BibTex RIS Kaynak Göster

Toprak organik karbonu: jeoistatistiksel bir yaklaşım

Yıl 2014, Cilt: 2 Sayı: 1, 13 - 18, 27.06.2014

Öz

Bu çalışmada; Rusya’da Batı Urallar olarak adlandırılan Perm Bölgesi’nde Perm Devlet Tarım Akademisi arazilerinden toprak işlemeli tarım yapılan bir arazide toprak organik karbonunun (SOC) uzaysal değişkenliğini değerlendirmek üzere jeoistatistiksel teknikler uygulanmıştır. Yaklaşık 2,35 ha büyüklüğündeki bu arazi 25x25 m aralıklarla karelere bölünmüş ve 0,20 m derinlikten 51 adet toprak örneği toplanmıştır. Çalışma alanının topraklarında, toprak reaksiyonu (pH) en az değişkenlik gösteren özellik iken; değişebilir potasyum (Ex-K) en fazla değişkenlik gösteren toprak özelliği olmuştur. Yine bu alanda toprak organik karbonunun uzaysal değişimini modellemek üzere etki mesafesi 151,04 m olan Gaussian model seçilmiştir

Kaynakça

  • Abuduwaili J, Tang Y, Abulimiti M, 2012. Spatial distribution of soil moisture, salinity and organic matter in Manas River watershed, Xinjiang, China. J. Arid Land, 4(4):441−449.
  • Ardahanloğlu I, Öztaş T, Evren S, 2003. Spatial variability of exchangeable sodium, electrical conductivity, soil pH and boron content in salt- and sodium-affected areas of the Iğdır plain (Turkey). J. Arid Environ., 54:495-503.
  • Aşkın T, Kızılkaya R, 2006. Assessing spatial variability of soil enzyme activities in pasture topsoils using geostatistics. Eur. J. Soil Biol., 42:230-237.
  • Aşkın T, 2010. Evaluation of some soil properties as related to landscape position using geostatistical techniques, International Scientific and Practical Conference on Scientific Support – To Innovative Development of the AgroIndustrial Complex), 18-19 November, Perm State Agricultural Academy, Perm-Russia, p. 34-40.
  • Aşkın T, Sinitsa YN, Kızılkaya R, 2011. The spatial variability of arylsulphatase activity: A study from agricultural ecosystems, International Conference on “Resource Potential of Soils – The Basis of the Food and Ecological Safety of Russia”, 1-4 March, Saint Petersburg State University, Saint Petersburg-Russia, p. 324-327
  • Başkan O, 2004. Gölbaşı yöresi topraklarının mühendislik, fiziksel özellik ilişkilerinde jeoistatistik uygulaması. Doktora Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü Toprak Anabilim Dalı, Ankara.
  • Batjes NH, 1996. Total carbon and nitrogen in soils of the world. Eur. J. Soil Sci., 47(2):151-163.
  • Batjes NH, Sombroek WG, 1997. Possibilities for carbon sequestration in tropical and sub-tropical soils. Global Change Biol., 3(2):161-173.
  • Benayas JMR, Sachez-Colomer MG, Escudero A, 2004. Landscape- and field-scale control of spatial variation of soil properties in Mediterranean montane meadows. Biogeochemistry, 69: 207-225.
  • Brady AC, Veil RR, 2002. The Nature and Properties of Soils. 13th ed. New Jersey:Prentice Hall.
  • Cambardella CA, Moorman AT, Novak JM, 1994. Field-scale variability of soil properties in central Iowa soils. Soil Sci. Soc. Am. J., 58:1501-1511
  • Chien YJ, Lee DY, Guo HY, 1997. Geostatistical analysis of soil properties of mid-west Taiwan soils. Soil Sci., 162:291–298.
  • Gee GW, Bauder JW, 1979. Particle size analysis by hydrometer: a simplified method for routine textural analysis and a sensitivity test of measured parameters. Soil Sci. Soc. Am. J., 43:1004-1007.
  • GS+, 2006. Geostatistics for the Environmental Sciences, Gamma Design Software, Plainwell, MI, USA, 2006.
  • Jiang Y, Zhang Y, Liang W, 2008. Field-scale variability of soil exchangeable cations in a Chinese Ecological Research Network (CERN) Site. Agric. J., 3(3):208-215.
  • Kerry R, Oliver MA, 2004. Average variograms to guide soil sampling. International Journal of Applied Earth Observation and Geoinformation, 5: 307-325.
  • Lal R, 2004. Soil carbon sequestration to mitigate climate change. Geoderma, 123:1
  • McBratney AB, Webster R, 1983. Optimal interpolation and isarithm mapping of soil properties: V. Co regionalization and multiple sampling strategy. J. Soil Sci., 34:137-162.
  • Nelson DW, Sommers LE, 1982. Total carbon, organic carbon and organic matter. In:Methods of Soil Analysis (ed. Page AL) Part 2, ASA, Soil Sci. Soc. Am., Madison, WI, USA, p. 539-580
  • Oliver MA, 1987. Geostatistics and its application to soil science. Soil Use and Manag., 3:8-19.
  • Öztas T, 1996. Identifying spatial variability of soil depth lost to erosion in a rolling landscape using Kriging analysis. Symposium on Agriculture-Environment Relations, 327-335, Mersin, Turkey.
  • Page AL, 1982. Chemical and Microbiological Properties. In:Methods of Soil Analysis (ed. Black CA) Part 2, ASA, Soil Sci. Soc. Am., Madison, WI, USA p. 149-166.
  • Peech M, 1965. Hydrogen-Ion Activity. In:Methods of Soil Analysis (ed. Black CA) Part 2, ASA, Soil Sci. Soc. Am., Madison, WI, USA, p. 914-925
  • Smith P, 2004. Soils as carbon sinks: the global context. Soil Use & Manag., 20: 212-218 Suppl.
  • Soil Survey Staff, 1993. Soil Survey Manual. USDA Handbook No. 18, US Government Printing Office, Washington, DC, USA.
  • Trangmar BB, Yost RS, Uehara G, 1985. Application of geostatistics to spatial studies of soil properties. Advances in Agron., 38:45-93.

Soil organic carbon : A geostatistical approach

Yıl 2014, Cilt: 2 Sayı: 1, 13 - 18, 27.06.2014

Öz

In present study, geostatistical techniques was applied to assess the spatial variability of soil organic carbon content (SOC) in the tillaged layer in a Perm State Agricultural Academy Farm site in Perm region, West Urals, Russia. A 250x100 m plot (approximately 2.35 ha) was divided into grids with 25x25 m spacing that included 51 sampling points from 0-0.2 m in depth. Soil reaction (pH) was the least variable property while the Ex-K was the most variable. The range of influence occurred for SOC was 151.04 m

Kaynakça

  • Abuduwaili J, Tang Y, Abulimiti M, 2012. Spatial distribution of soil moisture, salinity and organic matter in Manas River watershed, Xinjiang, China. J. Arid Land, 4(4):441−449.
  • Ardahanloğlu I, Öztaş T, Evren S, 2003. Spatial variability of exchangeable sodium, electrical conductivity, soil pH and boron content in salt- and sodium-affected areas of the Iğdır plain (Turkey). J. Arid Environ., 54:495-503.
  • Aşkın T, Kızılkaya R, 2006. Assessing spatial variability of soil enzyme activities in pasture topsoils using geostatistics. Eur. J. Soil Biol., 42:230-237.
  • Aşkın T, 2010. Evaluation of some soil properties as related to landscape position using geostatistical techniques, International Scientific and Practical Conference on Scientific Support – To Innovative Development of the AgroIndustrial Complex), 18-19 November, Perm State Agricultural Academy, Perm-Russia, p. 34-40.
  • Aşkın T, Sinitsa YN, Kızılkaya R, 2011. The spatial variability of arylsulphatase activity: A study from agricultural ecosystems, International Conference on “Resource Potential of Soils – The Basis of the Food and Ecological Safety of Russia”, 1-4 March, Saint Petersburg State University, Saint Petersburg-Russia, p. 324-327
  • Başkan O, 2004. Gölbaşı yöresi topraklarının mühendislik, fiziksel özellik ilişkilerinde jeoistatistik uygulaması. Doktora Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü Toprak Anabilim Dalı, Ankara.
  • Batjes NH, 1996. Total carbon and nitrogen in soils of the world. Eur. J. Soil Sci., 47(2):151-163.
  • Batjes NH, Sombroek WG, 1997. Possibilities for carbon sequestration in tropical and sub-tropical soils. Global Change Biol., 3(2):161-173.
  • Benayas JMR, Sachez-Colomer MG, Escudero A, 2004. Landscape- and field-scale control of spatial variation of soil properties in Mediterranean montane meadows. Biogeochemistry, 69: 207-225.
  • Brady AC, Veil RR, 2002. The Nature and Properties of Soils. 13th ed. New Jersey:Prentice Hall.
  • Cambardella CA, Moorman AT, Novak JM, 1994. Field-scale variability of soil properties in central Iowa soils. Soil Sci. Soc. Am. J., 58:1501-1511
  • Chien YJ, Lee DY, Guo HY, 1997. Geostatistical analysis of soil properties of mid-west Taiwan soils. Soil Sci., 162:291–298.
  • Gee GW, Bauder JW, 1979. Particle size analysis by hydrometer: a simplified method for routine textural analysis and a sensitivity test of measured parameters. Soil Sci. Soc. Am. J., 43:1004-1007.
  • GS+, 2006. Geostatistics for the Environmental Sciences, Gamma Design Software, Plainwell, MI, USA, 2006.
  • Jiang Y, Zhang Y, Liang W, 2008. Field-scale variability of soil exchangeable cations in a Chinese Ecological Research Network (CERN) Site. Agric. J., 3(3):208-215.
  • Kerry R, Oliver MA, 2004. Average variograms to guide soil sampling. International Journal of Applied Earth Observation and Geoinformation, 5: 307-325.
  • Lal R, 2004. Soil carbon sequestration to mitigate climate change. Geoderma, 123:1
  • McBratney AB, Webster R, 1983. Optimal interpolation and isarithm mapping of soil properties: V. Co regionalization and multiple sampling strategy. J. Soil Sci., 34:137-162.
  • Nelson DW, Sommers LE, 1982. Total carbon, organic carbon and organic matter. In:Methods of Soil Analysis (ed. Page AL) Part 2, ASA, Soil Sci. Soc. Am., Madison, WI, USA, p. 539-580
  • Oliver MA, 1987. Geostatistics and its application to soil science. Soil Use and Manag., 3:8-19.
  • Öztas T, 1996. Identifying spatial variability of soil depth lost to erosion in a rolling landscape using Kriging analysis. Symposium on Agriculture-Environment Relations, 327-335, Mersin, Turkey.
  • Page AL, 1982. Chemical and Microbiological Properties. In:Methods of Soil Analysis (ed. Black CA) Part 2, ASA, Soil Sci. Soc. Am., Madison, WI, USA p. 149-166.
  • Peech M, 1965. Hydrogen-Ion Activity. In:Methods of Soil Analysis (ed. Black CA) Part 2, ASA, Soil Sci. Soc. Am., Madison, WI, USA, p. 914-925
  • Smith P, 2004. Soils as carbon sinks: the global context. Soil Use & Manag., 20: 212-218 Suppl.
  • Soil Survey Staff, 1993. Soil Survey Manual. USDA Handbook No. 18, US Government Printing Office, Washington, DC, USA.
  • Trangmar BB, Yost RS, Uehara G, 1985. Application of geostatistics to spatial studies of soil properties. Advances in Agron., 38:45-93.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA25FP64BN
Bölüm Makaleler
Yazarlar

Tayfun Aşkın Bu kişi benim

Rıdvan Kızılkaya Bu kişi benim

Vladimir Olekhov Bu kişi benim

Natalya Mudrykh Bu kişi benim

İraida Samafalova Bu kişi benim

Ferhat Türkmen Bu kişi benim

Yayımlanma Tarihi 27 Haziran 2014
Yayımlandığı Sayı Yıl 2014 Cilt: 2 Sayı: 1

Kaynak Göster

APA Aşkın, T., Kızılkaya, R., Olekhov, V., Mudrykh, N., vd. (2014). Toprak organik karbonu: jeoistatistiksel bir yaklaşım. Toprak Bilimi Ve Bitki Besleme Dergisi, 2(1), 13-18.
AMA Aşkın T, Kızılkaya R, Olekhov V, Mudrykh N, Samafalova İ, Türkmen F. Toprak organik karbonu: jeoistatistiksel bir yaklaşım. tbbbd. Haziran 2014;2(1):13-18.
Chicago Aşkın, Tayfun, Rıdvan Kızılkaya, Vladimir Olekhov, Natalya Mudrykh, İraida Samafalova, ve Ferhat Türkmen. “Toprak Organik Karbonu: Jeoistatistiksel Bir yaklaşım”. Toprak Bilimi Ve Bitki Besleme Dergisi 2, sy. 1 (Haziran 2014): 13-18.
EndNote Aşkın T, Kızılkaya R, Olekhov V, Mudrykh N, Samafalova İ, Türkmen F (01 Haziran 2014) Toprak organik karbonu: jeoistatistiksel bir yaklaşım. Toprak Bilimi ve Bitki Besleme Dergisi 2 1 13–18.
IEEE T. Aşkın, R. Kızılkaya, V. Olekhov, N. Mudrykh, İ. Samafalova, ve F. Türkmen, “Toprak organik karbonu: jeoistatistiksel bir yaklaşım”, tbbbd, c. 2, sy. 1, ss. 13–18, 2014.
ISNAD Aşkın, Tayfun vd. “Toprak Organik Karbonu: Jeoistatistiksel Bir yaklaşım”. Toprak Bilimi ve Bitki Besleme Dergisi 2/1 (Haziran 2014), 13-18.
JAMA Aşkın T, Kızılkaya R, Olekhov V, Mudrykh N, Samafalova İ, Türkmen F. Toprak organik karbonu: jeoistatistiksel bir yaklaşım. tbbbd. 2014;2:13–18.
MLA Aşkın, Tayfun vd. “Toprak Organik Karbonu: Jeoistatistiksel Bir yaklaşım”. Toprak Bilimi Ve Bitki Besleme Dergisi, c. 2, sy. 1, 2014, ss. 13-18.
Vancouver Aşkın T, Kızılkaya R, Olekhov V, Mudrykh N, Samafalova İ, Türkmen F. Toprak organik karbonu: jeoistatistiksel bir yaklaşım. tbbbd. 2014;2(1):13-8.