Araştırma Makalesi
BibTex RIS Kaynak Göster

The effects of N:S ratios in nutrient solution on the growth, photosynthetic pigments and macronutrient content of tomato plants in soilless culture

Yıl 2024, Cilt: 12 Sayı: 2, 137 - 144, 16.12.2024
https://doi.org/10.33409/tbbbd.1512518

Öz

In this study, the effects of changes in the N (Nitrogen) : S (Sulphur) ratio of the nutrient solution in soilless cultivation on the growth, macronutrient content, and photosynthetic pigments of tomato plants were investigated. One thousand five hundred grams (1500 g) of the substrate (2:1 peat: perlite (v/v) mixture) was added to each 3-litre pot. A tomato seedling (Kardelen F1 variety) was planted in each pot. Plants were fed with nutrient solution treatments [I) 12.5:0.125 (N12.5:S0.125), II) 11.5:0.625 (N11.5:S0.625), III) 10.5:1.125 (N10.5:S1.125), IV) 9.5:1.625 (N9.5:S1.625)] with different N and S concentrations (mM). The study was conducted with three replicates according to a completely randomized experimental design. The effect of the changes in N:S balance in the nutrient solution on the stem and leaf dry weight of the plant was significant, while its effect on the root dry weight, plant height, stem diameter, and leaf number of the plant was not significant. The increase in S concentration and the simultaneous decrease in N concentration in the nutrient solution reduced the content of chlorophyll-a, chlorophyll-b, and total chlorophyll in the leaf. The highest levels of chlorophyll-a, chlorophyll-b, and total chlorophyll were obtained in treatment N12.5:S0.125 and the lowest in treatment N9.5:S1.625. The effect of the change in N:S ratios in the nutrient solution on the N, K, Ca, Mg, and S content in the leaves was found to be significant, while the effect on the P content was not significant.

Kaynakça

  • Abdalla MA, Meschede CAC, Mühling KH, 2020. Selenium foliar application alters patterns of glucosinolate hydrolysis products of pak choi Brassica rapa L. var. Chinensis. Scientia Horticulturae, 273(9): 109614.
  • Albornoz F, 2016. Crop responses to nitrogen overfertilization: A review. Scientia Horticulturae, 205: 79-83.
  • Alpaslan M, Güneş A, Inal A, 1998. Deneme Tekniği. Ankara Üniversitesi Yayın No: 1501, Ziraat Fakültesi Ders Kitabı: 455, ISBN: 975-482-438-X, p. 437, Ankara.
  • Anzalone A, Mosca A, Dimaria G, Nicotra D, Tessitori M, Privitera GF, Pulvirenti A, Leonardi C, Catara V, 2022. Soil and soilless tomato cultivation promote different microbial communities that provide new models for future crop interventions. International Journal of Molecular Sciences, 23(15): 8820.
  • Arnon D, 1949. Copper enzymes in isolated chloroplasts. Plant Physiology, 24(1), 1-12.
  • Bremner JM, Mulvaney CS, 1982. Total nitrogen. In: Methods of Soil Analysis, (eds. Page AL, Miller RH, Keeny, DR), American Society of Agronomy and Soil Science Society of America, Madison, pp. 1119-1123.
  • Carciochi WD, Reussi Calvo NI, Wyngaard N, Divito GA, Eyherabide M, Echeverría HE, 2019. Prognosis and diagnosis of sulfur status in maize by plant analysis. European Journal of Agronomy, 108: 1-10.
  • Coleto I, de la Peña, M, Rodríguez-Escalante, J, Bejarano I, Glauser G, Aparicio-Tejo PM, González-Moro MB, Marino D, 2017. Leaves play a central role in the adaptation of nitrogen and sulfur metabolism to ammonium nutrition in oilseed rape (Brassica napus). BMC Plant Biology, 17: 157.
  • Dawar K, Khan AA, Jahangir MMR, Mian IA, Khan B, Ahmad B, Fahad S, Moustafa M, Al-Shehri M, Mubashir M, Datta R, Danish S, 2023. Effect of nitrogen in combination with different levels of sulfur on wheat growth and yield. ACS Omega, 8(1): 279-288.
  • Dorais M, Papadopoulos AP, Gosselin A, 2010. Greenhouse tomato fruit quality. In: Horticultural Reviews; Wiley: Hoboken, NJ, USA, pp. 239–319.
  • Elia A, Conversa G, 2012. Agronomic and physiological responses of a tomato crop to nitrogen input. European Journal of Agronomy, 40: 64-74.
  • Ghafoor I, Habib-ur-Rahman M, Ali M, Afzal M, Ahmed W, Gaiser T, Ghaffar A, 2021. Slow-release nitrogen fertilizers enhance growth, yield, NUE in wheat crop and reduce nitrogen losses under an arid environment. Environmental Science and Pollution Research, 28: 43528-43543.
  • Gruda N, Qaryouti MM, Leonardi C, 2013. Growing media. In: Good Agricultural Practices for Greenhouse Vegetable Crops: Principles for Mediterranean Climate Areas; FAO: Rome, Italy.
  • Hochmuth GJ, Maynard D, Vavrina C, Hanlon E, Simonne E, 2012. “Plant tissue analysis and interpretation for vegetable crops in Florida: HS964/EP081 Rev. 10/2012”. EDIS, 2012(10). Gainesville, FL.
  • Hu X, Gu T, Khan I, Zada A, Jia T, 2021. Research progress in the interconversion, turnover and degradation of chlorophyll. Cells, 10(11): 3134.
  • Jamal A, Moon YS, Abdin MZ, 2010. Sulphur -a general overview and interaction with nitrogen. Australian Journal of Crop Science, 4(7): 523-529.
  • Javaid K, Mahmood A, Najeeb Alawadi HF, Saad Ullah M, Seleiman MF, Ameen M, Asghar A, Ali N, (2024). Synergic effect of sulfur and nitrogen on morpho-physiological and biochemical traits of sunflower. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 52(2), 13584.
  • Jiang X, Fan M, Wang T, Gong S, Hao W, Ye Y, Zhao Y, Cui N, Zhao H, Zhao L, 2024. Modeling tomato yield and quality responses to water and nitrogen deficits with a modified crop water production function. Horticulturae, 10(9): 898.
  • Kacar B, İnal A, 2008. Bitki Analizleri, Nobel Yayın Dağıtım Ltd. Şti. Yayınları, Yayın No: 1241; Fen Bilimleri: 63, (I. Basım) Ankara.
  • Kopriva S, Malagoli M, Takahashi H, 2019. Sulfur nutrition: Impacts on plant development, metabolism, and stress responses. Journal of Experimental Botany, 70(16): 4069-4073.
  • Marschner P, 2012. Marschner’s mineral nutrition of higher plants. (3rd ed.). Academic Press.
  • Meschede CAC, Abdalla MA, Mühling KH, 2020. Sulfur but not nitrogen supply increases the ITC/Nitrile ratio in Pak Choi (Brassica rapa subsp. Chinensis (L.) Hanelt). Journal of Applied Botany and Food Quality, 93: 95-104.
  • Muhammad I, Yang L, Ahmad S, Farooq S, Al-Ghamdi AA, Khan A, Zeeshan M, Elshikh MS, Abbasi AM, Zhou X-B, 2022. Nitrogen fertilizer modulates plant growth, chlorophyll pigments and enzymatic activities under different irrigation regimes. Agronomy, 12: 845.
  • Nakai Y, Maruyama-Nakashita A, 2020. Biosynthesis of sulfur-containing small biomolecules in plants. International Journal of Molecular Sciences, 21(10): 3470.
  • Narayan OP, Kumar P, Yadav B, Dua M, Johri AK, 2023. Sulfur nutrition and its role in plant growth and development. Plant Signaling & Behavior, 18(1): 2030082.
  • Nascimento CS, Nascimento CS, Cecílio ABF, 2020. N:K ratio for phenological growth stages of net melon cultivated in NFT hydroponic system. Revista Caatinga, 33(1), 108-115.
  • Nukaya A, Hashimoto H, 1998. Effects of nitrate, chloride and sulfate ratios and concentration in the nutrient solution on yield, growth and mineral uptake characteristics of tomato plants grown in closed rockwool system. In Proceedings of the XXV International Horticultural Congress, Part 1: Culture Techniques with Special Emphasis on Environmental Implications-511; International Society for Horticultural Science: Leuven, Belgium, pp. 165–172.
  • Pagani A, Echeverría HE, Sainz Rozas H, 2009. Respuesta a nitrógeno y azufre en el cultivo de maíz en diferentes ambientes de la Provincia de Buenos Aires [Corn response to nitrogen and sulfur under different environments in the province of Buenos Aires]. Ciencia del Suelo, 27(1): 21-29.
  • Prieto KR, Echaide-Aquino F, Huerta-Robles A, Valério HP, Macedo-Raygoza G, Prado FM Medeiros MHG, Brito HF, da Silva IGN, Felinto MCFC. et al. 2017. Endophytic bacteria and rare earth elements; promising candidates for nutrient use efficiency in plants. In: Plant Macronutrient Use Efficiency: Molecular and Genomic Perspectives in Crop Plants (eds. Hossain MA, Kamiya T, Burritt DJ, Tran L-SP, Fujiwara T), Elsevier, pp. 285−306.
  • Salvagiotti F, Castellarín JM, Miralles DJ, Pedrol HM, 2009. Sulfur fertilization improves nitrogen use efficiency in wheat by increasing nitrogen uptake. Field Crops Research, 113(2): 170-177.
  • Silva MLS, Trevizam AR, Piccolo MC, Furlan G, 2014. Tomato production in function of sulfur rates application. Applied Research & Agrotecnology, 7(1): 47-54.
  • Sutradhar AK, Kaiser DE, Fernández FG, 2017. Does total nitrogen/sulfur ratio predict nitrogen or sulfur requirement for corn? Soil Science Society of America Journal, 81(3): 564-577.
  • Tiancai G, Wei F, Huijie Z, Guodian X, Huacen W, Yonghua W, Zhanjun Y, 2004. Photosynthetic characteristics of flag leaves and nitrogen effects in two winter wheat cultivars with different spike type. Zuo Wu Xue Bao, 30: 115-121.
  • Wang N, Fu F, Wang H, Wang P, He S, Shao H, Ni Z, Zhang X, 2021. Efects of irrigation and nitrogen on chlorophyll content, dry matter and nitrogen accumulation in sugar beet (Beta vulgaris L.). Scientific Reports, 11:16651.
  • Witham FH, Blaydes DF, Devlin RM, 1971. Experiments in plant physiology. Van Nostrend Reinhold Company, New York.
  • Zenda T, Liu S, Dong A, Duan H, 2021. Revisiting sulphur—The once neglected nutrient: It’s roles in plant growth, metabolism, stress tolerance and crop production. Agriculture, 11(7): 626.

Topraksız kültürde besin çözeltisindeki N:S oranlarının domates bitkisinin gelişimi, fotosentetik pigmentleri ve makro besin içeriği üzerine etkileri

Yıl 2024, Cilt: 12 Sayı: 2, 137 - 144, 16.12.2024
https://doi.org/10.33409/tbbbd.1512518

Öz

Bu çalışmada, topraksız yetiştiricilikte besin çözeltisindeki Azot (N) : Kükürt (S) oranındaki değişimin domates bitkisinde gelişme, makro besin kapsamı ve fotosentetik pigmentler üzerine etkisi incelenmiştir. Denemede 2:1 torf: perlit (v/v) karışımından her saksı için 1500 gram alınıp 3 litrelik saksılara konulmuştur. Her saksıya bir domates fidesi (Kardelen F1 çeşidi) dikilmiştir. Bitkilere farklı N ve S konsantrasyonlarına (mM) sahip besin çözeltisi uygulamaları [I) 12.5:0.125 (N12.5:S0.125), II) 11.5:0.625 (N11.5:S0.625), III) 10.5:1.125 (N10.5:S1.125), IV) 9.5:1.625 (N9.5:S1.625)] yapılmıştır. Deneme tamamen tesadüfi deneme desenine göre üç tekerrürlü olarak yürütülmüştür. Besin çözeltisindeki N:S dengesindeki değişimin, bitkinin gövde ve yaprak kuru ağırlığı üzerine etkisi önemli bulunurken; bitkinin kök kuru ağırlığı, boyu, bitki gövde çapı, bitki yaprak sayısı üzerine etkisi önemsiz bulunmuştur. Azotun azaltılırken kükürtün arttırıldığı besin çözeltisi uygulaması yaprakta klorofil-a, klorofil-b ve toplam klorofil kapsamlarını azaltmıştır. En yüksek klorofil-a, klorofil-b ve toplam klorofil içeriği N12.5:S0.125 uygulamasında; en düşük ise N9.5:S1.625 uygulamasında elde edilmiştir. Besin çözeltisindeki N:S oranındaki değişimin, yaprakta N, K, Ca, Mg ve S kapsamına etkisi önemli iken; P kapsamına etkisi önemsiz bulunmuştur.

Destekleyen Kurum

Bu çalışma Ondokuz Mayıs Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından desteklenmiştir (Proje No: PYO.ZRT.1908.22.015).

Teşekkür

Çalışmanın desteklenmesinden dolayı Ondokuz Mayıs Üniversitesi BAPKOP - BAPSİS birimine teşekkür etmeyi bir borç bilirim.

Kaynakça

  • Abdalla MA, Meschede CAC, Mühling KH, 2020. Selenium foliar application alters patterns of glucosinolate hydrolysis products of pak choi Brassica rapa L. var. Chinensis. Scientia Horticulturae, 273(9): 109614.
  • Albornoz F, 2016. Crop responses to nitrogen overfertilization: A review. Scientia Horticulturae, 205: 79-83.
  • Alpaslan M, Güneş A, Inal A, 1998. Deneme Tekniği. Ankara Üniversitesi Yayın No: 1501, Ziraat Fakültesi Ders Kitabı: 455, ISBN: 975-482-438-X, p. 437, Ankara.
  • Anzalone A, Mosca A, Dimaria G, Nicotra D, Tessitori M, Privitera GF, Pulvirenti A, Leonardi C, Catara V, 2022. Soil and soilless tomato cultivation promote different microbial communities that provide new models for future crop interventions. International Journal of Molecular Sciences, 23(15): 8820.
  • Arnon D, 1949. Copper enzymes in isolated chloroplasts. Plant Physiology, 24(1), 1-12.
  • Bremner JM, Mulvaney CS, 1982. Total nitrogen. In: Methods of Soil Analysis, (eds. Page AL, Miller RH, Keeny, DR), American Society of Agronomy and Soil Science Society of America, Madison, pp. 1119-1123.
  • Carciochi WD, Reussi Calvo NI, Wyngaard N, Divito GA, Eyherabide M, Echeverría HE, 2019. Prognosis and diagnosis of sulfur status in maize by plant analysis. European Journal of Agronomy, 108: 1-10.
  • Coleto I, de la Peña, M, Rodríguez-Escalante, J, Bejarano I, Glauser G, Aparicio-Tejo PM, González-Moro MB, Marino D, 2017. Leaves play a central role in the adaptation of nitrogen and sulfur metabolism to ammonium nutrition in oilseed rape (Brassica napus). BMC Plant Biology, 17: 157.
  • Dawar K, Khan AA, Jahangir MMR, Mian IA, Khan B, Ahmad B, Fahad S, Moustafa M, Al-Shehri M, Mubashir M, Datta R, Danish S, 2023. Effect of nitrogen in combination with different levels of sulfur on wheat growth and yield. ACS Omega, 8(1): 279-288.
  • Dorais M, Papadopoulos AP, Gosselin A, 2010. Greenhouse tomato fruit quality. In: Horticultural Reviews; Wiley: Hoboken, NJ, USA, pp. 239–319.
  • Elia A, Conversa G, 2012. Agronomic and physiological responses of a tomato crop to nitrogen input. European Journal of Agronomy, 40: 64-74.
  • Ghafoor I, Habib-ur-Rahman M, Ali M, Afzal M, Ahmed W, Gaiser T, Ghaffar A, 2021. Slow-release nitrogen fertilizers enhance growth, yield, NUE in wheat crop and reduce nitrogen losses under an arid environment. Environmental Science and Pollution Research, 28: 43528-43543.
  • Gruda N, Qaryouti MM, Leonardi C, 2013. Growing media. In: Good Agricultural Practices for Greenhouse Vegetable Crops: Principles for Mediterranean Climate Areas; FAO: Rome, Italy.
  • Hochmuth GJ, Maynard D, Vavrina C, Hanlon E, Simonne E, 2012. “Plant tissue analysis and interpretation for vegetable crops in Florida: HS964/EP081 Rev. 10/2012”. EDIS, 2012(10). Gainesville, FL.
  • Hu X, Gu T, Khan I, Zada A, Jia T, 2021. Research progress in the interconversion, turnover and degradation of chlorophyll. Cells, 10(11): 3134.
  • Jamal A, Moon YS, Abdin MZ, 2010. Sulphur -a general overview and interaction with nitrogen. Australian Journal of Crop Science, 4(7): 523-529.
  • Javaid K, Mahmood A, Najeeb Alawadi HF, Saad Ullah M, Seleiman MF, Ameen M, Asghar A, Ali N, (2024). Synergic effect of sulfur and nitrogen on morpho-physiological and biochemical traits of sunflower. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 52(2), 13584.
  • Jiang X, Fan M, Wang T, Gong S, Hao W, Ye Y, Zhao Y, Cui N, Zhao H, Zhao L, 2024. Modeling tomato yield and quality responses to water and nitrogen deficits with a modified crop water production function. Horticulturae, 10(9): 898.
  • Kacar B, İnal A, 2008. Bitki Analizleri, Nobel Yayın Dağıtım Ltd. Şti. Yayınları, Yayın No: 1241; Fen Bilimleri: 63, (I. Basım) Ankara.
  • Kopriva S, Malagoli M, Takahashi H, 2019. Sulfur nutrition: Impacts on plant development, metabolism, and stress responses. Journal of Experimental Botany, 70(16): 4069-4073.
  • Marschner P, 2012. Marschner’s mineral nutrition of higher plants. (3rd ed.). Academic Press.
  • Meschede CAC, Abdalla MA, Mühling KH, 2020. Sulfur but not nitrogen supply increases the ITC/Nitrile ratio in Pak Choi (Brassica rapa subsp. Chinensis (L.) Hanelt). Journal of Applied Botany and Food Quality, 93: 95-104.
  • Muhammad I, Yang L, Ahmad S, Farooq S, Al-Ghamdi AA, Khan A, Zeeshan M, Elshikh MS, Abbasi AM, Zhou X-B, 2022. Nitrogen fertilizer modulates plant growth, chlorophyll pigments and enzymatic activities under different irrigation regimes. Agronomy, 12: 845.
  • Nakai Y, Maruyama-Nakashita A, 2020. Biosynthesis of sulfur-containing small biomolecules in plants. International Journal of Molecular Sciences, 21(10): 3470.
  • Narayan OP, Kumar P, Yadav B, Dua M, Johri AK, 2023. Sulfur nutrition and its role in plant growth and development. Plant Signaling & Behavior, 18(1): 2030082.
  • Nascimento CS, Nascimento CS, Cecílio ABF, 2020. N:K ratio for phenological growth stages of net melon cultivated in NFT hydroponic system. Revista Caatinga, 33(1), 108-115.
  • Nukaya A, Hashimoto H, 1998. Effects of nitrate, chloride and sulfate ratios and concentration in the nutrient solution on yield, growth and mineral uptake characteristics of tomato plants grown in closed rockwool system. In Proceedings of the XXV International Horticultural Congress, Part 1: Culture Techniques with Special Emphasis on Environmental Implications-511; International Society for Horticultural Science: Leuven, Belgium, pp. 165–172.
  • Pagani A, Echeverría HE, Sainz Rozas H, 2009. Respuesta a nitrógeno y azufre en el cultivo de maíz en diferentes ambientes de la Provincia de Buenos Aires [Corn response to nitrogen and sulfur under different environments in the province of Buenos Aires]. Ciencia del Suelo, 27(1): 21-29.
  • Prieto KR, Echaide-Aquino F, Huerta-Robles A, Valério HP, Macedo-Raygoza G, Prado FM Medeiros MHG, Brito HF, da Silva IGN, Felinto MCFC. et al. 2017. Endophytic bacteria and rare earth elements; promising candidates for nutrient use efficiency in plants. In: Plant Macronutrient Use Efficiency: Molecular and Genomic Perspectives in Crop Plants (eds. Hossain MA, Kamiya T, Burritt DJ, Tran L-SP, Fujiwara T), Elsevier, pp. 285−306.
  • Salvagiotti F, Castellarín JM, Miralles DJ, Pedrol HM, 2009. Sulfur fertilization improves nitrogen use efficiency in wheat by increasing nitrogen uptake. Field Crops Research, 113(2): 170-177.
  • Silva MLS, Trevizam AR, Piccolo MC, Furlan G, 2014. Tomato production in function of sulfur rates application. Applied Research & Agrotecnology, 7(1): 47-54.
  • Sutradhar AK, Kaiser DE, Fernández FG, 2017. Does total nitrogen/sulfur ratio predict nitrogen or sulfur requirement for corn? Soil Science Society of America Journal, 81(3): 564-577.
  • Tiancai G, Wei F, Huijie Z, Guodian X, Huacen W, Yonghua W, Zhanjun Y, 2004. Photosynthetic characteristics of flag leaves and nitrogen effects in two winter wheat cultivars with different spike type. Zuo Wu Xue Bao, 30: 115-121.
  • Wang N, Fu F, Wang H, Wang P, He S, Shao H, Ni Z, Zhang X, 2021. Efects of irrigation and nitrogen on chlorophyll content, dry matter and nitrogen accumulation in sugar beet (Beta vulgaris L.). Scientific Reports, 11:16651.
  • Witham FH, Blaydes DF, Devlin RM, 1971. Experiments in plant physiology. Van Nostrend Reinhold Company, New York.
  • Zenda T, Liu S, Dong A, Duan H, 2021. Revisiting sulphur—The once neglected nutrient: It’s roles in plant growth, metabolism, stress tolerance and crop production. Agriculture, 11(7): 626.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bitki Besleme ve Toprak Verimliliği
Bölüm Makaleler
Yazarlar

Güney Akınoğlu 0000-0003-4624-2876

Yayımlanma Tarihi 16 Aralık 2024
Gönderilme Tarihi 8 Temmuz 2024
Kabul Tarihi 1 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 12 Sayı: 2

Kaynak Göster

APA Akınoğlu, G. (2024). Topraksız kültürde besin çözeltisindeki N:S oranlarının domates bitkisinin gelişimi, fotosentetik pigmentleri ve makro besin içeriği üzerine etkileri. Toprak Bilimi Ve Bitki Besleme Dergisi, 12(2), 137-144. https://doi.org/10.33409/tbbbd.1512518
AMA Akınoğlu G. Topraksız kültürde besin çözeltisindeki N:S oranlarının domates bitkisinin gelişimi, fotosentetik pigmentleri ve makro besin içeriği üzerine etkileri. tbbbd. Aralık 2024;12(2):137-144. doi:10.33409/tbbbd.1512518
Chicago Akınoğlu, Güney. “Topraksız kültürde Besin çözeltisindeki N:S oranlarının Domates Bitkisinin gelişimi, Fotosentetik Pigmentleri Ve Makro Besin içeriği üzerine Etkileri”. Toprak Bilimi Ve Bitki Besleme Dergisi 12, sy. 2 (Aralık 2024): 137-44. https://doi.org/10.33409/tbbbd.1512518.
EndNote Akınoğlu G (01 Aralık 2024) Topraksız kültürde besin çözeltisindeki N:S oranlarının domates bitkisinin gelişimi, fotosentetik pigmentleri ve makro besin içeriği üzerine etkileri. Toprak Bilimi ve Bitki Besleme Dergisi 12 2 137–144.
IEEE G. Akınoğlu, “Topraksız kültürde besin çözeltisindeki N:S oranlarının domates bitkisinin gelişimi, fotosentetik pigmentleri ve makro besin içeriği üzerine etkileri”, tbbbd, c. 12, sy. 2, ss. 137–144, 2024, doi: 10.33409/tbbbd.1512518.
ISNAD Akınoğlu, Güney. “Topraksız kültürde Besin çözeltisindeki N:S oranlarının Domates Bitkisinin gelişimi, Fotosentetik Pigmentleri Ve Makro Besin içeriği üzerine Etkileri”. Toprak Bilimi ve Bitki Besleme Dergisi 12/2 (Aralık 2024), 137-144. https://doi.org/10.33409/tbbbd.1512518.
JAMA Akınoğlu G. Topraksız kültürde besin çözeltisindeki N:S oranlarının domates bitkisinin gelişimi, fotosentetik pigmentleri ve makro besin içeriği üzerine etkileri. tbbbd. 2024;12:137–144.
MLA Akınoğlu, Güney. “Topraksız kültürde Besin çözeltisindeki N:S oranlarının Domates Bitkisinin gelişimi, Fotosentetik Pigmentleri Ve Makro Besin içeriği üzerine Etkileri”. Toprak Bilimi Ve Bitki Besleme Dergisi, c. 12, sy. 2, 2024, ss. 137-44, doi:10.33409/tbbbd.1512518.
Vancouver Akınoğlu G. Topraksız kültürde besin çözeltisindeki N:S oranlarının domates bitkisinin gelişimi, fotosentetik pigmentleri ve makro besin içeriği üzerine etkileri. tbbbd. 2024;12(2):137-44.