R.P. 2004. Long-term tillage and crop rotation effects on microbial biomass and C and N mineralization in a Brazilian Oxisol. Soil Tillage Res., 77:137-145.
  • Anderson TH. 2003. Microbial eco-physiological indicators to assess soil quality. Agric. Ecosyst. Environ. 98, 285–293.
  • Anderson TH, Domsch KH. 1989. Ratios of microbial biomass carbon to total organic-C in arable soils. Soil Biol. Biochem. 21, 471–479.
  • Babujia LC, Hungria M, Franchini JC, Brookes PC. 2010. Microbial biomass and activity at various soil depths in a Brazilian oxisol after two decades of no-tillage and conventional tillage. Soil Biol.y & Bioch., 42, 2174-2181.
  • Bauhus J, Khanna PK. 1999. The significance of microbial biomass in forest soils. In: Rastin N, Bauhus J, editors. Going Underground - Ecological Studies in Forest Soils. Trivandrum, India: Research Signpost; pp. 77-110.
  • Beck TH. 1971. Die Messung Katalasen Aktivitaet Böden. Z. Pflanzenernaehai. Sodenk. 130, 68 - 81.
  • Blanco Canqui H, Wortmann CS, Kreikemeier G, Wienhold BJ. 2019. Soil and crop response to addition of cover crops and cattle manure in integrated crop–livestock systems. Agricul., Ecos. Environ. 281, 121–130.
  • Bouyoucos GJ. 1951. A Recalibration of Hidrometer Method for Making Mechanical Analysis of Soils. Agronomy Journal, 143 (9).
  • Bremner JM. 1965. Methods of Soil Analysis. Part II. Chemical and Microbiological Properties. Ed. A. C. A. Black Amer. Soc. of Agron. Inc. Pub. Agron. Series No: 9 Madison, USA.
  • Brookes PC. 2001. Minireview. The soil microbial biomass: concept, measurement and applications in soil ecosystem research. Microbes Environ 16, 131–140.
  • Brookes PC. 1995. The use of microbial parameters in monitoring soil pollution by heavy metals. Biol. Fert. Soils 19, 269–279.
  • Burns RG. 1982. Enzyme activity in soil. Soil Biol. Biochem. 14, 425.
  • Busaria MA, Kukalb SS, Kaurb A, Bhattb R, Dulazi AA. 2015. Conservation tillage impacts on soil, crop and the environment. International Soil and Water Conservation Research 3, 119–129.
  • Diacono M, Montemurro F. 2010. Long-term effects of organic amendments on soil fertility. A review. Agronomy for Sustainable Development, 30(2), 401–420.
  • Dilly O. Munch JC. 1998. Ratios between estimates of microbial biomass content and microbial activity in soils. Biology and Fertility of Soils, 27, 374–379.
  • Drinkwater LE, Wagoner P, Sarrantonio M. 1998. Legume-based cropping systems have reduced carbon and nitrogen losses. Nature, 396, 262-265
  • El Maghraby FM, Shaker EM, Elbagory M, El Dein Omara A, Khalifa TH. 2024. The Synergistic Impact of Arbuscular Mycorrhizal Fungi and Compost Tea to Enhance Bacterial Community and Improve Crop Productivity under Saline–Sodic Conditio. Plants, MDPI 13(5), 629.
  • Ewel KC, Cropper WPJR, Gholz HL. 1987. Soil CO2 evolution in Florida slash pine plantations. II. Importance of root respiration. Can. J. For. Res. 17.
  • Ferreira CS, Souza ED, de Moraes MT. 2022. Cover crops and cropping systems improve water quality and soil microbial indicators in a tropical Ultisol. Soil and Tillage Research, 221, 105396.
  • Formánek P, Vranová V. 2003. The effect of spruce stand thinning on biological activity in soil. Journal of Forest Scıence, 49(11), 523–530.
  • Franzluebbers AJ. 2018. Short-term C mineralization (aka the flushof CO2) as an indicator of soil biological health. CAB Reviews:Perspectives in Agriculture, Veterinary Science, Nutrition and Nat-ural Resources, 13(017), 14.
  • Franzluebbers AJ. 1999. Potential C and N mineralization and microbial biomass from intact and increasingly disturbed soils of varying texture. Soil Biology & Biochemistry, 31(8): 1083-1090.
  • Franzluebbers AJ, Haney RL, Honeycutt CW, Schomberg HH, Hons FM. 2000. Flush of carbon dioxide following rewetting of dried soil relates to active organic pools. Soil Sci. Soc. Am. J. 64, 613–623
  • García C, Hernández T. 1997. Biological and biochemical indicators in derelict soils subject to erosion. Soil Biology and Biochemistry 29(2), 171–177.
  • Garcia CT, Hernandez JA, Pascual J, Moreno L, Ros M. 2000. Microbial activity in soils of SE Spain exposed to degradation and desertification processes. Strategies for their rehabilitation. In: Research and Perspectives of Soil Enzymology in Spain (eds. C. Garcia and M.T. Hernandez), Cosejo Superior de Investigaciones Cientificas, Madrid, pp. 93-143.
  • Göçmez S. 2006. Menemen Ovası Topraklarında İZSU Kentsel Arıtma Çamuru Uygulamalarının Mikrobiyal Aktivite ve Biyomas ile Bazı Fiziksel ve Kimyasal Toprak Özellikleri Üzerine Etkisi” Doktora Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir.
  • Grijalvaa L, Puttena W, Huesoa A, Margenotd AJ, Rijssela QM, Koorneeff G, Veen G. 2024. Soil extracellular enzyme activity increases during the transition from conventional to organic farming. Agriculture, Ecosystems and Environment, 375, 109202.
  • Haney RL. 1999. Soil C extracted with water or K2SO4: pH effect on determination of microbial biomass. Canadian Journal of Soil Science, 1999. 79(4), 529-533.
  • Hertel D, Vogel HJ, Schulz E. 2023. Rotational cover cropping enhances soil biodiversity and microbial functional diversity in a boreal agroecosystem. Frontiers in Agronomy, 5, 117–128.
  • Insam H, Haselwandter K. 1989. Metabolic quotient of the soil microflora in relation to plant succession. Oecologia, 79: 174–178.
  • Isermayer H. 1952. Eine einfache Methode zur Bestimmung der Bodenatmung und der Karbonate im Boden. Zeitschrift für Pflanzenernâhrung un Bodenkunde. 56, 26-3
  • Jackson, M. C. 1979. Soil Chemical Analysis. Prentice Hall. Inc. Eng. Cliff. USA.
  • Jenkinson, D.S., Ladd, J.N. 1981. Microbial biomass in soil: Measurement and turnover. In: Paul, E.A. Ladd, J.M., eds. Soil biochemistry. New York, Marcel Decker, p.415-471.
  • Kelting DL, Burger JA, Edwards GS. 1998. Estimating root respiration, microbial respiration in the rhizosphere, and rootfree soil respiration in forest soils. Soil Biol. Biochem. 30, 961- 968.
  • Kladivko EJ. 2001. Tillage systems and soil ecology. Soil and Tillage Research. 61(1-2), 61-76.
  • Kravkaz-Kuscu IS, Sariyildiz T, Cetin M, Yigit N, Sevik H, Savaci G. 2018. Evaluation of the soil properties and primary forest tree species in Taşköprü (Kastamonu) district. Fresenius Environmental Bulletin, 27(3), 1613-1617. Lal R. 2004. Soil carbon sequestration impacts on global climate change and food security. Science, 304(5677), 1623-1627.
  • Lemanowicz J. 2019. Activity of selected enzymes as markers of ecotoxicity in technogenic salinization soils. Environ. Sci. Pollut. Res. 26, 13014–13024.
  • Martínez-Yáñez MG, Silva-Ortega CO, Hernández-Aranda VA, Vallejo-Pérez MR, Alcalá-Briseño R, Vega-Manriquez DX, Aguilar-Benítez G, Jarquin-Gálvez R, Lara-Ávila JP. 2023. Analysis of bacterial microbiota of aerated compost teas and effect on tomato growth. Microb. Ecol. 86, 959–972.
  • Nannipieri P. 1994. The potential use of soil enzymes as indicators of productivity, sustainability and pollution. In: Pankhurst, C.E., Doube, B.M., Gupta, V.V.S.R., Grace, P.R. (Eds.), Soil Biota: Management and Sustainable Farming Systems. CSIRO, Australia, 238–244.
  • Nurbekov A, Kosimov M, Islamov S, Khaitov B, Qodirova D, Yuldasheva Z, Khudayqulov J, Ergasheva K, Nurbekova R. 2024. No-till, crop residue management and winter wheat-based crop rotation strategies under rainfed environment. Front. Agron. Volume 6.
  • Olsen SR, Cole V, Watanabe FS, Dean LA. 1954. Estimation of Available Phosphorus in Soils by Extraction With Sodium Bicarbonate. U. S. Dept. of Agr. Cir. 939. Washington. D. C.
  • Pankhurst CE, Hawke BG, McDonald HJ, Kirkby CA, Buckerfield JC, Michelsen P, 1995. Evaluation of soil biological properties as potential bioindicators of soil health. Aust J. Exp Agric, 35, 1015–28.
  • Patel K, Nirmal Kumar JI, N Kumar R ve Kumar Bhoi R. 2010. Seasonal and temporal variation in soil microbial biomass C, N and P in different types land uses of dry deciduous forest ecosystem of Udaipur, Rajasthan, Western India. Applied Ecology and Environmental Research, 8(4), 377-390.
  • Paul EA, Clark FE. 1996. Soil Microbiology and biochemistry. San Diego: Academic Press. 340p.
  • Purev D, Bayarmaa J, Ganchimeg B, Ankhtsetseg B, Anumandal O. 2012. Catalase, protease and urease activity in some types of soil. Mong. J. Chem. 13, 16–18.
  • Qu Y, Tang J, Li Z, Zhou Z, Wang J, Wang S, Cao Y. 2020. Soil enzyme activity and microbial metabolic function diversity in soda saline-alkali rice paddy fields of Northwest China. Sustainability. 12, 10095.
  • Sağlıker HA. 2018. Is parent material an important factor in soil carbon and nitrogen mineralization ? European Journal of Soil Biology, 89, 45-50.
  • Sağlıker HA, Mutlu N. 2018. Doğu Akdeniz Bölgesi Sanayi Alanı Topraklarında Karbon Mineralizasyonu. Türk Tarım – Gıda Bilim ve Teknoloji Dergisi, 6(7), 940-944.
  • Scheuerell SJ, Mahaffee WF. 2002. Compost Tea: Principles and Prospects for Plant Disease Control. Compost Science and Utilization, 10, 313-338.
  • Schloter M, Dilly O, Munch JC. 2003. Indicators for evaluating soil quality. Agriculture Ecosystem and Environment, 98, 255-262.
  • Steenwerth KL, Belina KM. 2008. Cover crops and cultivation: Impacts on soil N dynamics and microbiological function in a Mediterranean vineyard agroecosystem. Applied Soil Ecology, 40(2), 370–380.
  • Sürücü A, Kızılkaya R, Bayraklı F. 1998. Farklı organik atıkların toprakların biyolojik özelliklerine ve topraktaki Fe, Cu, Zn, Mn ve Ni yarayışlılığına etkileri. XIV. Ulusal Biyoloji Kongresi, 7-10 Eylül 1998, Samsun, Cilt I. s. 313-323.
  • Tautges NE, Chiartas JL, Gaudin ACM, O’Geen AT, Herrera I., Scow KM. 2019. Deep soil inventories reveal that impacts of cover crops and compost on soil carbon sequestration persist in the subsoil. Global Change Biology, 25(11), 3753–3766.
  • Tejada M, Gonzalez J L, Hernandez MT, Garcia C. 2006. Application of different organic amendments in a gasoline contaminated soil: effect on soil biological properties. Bioresource Technology, 97(18), 2271–2276.
  • Wang Y, Li C, Tu C, Hoyt GD, DeForest JL, Hu S. 2017. Long-term no-tillage and organic input management enhanced the diversity and stability of soil microbial community. Sci. Total Environ. 609, 341–347.
  • Yadav AN, Verma P, Kumar S, Sangwan P. 2021. Role of microbial inoculants, compost tea, and soil microbes in sustainable agriculture. In Advances in Soil Microbiology (pp. 327–348). Springer.
  • Yang L, Wen KS, Ruan X, Zhao YX, Wei F, Wang Q. 2018. Response of plant secondary metabolites to environmental factors. Molecules, 23(4), 762.
  • Zhang GH, Tang KM, Zhang XC. 2009. Temporal variation in soil detachment under different land uses in the Loess Plateau of China, Earth Surface Processes and Landforms, 34, 1302–1309.
  • Zhang XC. 2012. Effects of conservation tillage on soil aggregation and aggregate binding agents in black soil of Northeast China. Soil and Tillage Research. 24, 196-202.
  • Zhao H, Ye L, Wang Y, Zhou X, Yang J, Wang J, Cao K, Zou Z. 2016. Melatonin increases the chilling tolerance of chloroplast in cucumber seedlings by regulating photosynthetic electron flux and the ascorbate-glutathione cycle. Frontiers in Plant Science, 7, 1814.
Toplam 62 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Arazi Üretim Kapasitesi ve Toprak Verimliliği
Bölüm Araştırma Makalesi
Yazarlar

Ayten Namlı 0000-0003-1913-2751

Nihal Ceren Alici 0000-0002-2147-0760

Muhittin Onur Akça 0000-0003-4540-9371

Zeynep Sude Sapmaz 0000-0000-0000-0001

Nilüfer Araç 0009-0004-0378-838X

Elif Arzu Yıldız 0009-0007-0295-881X

Gönderilme Tarihi 21 Temmuz 2025
Kabul Tarihi 15 Aralık 2025
Yayımlanma Tarihi 29 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 2

Kaynak Göster

APA Namlı, A., Alici, N. C., Akça, M. O., … Sapmaz, Z. S. (2025). Eskişehir İli Çifteler İlçesi tarım arazilerinde bazı koruyucu tarım uygulama yöntemlerinin toprak özellikleri üzerine etkileri. Toprak Bilimi ve Bitki Besleme Dergisi, 13(2), 150-164. https://doi.org/10.33409/tbbbd.1747660
AMA Namlı A, Alici NC, Akça MO, Sapmaz ZS, Araç N, Yıldız EA. Eskişehir İli Çifteler İlçesi tarım arazilerinde bazı koruyucu tarım uygulama yöntemlerinin toprak özellikleri üzerine etkileri. tbbbd. Aralık 2025;13(2):150-164. doi:10.33409/tbbbd.1747660
Chicago Namlı, Ayten, Nihal Ceren Alici, Muhittin Onur Akça, Zeynep Sude Sapmaz, Nilüfer Araç, ve Elif Arzu Yıldız. “Eskişehir İli Çifteler İlçesi tarım arazilerinde bazı koruyucu tarım uygulama yöntemlerinin toprak özellikleri üzerine etkileri”. Toprak Bilimi ve Bitki Besleme Dergisi 13, sy. 2 (Aralık 2025): 150-64. https://doi.org/10.33409/tbbbd.1747660.
EndNote Namlı A, Alici NC, Akça MO, Sapmaz ZS, Araç N, Yıldız EA (01 Aralık 2025) Eskişehir İli Çifteler İlçesi tarım arazilerinde bazı koruyucu tarım uygulama yöntemlerinin toprak özellikleri üzerine etkileri. Toprak Bilimi ve Bitki Besleme Dergisi 13 2 150–164.
IEEE A. Namlı, N. C. Alici, M. O. Akça, Z. S. Sapmaz, N. Araç, ve E. A. Yıldız, “Eskişehir İli Çifteler İlçesi tarım arazilerinde bazı koruyucu tarım uygulama yöntemlerinin toprak özellikleri üzerine etkileri”, tbbbd, c. 13, sy. 2, ss. 150–164, 2025, doi: 10.33409/tbbbd.1747660.
ISNAD Namlı, Ayten vd. “Eskişehir İli Çifteler İlçesi tarım arazilerinde bazı koruyucu tarım uygulama yöntemlerinin toprak özellikleri üzerine etkileri”. Toprak Bilimi ve Bitki Besleme Dergisi 13/2 (Aralık2025), 150-164. https://doi.org/10.33409/tbbbd.1747660.
JAMA Namlı A, Alici NC, Akça MO, Sapmaz ZS, Araç N, Yıldız EA. Eskişehir İli Çifteler İlçesi tarım arazilerinde bazı koruyucu tarım uygulama yöntemlerinin toprak özellikleri üzerine etkileri. tbbbd. 2025;13:150–164.
MLA Namlı, Ayten vd. “Eskişehir İli Çifteler İlçesi tarım arazilerinde bazı koruyucu tarım uygulama yöntemlerinin toprak özellikleri üzerine etkileri”. Toprak Bilimi ve Bitki Besleme Dergisi, c. 13, sy. 2, 2025, ss. 150-64, doi:10.33409/tbbbd.1747660.
Vancouver Namlı A, Alici NC, Akça MO, Sapmaz ZS, Araç N, Yıldız EA. Eskişehir İli Çifteler İlçesi tarım arazilerinde bazı koruyucu tarım uygulama yöntemlerinin toprak özellikleri üzerine etkileri. tbbbd. 2025;13(2):150-64.