Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of the effect of humic acid addition on the macro element uptake of Kirik wheat (Triticum aestivum L. var. delfii) in PGPR treated media

Yıl 2022, Cilt: 10 Sayı: 2, 105 - 115, 27.12.2022
https://doi.org/10.33409/tbbbd.1127512

Öz

This study was established to determine the effect of humic acid applications on the macro element contents of Kirik wheat grown in growing media withi PGPR bacteria. Eight bacteria and 0, 1000 and 2000 mg kg-1 doses of humic acid were used in the study. The study carried out in the greenhouse was established according to the factorial experimental design in randomized plots and was carried out in 3 replications in pots including 2 kg soil. The study continued for about two months and at the end of the study, nitrogen, phosphorus, potassium, calcium and magnesium elements were analyzed in the above-ground part of Kirik wheat. According to the results of the analysis, the interaction of bacteria, humic acid and bacteria x humic acid had a significant effect on nitrogen, phosphorus, potassium, calcium and magnesium contents at P<0.01 level. While some bacterial treatments increased the nitrogen content of Kirik wheat compared to the control, some bacteria decreased it. Generally, bacterial treatments increased phosphorus content compared to control, while potassium, calcium and magnesium contents decreased. The application of increasing doses of humic acid to the medium increased the nitrogen and phosphorus contents, while it caused a decrease in the potassium, calcium and magnesium contents. It was determined that increasing doses of humic acid increased the intake of nitrogen and phosphorus elements and decreased the intake of potassium, calcium and magnesium elements in PGPR applied media.

Kaynakça

  • Akıncı Ş, 2011. Hümik asitler, bitki büyümesi ve besleyici alımı. Fen Bilimleri Dergisi, 23(1), 46‐56.
  • Ampong K, Thilakaranthna MS, Gorim LY, 2022. Understanding the role of humic acids on crop performance and soil health. Frontiers in Agronomy, https://doi.org/10.3389/fagro.2022.848621.
  • Ay F, 2015. Hümik asit ve hümik asit kaynaklarinin jeolojik ve ekonomik önemi. Cumhuriyet Üniversitesi Fen Fakültesi Fen Bilimleri Dergisi (CFD), 36(1), 28-51.
  • Azevedo IG, Olivares FL, Ramos AC, Bertolazi AA, Canellas LP, 2019. Humic acids and Herbaspirillum seropedicae change the extracellular H+ fux and gene expression in maize roots seedlings. Chem. Biol. Technol. Ag. 6, 8 .
  • Bashan Y, de-Bashan LE, 2005. Bacteria/plant growth-promotion. In: Encyclopedia of Soils in the Environment, ed. D. Hillel, pp. 103–115. Oxford: Elsevier.
  • Bhattacharya P, Dey BK, Banik S, Nath S, 1986. Organic manures in relation to rhizosphere effect. IV. Effect of organic manures on phosphate solubilizing power of rice and successing wheat rhizosphere soils. Zentralblatt fu¨r Microbiologie 141, 357–365.
  • Bechtaoui N, Raklami A, Benidire L, Tahiri A, Göttfert M, Oufdou K, 2020. Effects of PGPR Co-inoculation on growth, phosphorus nutrition and phosphatase/phytase activities of faba bean under different phosphorus availability conditions. Pol. J. Environ. Stud., 29(2),1557–1565.
  • Çığ F, Sönmez F, Nadeem MA, Sabagh AE, 2021. Effect of biochar and PGPR on the growth and nutrients content of einkorn wheat (Triticum monococcum L.) and post-harvest soil properties. Agronomy, 11, 2418.
  • Çığ F, Erman M, Ceritoğlu M, 2021. Combined Application of Microbial Inoculation and Biochar to MitigateDrought Stress in Wheat. Journal of the Institute of Science and Technology, 11(Special Issue): 3528-3538.
  • Datta C, Basu PS, 2000. lndole acetic acid production by a Rhizobium species from root nodules of a leguminous shrub Cajanus cojan. Microbiol Res., 155, 123-127.
  • Delfine S, Tognetti R, Ersilio Desiderio AA, 2005. Effect of foliar application of N and humic acids on growth and yield of durum wheat. Agron. Sustain. Dev., 25, 183–191. doi: 10.1051/agro:2005017.
  • Dong L, Córdova-Kreylos AL, Yang J, Yuan H, Scow KM, 2009. Humic acids buffer the effects of urea on soil ammonia oxidizers and potential nitrification. Soil Biol. Biochem., 41, 1612–1621. doi: 10.1016/j.soilbio.2009.04.023.
  • Ekin Z, 2019a. Integrated use of humic acid and plant growth promoting rhizobacteria to ensure higher potato productivity in sustainable agriculture. Sustainability, 11, 3417; doi:10.3390/su11123417.
  • Ekin Z, 2019b. Co-Applıcatıon of humıc acıd and bacıllus straıns enhances seed and oıl yıelds by medıatıng nutrıent acquısıtıon of safflower (Carthamus Tınctorıus L.) plants in a semı-arıd regıon. Applıed Ecology and Environmental Research, 18(1), 1883-190.
  • Erman M, Çığ F, Bakırtaş E, 2012. Farklı dozlarda humik asit ve rhizobium bakteri aşılamasının mercimekte verim, verim öğeleri ve nodülasyona etkileri. Tarım Bilimleri Araştırma Dergisi, 5(1), 64-67.
  • Erman, M., Çakmakçı, R., Kotan, R., Çığ, F., Karagöz, K., Sönmez, F., 2008. Isolation of plant growth promoting bacteria from the Van Lake Basin and investigation of their use in some cultural plants. TÜBİTAK TOVAG 108 O 147.
  • Glick BR, 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol., 41(2):109–117.
  • Giannouli A, Kalaitzidis S, Siavalas G, Chatziapostolou A, Christanis K, Papazisimou S, 2009. Evaluation of Greek low-rank coals as potential raw material for the production of soil amendments and organic fertilizers. Int. J. Coal Geol., 77, 383–393. doi: 10.1016/j.coal.2008.07.008
  • Güneş A, 2007 Allüviyal materyaller üzerinde oluşan topraklarda yetiştirilen mısır bitkisinin (Zea mays L) verim ve besin içeriği üzerine organik ve mineral gübre uygulamalarının etkisi. Atatürk Üniversitesi Fen Bilimleri Enstitüsü Toprak Anabilim Dalı yüksek lisans tezi. Erzurum.
  • Günes A, Alpaslan M, ˙Inal A, 2013. Plant Nutrition and Fertilization, 3rd ed.; Ankara University Faculty of Agriculture Publications: Ankara, Turkey, p. 579.
  • Hamidreza B, Sergei B, 2019. The effect of humic acid, plant growth promoting rhizobacteria and seaweed on essential oil, growth parameters and chlorophyll content in basil (Ocimum basilicum L.). Agri Res& Tech: Open Access J., 19(4), 556103. doı: 10.19080/ ARTOAJ.2019.19.556103.
  • İmriz G, Özdemir F, Topal İ, Ercan B, Taş MN, Yakışır E, Okur O, 2014. Bitkisel üretimde bitki gelişimini teşvik eden Rizobakteri (PGPR)'ler ve etki mekanizmaları. Elektronik Mikrobiyoloji Dergisi, 12 (2), 1-19.
  • İpek M, Eşitken M A, 2017. The actions of PGPR on micronutrient availability in soil and plant under calcareous soil conditions: An Evaluation over Fe Nutrition. In: Singh, D., Singh, H., Prabha, R. (eds) Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-10-6593-4_4.
  • Jamal A, Hussaın I, Sarır MS, Sharıf M, Fawad M, 2018. Investigating combination and ındividual ımpact of phosphorus and humic acid on yield of wheat and some soil properties. Türk Tarım ve Doğa Bilimleri Dergisi, 5(4), 492–500.
  • Jing J, Zhang S, Yuan L, Li Y, Lin Z, Xiong Q, Zhao B, 2020. Combining humic acid with phosphate fertilizer affects humic acid structure and its stimulating efficacy on the growth and nutrient uptake of maize seedlings. Sci Rep, 10;17502 https://doi.org/10.1038/s41598-020-74349-6.
  • Karaman MR, Şahin S, Geboloğlu N, Turan M, Güneş A, Tutar A, 2012. Hümik asit uygulamalaması altında farklı domates çeşitlerinin (Lycopersicon esculentum L.) demir alım etkinlikleri. Sakarya Üniversitesi, Fen Edebiyat Dergisi, 14(1), 301–308.
  • Khan RU, Khan MZ, Khan A, Saba S, Hussain F, Jan IU, 2018. Effect of humic acid on growth and crop nutrient status of wheat on two different soils. J. Plant Nutr., 41, 453–460. doi: 10.1080/01904167.2017.1385807. Korkmaz A, Gezgin S, Yılmaz F, 2021. Organomineral ve kimyasal gübre ile farklı fosfor uygulamalarının silaj mısırın verimi ve fosfor kullanım etkinliği üzerine etkileri. Anadolu Tarım Bilimleri Dergisi, 36(2), 268 – 275.
  • Kotan R, Tozlu AE, Güneş A, Dadaşoğlu F, 2021. Elma fidan yetiştiriciliğinde bacillus subtilis içerikli bir mikrobiyal gübrenin kullanım olanaklarının belirlenmesi. Atatürk Üniv. Ziraat Fak. Derg., 52(1), 46-55.
  • Laskosky JD, Mante AA, Zvomuya F, Amarakoon I, Leskiw L, 2020. A bioassay of long-term stockpiled salvaged soil amended with biochar, peat, and humalite. Agrosyst. Geosci. Environ., 3, e20068. doi: 10.1002/agg2.20068.
  • Li Y, Fang F, Wei J, Wu X, Cui R, Li G, Zheng F, Tan D, 2019. Humic acid fertilizer improved soil properties and soil microbial diversity of continuous cropping peanut: A three-year experiment. Sci. Rep. 9, 1–9. doi: 10.1038/s41598-019-48620-4
  • Livens FR, 1991. Chemical reactions of metals with humic material. Environmental Pollution, 70, 183.
  • Maji D, Misra P, Singh S, Kalra A, 2017. Humic acid rich vermicompost promotes plant growth by improving microbial community structure of soil as well as root nodulation and mycorrhizal colonization in the roots of Pisum sativum. Appl. Soil Ecol., 110, 97–108. doi: 10.1016/j.apsoil.2016.10.008.
  • Nasiroleslami E, Mozafari H, Sadeghi-Shoae M, Habibi D, Sani B, 2021. Changes in yield, protein, minerals, and fatty acid profile of wheat (Triticum aestivum L.) under fertilizer management involving application of nitrogen, humic acid, and seaweed extract. J. Soil Sci. Plant Nutr., 21, 2642–2651. doi: 10.1007/s42729-021-00552-7.
  • Olaetxea M, Mora V, Baigorri R. Zamarreño AM, García-Mina JM, 2020. The singular molecular conformation of humic acids in solution influences their ability to enhance root hydraulic conductivity and plant growth. Molecules, 26, 7–10. doi: 10.3390/molecules26010003.
  • Orhan E, Esitken A, Ercisli S, Turan M, Sahin F, 2006. Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry. Scientia Horticulturae, 111, 38–43.
  • Olivares FL, Aguiar NO, Rosa RCC, Canellas LP, 2015. Substrate biofortification in combination with foliar sprays of plant growth promoting bacteria and humic substances boosts production of organic tomatoes. Sci. Hortic., 183, 100–108.
  • Peker C, Kural O, 1979. Linyitlerin gübre olarak değerlendirilmesi. Kimya Mühendisliği Derğisi, 95; 35-38. Péret B, Desnos T, Jost R, Kanno S, Berkowıtz O, Nussaume L, 2014. Root architecture responses: In search of phosphate. Plant Physiol., 166 (4), 1713.
  • Rose MT, Patti AF, Little KR, Brown AL, Jackson WR, Cavagnaro TR, 2014. A meta-analysis and review of plant-growth response to humic substances: Practical implications for agriculture. Adv. Agron., 124, 37–89. doi: 10.1016/B978-0-12-800138-7.00002-4.
  • Rupiasih NN, 2005. A review: Compositions, structures, properties and applications of humic substances. J. Adv. Sci. Technol., 8, 16–25.
  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA, 2013. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2, 587. doi: 10.1186/2193-1801-2-587.
  • Sonkurt, M., Çığ, F., 2019. The effect of plant growth-promoting bacteria on the development, yield and yield components of bread (Triticum aestivum L.) and durum (Triticum durum) wheats. Applied Ecology and Environmental Research, 17 (2): 3877-3896.
  • Soylu EM, Soylu S, Kara M, Kurt Ş, 2020. Sebzelerde sorun olan önemli bitki fungal hastalık etmenlerine karşı vermikomposttan izole edilen mikrobiyomların in vitro antagonistik etkilerinin belirlenmesi, Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 23 (1), 7-18.
  • Söğüt S, Çığ F, 2019. Determination of the effect of plant growth promoting bacteria on wheat (Triticum aestivum L.)development under salinity stress conditions. Applied Ecology and Environmental Research 17(1):1129-1141.
  • Sönmez İ, Kaplan M, Sönmez S, 2008. kimyasal gübrelerin çevre kirliliği üzerine etkileri ve çözüm önerileri. Batı Akdeniz Tarımsal Araştırma Enstitüsü Derim Dergisi, 25(2), 24-34.
  • Sönmez F, Alp Ş, 2019. The effects of applications humic acids on macronutrient, micronutrient, heavy metal and soil properties. YYÜ Tar Bil Derg., 29(4), 809-816.
  • Sözer Bahadır P, Lıaqat F, Eltem R, 2018. Plant growth promoting properties of phosphate solubilizing Bacillus species isolated from the Aegean Region of Turkey. Turkish Journal of Botany 42, 183-196.
  • Stevenson FJ, 1994. Humus Chemistry: Genesis, Composition, Reactions. 2nd. Edition, John Wiley and Sons, Inc, New York, pp. 285.
  • Şahin U, Ekinci M, Yıldırım E, Kızıloğlu MF, Turan M, Kotan R, Ors S, 2015. Ameliorative effects of plant growth promoting bacteria on water-yield relationships, growth and nutrient uptake of lettuce plants under different irrigation levels. HortScience, 50(9), 1379-1386.
  • Tozlu E, Karagöz K, Babagil GE, Dizikısa T, Kotan R, 2012. Effect of some plant growth promoting bacteria on yield, yield components of dry bean (Phaseolus vulgaris L. cv. Aras 98). Atatürk Üniv. Ziraat Fak. Derg., 43(2), 101-106.
  • Tuncalı E. Çiftci B, Yavuz N, Toprak S, Köker A, Ayçık H, Gencer Z, Şahin N, 2002. Chemical and technological properties of turkish tertlary coals. General Directorate Of Mineral Research And Exploratıon, 353-400, Ankara.
  • Tunçtürk R, Kulaz H, Çiftçi V, 2016. Farklı rhizobium suşları ve organik gübre uygulamalarının çemen (Trigonella foenum-graecum L.)’ de bazı tarımsal karakterler üzerine etkisi. YYÜ Tarım Bilimleri Dergisi, 26(4), 475-483.
  • Tüzüner A, 1990. Toprak ve Su Analizleri Laboratuarları El Kitabı. Tarım ve Köy İşleri Bakanlığı, Köy Hizmetleri Genel Müdürlüğü. Ankara.
  • van Tol de Castro TA, Berbara RLL, Tavares OCH, Mello DF, Da G, Pereira EG, 2021. Humic acids induce a eustress state via photosynthesis and nitrogen metabolism leading to a root growth improvement in rice plants. Plant Physiol. Biochem., 162, 171–184. doi: 10.1016/j.plaphy.2021.02.043.
  • Wang X, Wang Z, Li S, 1995. The effect of humic acids on the availability of phosphorus fertilizers in alkaline soils, Soil use and management, 11(2), 99-102.
  • Weir CC, Soper RJ, 1963. Interaction of phosphates with ferric organic complexes. Canadian Journal of Soil Science, 43, 393-399.
  • Wu L, Kobayashı Y, Wasakı J, Koyama H, 2018. Organic acid excretion from roots: a plant mechanism for enhancing phosphorus acquisition, enhancing aluminum tolerance, and recruiting beneficial rhizobacteria. Soil Sci. Plant Nutr., 64(6), 697.
  • Yılmaz C, 2007. Hümik ve Fülvik Asit. Hasad Bitkisel Üretim, Ocak, 260 74.
  • Zahir AZ, Arshad M, Frankenberger WT, 2004. Plant growth promoting rhizobacteria: Applications and perspectives in agriculture. Advances in Agronomy, 81: 97–168.

PGPR uygulanmış ortamlara humik asit ilavesinin Kirik buğdayının (Triticum aestivum L. var. delfii) makro element alımına etkisi

Yıl 2022, Cilt: 10 Sayı: 2, 105 - 115, 27.12.2022
https://doi.org/10.33409/tbbbd.1127512

Öz

Bu çalışma PGPR bakterileri uygulanmış ortamlarda yetiştirilen Kirik buğdayının makro element içeriğikleri üzerine humik asit uygulamalarının etkisinin belirlenmesi amacıyla kurulmuştur. Çalışmada sekizt adet bakteri ile humik asitin 0, 1000 ve 2000 mg kg-1 dozları kullanılmıştır. İklim odasında yürütülen çalışma, tesadüf parsellerinde faktöriyel deneme desenine göre kurulmuş ve 2 kg toprak alan saksılarda 3 tekerrürlü olarak yürütülmüştür. Çalışmaya yaklaşık ik ay devam edilmiş ve çalışma sonunda Kirik buğdayının toprak üstü aksamında azot, fosfor, potasyum, kalsiyum ve magnezyum elementleri analiz edilmiştir. Analiz sonuçlarına göre bakteri, humik asit ve bakteri x humik asit interaksiyonu azot, fosfor, potasyum, kalsiyum ve magnezyum içerikleri üzerine P<0.01 düzeyinde önemli etkide bulunmuştur. Bazı bakteri uygulamaları Kirik buğdayının azot içeriğini kontrole göre artırmışken bazı bakteriler azaltmıştır. Genel olarak bakteri uygulamaları fosfor içeriğini kontrole göre artırmışken, potasyum, kalsiyum ve magnezyum içerikleri düşüş göstermiştir. Ortama humik asitin artan dozlarının uygulanması azot ve fosfor içeriklerini artırmışken, potasyum, kalsiyum ve magnezyum içeriklerinde düşüşe neden olmuştur. PGPR uygulanmış ortamlarda humik asidin artan dozlarının azot ve fosfor elementlerinin alımını artırdığı, potasyum, kalsiyum ve magnezyum elementlerinin alımını ise azaltığı belirlenmiştir.

Kaynakça

  • Akıncı Ş, 2011. Hümik asitler, bitki büyümesi ve besleyici alımı. Fen Bilimleri Dergisi, 23(1), 46‐56.
  • Ampong K, Thilakaranthna MS, Gorim LY, 2022. Understanding the role of humic acids on crop performance and soil health. Frontiers in Agronomy, https://doi.org/10.3389/fagro.2022.848621.
  • Ay F, 2015. Hümik asit ve hümik asit kaynaklarinin jeolojik ve ekonomik önemi. Cumhuriyet Üniversitesi Fen Fakültesi Fen Bilimleri Dergisi (CFD), 36(1), 28-51.
  • Azevedo IG, Olivares FL, Ramos AC, Bertolazi AA, Canellas LP, 2019. Humic acids and Herbaspirillum seropedicae change the extracellular H+ fux and gene expression in maize roots seedlings. Chem. Biol. Technol. Ag. 6, 8 .
  • Bashan Y, de-Bashan LE, 2005. Bacteria/plant growth-promotion. In: Encyclopedia of Soils in the Environment, ed. D. Hillel, pp. 103–115. Oxford: Elsevier.
  • Bhattacharya P, Dey BK, Banik S, Nath S, 1986. Organic manures in relation to rhizosphere effect. IV. Effect of organic manures on phosphate solubilizing power of rice and successing wheat rhizosphere soils. Zentralblatt fu¨r Microbiologie 141, 357–365.
  • Bechtaoui N, Raklami A, Benidire L, Tahiri A, Göttfert M, Oufdou K, 2020. Effects of PGPR Co-inoculation on growth, phosphorus nutrition and phosphatase/phytase activities of faba bean under different phosphorus availability conditions. Pol. J. Environ. Stud., 29(2),1557–1565.
  • Çığ F, Sönmez F, Nadeem MA, Sabagh AE, 2021. Effect of biochar and PGPR on the growth and nutrients content of einkorn wheat (Triticum monococcum L.) and post-harvest soil properties. Agronomy, 11, 2418.
  • Çığ F, Erman M, Ceritoğlu M, 2021. Combined Application of Microbial Inoculation and Biochar to MitigateDrought Stress in Wheat. Journal of the Institute of Science and Technology, 11(Special Issue): 3528-3538.
  • Datta C, Basu PS, 2000. lndole acetic acid production by a Rhizobium species from root nodules of a leguminous shrub Cajanus cojan. Microbiol Res., 155, 123-127.
  • Delfine S, Tognetti R, Ersilio Desiderio AA, 2005. Effect of foliar application of N and humic acids on growth and yield of durum wheat. Agron. Sustain. Dev., 25, 183–191. doi: 10.1051/agro:2005017.
  • Dong L, Córdova-Kreylos AL, Yang J, Yuan H, Scow KM, 2009. Humic acids buffer the effects of urea on soil ammonia oxidizers and potential nitrification. Soil Biol. Biochem., 41, 1612–1621. doi: 10.1016/j.soilbio.2009.04.023.
  • Ekin Z, 2019a. Integrated use of humic acid and plant growth promoting rhizobacteria to ensure higher potato productivity in sustainable agriculture. Sustainability, 11, 3417; doi:10.3390/su11123417.
  • Ekin Z, 2019b. Co-Applıcatıon of humıc acıd and bacıllus straıns enhances seed and oıl yıelds by medıatıng nutrıent acquısıtıon of safflower (Carthamus Tınctorıus L.) plants in a semı-arıd regıon. Applıed Ecology and Environmental Research, 18(1), 1883-190.
  • Erman M, Çığ F, Bakırtaş E, 2012. Farklı dozlarda humik asit ve rhizobium bakteri aşılamasının mercimekte verim, verim öğeleri ve nodülasyona etkileri. Tarım Bilimleri Araştırma Dergisi, 5(1), 64-67.
  • Erman, M., Çakmakçı, R., Kotan, R., Çığ, F., Karagöz, K., Sönmez, F., 2008. Isolation of plant growth promoting bacteria from the Van Lake Basin and investigation of their use in some cultural plants. TÜBİTAK TOVAG 108 O 147.
  • Glick BR, 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol., 41(2):109–117.
  • Giannouli A, Kalaitzidis S, Siavalas G, Chatziapostolou A, Christanis K, Papazisimou S, 2009. Evaluation of Greek low-rank coals as potential raw material for the production of soil amendments and organic fertilizers. Int. J. Coal Geol., 77, 383–393. doi: 10.1016/j.coal.2008.07.008
  • Güneş A, 2007 Allüviyal materyaller üzerinde oluşan topraklarda yetiştirilen mısır bitkisinin (Zea mays L) verim ve besin içeriği üzerine organik ve mineral gübre uygulamalarının etkisi. Atatürk Üniversitesi Fen Bilimleri Enstitüsü Toprak Anabilim Dalı yüksek lisans tezi. Erzurum.
  • Günes A, Alpaslan M, ˙Inal A, 2013. Plant Nutrition and Fertilization, 3rd ed.; Ankara University Faculty of Agriculture Publications: Ankara, Turkey, p. 579.
  • Hamidreza B, Sergei B, 2019. The effect of humic acid, plant growth promoting rhizobacteria and seaweed on essential oil, growth parameters and chlorophyll content in basil (Ocimum basilicum L.). Agri Res& Tech: Open Access J., 19(4), 556103. doı: 10.19080/ ARTOAJ.2019.19.556103.
  • İmriz G, Özdemir F, Topal İ, Ercan B, Taş MN, Yakışır E, Okur O, 2014. Bitkisel üretimde bitki gelişimini teşvik eden Rizobakteri (PGPR)'ler ve etki mekanizmaları. Elektronik Mikrobiyoloji Dergisi, 12 (2), 1-19.
  • İpek M, Eşitken M A, 2017. The actions of PGPR on micronutrient availability in soil and plant under calcareous soil conditions: An Evaluation over Fe Nutrition. In: Singh, D., Singh, H., Prabha, R. (eds) Plant-Microbe Interactions in Agro-Ecological Perspectives. Springer, Singapore. https://doi.org/10.1007/978-981-10-6593-4_4.
  • Jamal A, Hussaın I, Sarır MS, Sharıf M, Fawad M, 2018. Investigating combination and ındividual ımpact of phosphorus and humic acid on yield of wheat and some soil properties. Türk Tarım ve Doğa Bilimleri Dergisi, 5(4), 492–500.
  • Jing J, Zhang S, Yuan L, Li Y, Lin Z, Xiong Q, Zhao B, 2020. Combining humic acid with phosphate fertilizer affects humic acid structure and its stimulating efficacy on the growth and nutrient uptake of maize seedlings. Sci Rep, 10;17502 https://doi.org/10.1038/s41598-020-74349-6.
  • Karaman MR, Şahin S, Geboloğlu N, Turan M, Güneş A, Tutar A, 2012. Hümik asit uygulamalaması altında farklı domates çeşitlerinin (Lycopersicon esculentum L.) demir alım etkinlikleri. Sakarya Üniversitesi, Fen Edebiyat Dergisi, 14(1), 301–308.
  • Khan RU, Khan MZ, Khan A, Saba S, Hussain F, Jan IU, 2018. Effect of humic acid on growth and crop nutrient status of wheat on two different soils. J. Plant Nutr., 41, 453–460. doi: 10.1080/01904167.2017.1385807. Korkmaz A, Gezgin S, Yılmaz F, 2021. Organomineral ve kimyasal gübre ile farklı fosfor uygulamalarının silaj mısırın verimi ve fosfor kullanım etkinliği üzerine etkileri. Anadolu Tarım Bilimleri Dergisi, 36(2), 268 – 275.
  • Kotan R, Tozlu AE, Güneş A, Dadaşoğlu F, 2021. Elma fidan yetiştiriciliğinde bacillus subtilis içerikli bir mikrobiyal gübrenin kullanım olanaklarının belirlenmesi. Atatürk Üniv. Ziraat Fak. Derg., 52(1), 46-55.
  • Laskosky JD, Mante AA, Zvomuya F, Amarakoon I, Leskiw L, 2020. A bioassay of long-term stockpiled salvaged soil amended with biochar, peat, and humalite. Agrosyst. Geosci. Environ., 3, e20068. doi: 10.1002/agg2.20068.
  • Li Y, Fang F, Wei J, Wu X, Cui R, Li G, Zheng F, Tan D, 2019. Humic acid fertilizer improved soil properties and soil microbial diversity of continuous cropping peanut: A three-year experiment. Sci. Rep. 9, 1–9. doi: 10.1038/s41598-019-48620-4
  • Livens FR, 1991. Chemical reactions of metals with humic material. Environmental Pollution, 70, 183.
  • Maji D, Misra P, Singh S, Kalra A, 2017. Humic acid rich vermicompost promotes plant growth by improving microbial community structure of soil as well as root nodulation and mycorrhizal colonization in the roots of Pisum sativum. Appl. Soil Ecol., 110, 97–108. doi: 10.1016/j.apsoil.2016.10.008.
  • Nasiroleslami E, Mozafari H, Sadeghi-Shoae M, Habibi D, Sani B, 2021. Changes in yield, protein, minerals, and fatty acid profile of wheat (Triticum aestivum L.) under fertilizer management involving application of nitrogen, humic acid, and seaweed extract. J. Soil Sci. Plant Nutr., 21, 2642–2651. doi: 10.1007/s42729-021-00552-7.
  • Olaetxea M, Mora V, Baigorri R. Zamarreño AM, García-Mina JM, 2020. The singular molecular conformation of humic acids in solution influences their ability to enhance root hydraulic conductivity and plant growth. Molecules, 26, 7–10. doi: 10.3390/molecules26010003.
  • Orhan E, Esitken A, Ercisli S, Turan M, Sahin F, 2006. Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry. Scientia Horticulturae, 111, 38–43.
  • Olivares FL, Aguiar NO, Rosa RCC, Canellas LP, 2015. Substrate biofortification in combination with foliar sprays of plant growth promoting bacteria and humic substances boosts production of organic tomatoes. Sci. Hortic., 183, 100–108.
  • Peker C, Kural O, 1979. Linyitlerin gübre olarak değerlendirilmesi. Kimya Mühendisliği Derğisi, 95; 35-38. Péret B, Desnos T, Jost R, Kanno S, Berkowıtz O, Nussaume L, 2014. Root architecture responses: In search of phosphate. Plant Physiol., 166 (4), 1713.
  • Rose MT, Patti AF, Little KR, Brown AL, Jackson WR, Cavagnaro TR, 2014. A meta-analysis and review of plant-growth response to humic substances: Practical implications for agriculture. Adv. Agron., 124, 37–89. doi: 10.1016/B978-0-12-800138-7.00002-4.
  • Rupiasih NN, 2005. A review: Compositions, structures, properties and applications of humic substances. J. Adv. Sci. Technol., 8, 16–25.
  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA, 2013. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2, 587. doi: 10.1186/2193-1801-2-587.
  • Sonkurt, M., Çığ, F., 2019. The effect of plant growth-promoting bacteria on the development, yield and yield components of bread (Triticum aestivum L.) and durum (Triticum durum) wheats. Applied Ecology and Environmental Research, 17 (2): 3877-3896.
  • Soylu EM, Soylu S, Kara M, Kurt Ş, 2020. Sebzelerde sorun olan önemli bitki fungal hastalık etmenlerine karşı vermikomposttan izole edilen mikrobiyomların in vitro antagonistik etkilerinin belirlenmesi, Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 23 (1), 7-18.
  • Söğüt S, Çığ F, 2019. Determination of the effect of plant growth promoting bacteria on wheat (Triticum aestivum L.)development under salinity stress conditions. Applied Ecology and Environmental Research 17(1):1129-1141.
  • Sönmez İ, Kaplan M, Sönmez S, 2008. kimyasal gübrelerin çevre kirliliği üzerine etkileri ve çözüm önerileri. Batı Akdeniz Tarımsal Araştırma Enstitüsü Derim Dergisi, 25(2), 24-34.
  • Sönmez F, Alp Ş, 2019. The effects of applications humic acids on macronutrient, micronutrient, heavy metal and soil properties. YYÜ Tar Bil Derg., 29(4), 809-816.
  • Sözer Bahadır P, Lıaqat F, Eltem R, 2018. Plant growth promoting properties of phosphate solubilizing Bacillus species isolated from the Aegean Region of Turkey. Turkish Journal of Botany 42, 183-196.
  • Stevenson FJ, 1994. Humus Chemistry: Genesis, Composition, Reactions. 2nd. Edition, John Wiley and Sons, Inc, New York, pp. 285.
  • Şahin U, Ekinci M, Yıldırım E, Kızıloğlu MF, Turan M, Kotan R, Ors S, 2015. Ameliorative effects of plant growth promoting bacteria on water-yield relationships, growth and nutrient uptake of lettuce plants under different irrigation levels. HortScience, 50(9), 1379-1386.
  • Tozlu E, Karagöz K, Babagil GE, Dizikısa T, Kotan R, 2012. Effect of some plant growth promoting bacteria on yield, yield components of dry bean (Phaseolus vulgaris L. cv. Aras 98). Atatürk Üniv. Ziraat Fak. Derg., 43(2), 101-106.
  • Tuncalı E. Çiftci B, Yavuz N, Toprak S, Köker A, Ayçık H, Gencer Z, Şahin N, 2002. Chemical and technological properties of turkish tertlary coals. General Directorate Of Mineral Research And Exploratıon, 353-400, Ankara.
  • Tunçtürk R, Kulaz H, Çiftçi V, 2016. Farklı rhizobium suşları ve organik gübre uygulamalarının çemen (Trigonella foenum-graecum L.)’ de bazı tarımsal karakterler üzerine etkisi. YYÜ Tarım Bilimleri Dergisi, 26(4), 475-483.
  • Tüzüner A, 1990. Toprak ve Su Analizleri Laboratuarları El Kitabı. Tarım ve Köy İşleri Bakanlığı, Köy Hizmetleri Genel Müdürlüğü. Ankara.
  • van Tol de Castro TA, Berbara RLL, Tavares OCH, Mello DF, Da G, Pereira EG, 2021. Humic acids induce a eustress state via photosynthesis and nitrogen metabolism leading to a root growth improvement in rice plants. Plant Physiol. Biochem., 162, 171–184. doi: 10.1016/j.plaphy.2021.02.043.
  • Wang X, Wang Z, Li S, 1995. The effect of humic acids on the availability of phosphorus fertilizers in alkaline soils, Soil use and management, 11(2), 99-102.
  • Weir CC, Soper RJ, 1963. Interaction of phosphates with ferric organic complexes. Canadian Journal of Soil Science, 43, 393-399.
  • Wu L, Kobayashı Y, Wasakı J, Koyama H, 2018. Organic acid excretion from roots: a plant mechanism for enhancing phosphorus acquisition, enhancing aluminum tolerance, and recruiting beneficial rhizobacteria. Soil Sci. Plant Nutr., 64(6), 697.
  • Yılmaz C, 2007. Hümik ve Fülvik Asit. Hasad Bitkisel Üretim, Ocak, 260 74.
  • Zahir AZ, Arshad M, Frankenberger WT, 2004. Plant growth promoting rhizobacteria: Applications and perspectives in agriculture. Advances in Agronomy, 81: 97–168.
Toplam 58 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ziraat Mühendisliği
Bölüm Makaleler
Yazarlar

Ferit Sönmez 0000-0003-1437-4081

Yayımlanma Tarihi 27 Aralık 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 10 Sayı: 2

Kaynak Göster

APA Sönmez, F. (2022). PGPR uygulanmış ortamlara humik asit ilavesinin Kirik buğdayının (Triticum aestivum L. var. delfii) makro element alımına etkisi. Toprak Bilimi Ve Bitki Besleme Dergisi, 10(2), 105-115. https://doi.org/10.33409/tbbbd.1127512
AMA Sönmez F. PGPR uygulanmış ortamlara humik asit ilavesinin Kirik buğdayının (Triticum aestivum L. var. delfii) makro element alımına etkisi. tbbbd. Aralık 2022;10(2):105-115. doi:10.33409/tbbbd.1127512
Chicago Sönmez, Ferit. “PGPR uygulanmış Ortamlara Humik Asit Ilavesinin Kirik buğdayının (Triticum Aestivum L. Var. Delfii) Makro Element alımına Etkisi”. Toprak Bilimi Ve Bitki Besleme Dergisi 10, sy. 2 (Aralık 2022): 105-15. https://doi.org/10.33409/tbbbd.1127512.
EndNote Sönmez F (01 Aralık 2022) PGPR uygulanmış ortamlara humik asit ilavesinin Kirik buğdayının (Triticum aestivum L. var. delfii) makro element alımına etkisi. Toprak Bilimi ve Bitki Besleme Dergisi 10 2 105–115.
IEEE F. Sönmez, “PGPR uygulanmış ortamlara humik asit ilavesinin Kirik buğdayının (Triticum aestivum L. var. delfii) makro element alımına etkisi”, tbbbd, c. 10, sy. 2, ss. 105–115, 2022, doi: 10.33409/tbbbd.1127512.
ISNAD Sönmez, Ferit. “PGPR uygulanmış Ortamlara Humik Asit Ilavesinin Kirik buğdayının (Triticum Aestivum L. Var. Delfii) Makro Element alımına Etkisi”. Toprak Bilimi ve Bitki Besleme Dergisi 10/2 (Aralık 2022), 105-115. https://doi.org/10.33409/tbbbd.1127512.
JAMA Sönmez F. PGPR uygulanmış ortamlara humik asit ilavesinin Kirik buğdayının (Triticum aestivum L. var. delfii) makro element alımına etkisi. tbbbd. 2022;10:105–115.
MLA Sönmez, Ferit. “PGPR uygulanmış Ortamlara Humik Asit Ilavesinin Kirik buğdayının (Triticum Aestivum L. Var. Delfii) Makro Element alımına Etkisi”. Toprak Bilimi Ve Bitki Besleme Dergisi, c. 10, sy. 2, 2022, ss. 105-1, doi:10.33409/tbbbd.1127512.
Vancouver Sönmez F. PGPR uygulanmış ortamlara humik asit ilavesinin Kirik buğdayının (Triticum aestivum L. var. delfii) makro element alımına etkisi. tbbbd. 2022;10(2):105-1.