Araştırma Makalesi
BibTex RIS Kaynak Göster

The influence of microplastics on physiological characteristics of lettuce plant (Lactuca Sativa l.) and soil properties

Yıl 2024, Cilt: 12 Sayı: 2, 159 - 171, 16.12.2024
https://doi.org/10.33409/tbbbd.1526281

Öz

This study investigated the effects of microplastics (MPs) on lettuce plants (Lactuca sativa L.) and soil properties. The study involved the application of polypropylene (PP), polyethylene (PE), and polyester (PES) MPs to the soil at different rates (0%, 0.5%, 1%, 2%). According to the results of the greenhouse experiment, the fresh weight of lettuce plants increased by 53.4 g with 1% PP application and by 52.7 g with 2% PE application compared to the control (46.0 g). The effect of MP applications on dry weight was not statistically significant. The microbial biomass carbon in the soil was found to be 58.7 mg C kg-1 with 2% PE and 52.3 mg C kg-1 with 0.5% PES, and these increases were statistically significant (p< 0.05). As a result of XRF analyses, the loss on ignition (LOI) values were examined in “soil + MP” experiments with 2% PE, 2% PP, and 2% PES additives to better understand the effects of MPs on soil. It was found that the LOI value, which was 6.58% in the control group, was 9.85% with 2% PE, 8.65% with 2% PP, and 7.85% with 2% PES. These increases indicate that MPs contribute to the loss of organic matter in soils and lead to changes in soil chemistry. To evaluate the effects of MPs on plant physiology, parameters such as relative water content (RWC) and leaf water holding capacity (WHC) were examined. The RWC was measured at 90.5% with 0.5% PES application, showing a significant increase compared to the control (p< 0.05). However, the effects on WHC and membrane permeability (MP) were not statistically significant. Phenological observations have shown that in the application of PES, after irrigation, PES surfaced on the soil and adhered to the underside of lettuce leaves. This indicates that MPs can enter the food chain through plant products and can be consumed by humans and animals. In conclusion, more detailed research should be conducted with different doses and types of MPs to better understand the potential impacts of MPs on agricultural ecosystems. The results of this study highlight the potential impacts of MP pollution on agricultural ecosystems and the measures needed to mitigate these effects.

Kaynakça

  • Akça MO, Sözüdoğru Ok S, 2021. Toprak Ekosistemi Üzerine Mikroplastiklerin Etkileri. Toprak Bilimi ve Bitki Besleme Dergisi, 9(2): 79-91.
  • Akça MO, Ok SS, 2022. Visual detection of microplastics derived from plastic mulch in soil. Ziraat Mühendisliği, (375):67-74.
  • Akca MO, Gündoğdu S, Akca H, Delialioğlu RA, Aksit C, Turgay OC, Harada N, 2024. An evaluation on microplastic accumulations in Turkish soils under different land uses. Sci. Total Environ. 911:168609.
  • Anderson JPE, Domsch KH, 1978. A physiological method for the quantitative measurement of microbial biomass in soils, Soil Biol. Biochem. 10(3):215-221.
  • Babujia LC, Hungria M, Franchini JC, Brookes PC, 2010. Microbial biomass and activity at various soil depths in a Brazilian oxisol after two decades of no-tillage and conventional tillage, Soil Biol. Biochem. 42(12):2174-2181. https://doi.org/10.1016/j.soilbio.2010.08.013.
  • Boot B, Russell CW, Green DS, 2019. Effects of microplastics in soil ecosystems: above and below ground. Environ. Sci. Technol. 53(19):11496-11506.
  • Bouyoucos GJ, 1951. A recalibration of hydrometer method for making mechanical analysis of soils. Agronomy Journal, 43(8):434-438.
  • Bremner JM, 1965. Total nitrogen. In: Methods of soil analysis Part 2. Chemical and microbiological properties. Black, C.A. (ed.), Amer. Soc. Of Agron. Inc. Pub. Agron.Series. No: 9, Madison, Wisconsin, USA, pp. 1149-1178.
  • Canha N, Jafarova M, Grifoni L et al. Microplastic contamination of lettuces grown in urban vegetable gardens in Lisbon (Portugal). Sci. Rep. 13:14278. https://doi.org/10.1038/s41598-023-40840-z
  • Cao D, Wang X, Luo X, Liu G, Zheng H, 2017. Effects of polystyrene microplastics on the fitness of earthworms in an agricultural soil. In IOP conference series: earth and environmental science (Vol. 61, No. 1, p. 012148). IOP Publishing.
  • Cheng Y, Song W, Tian H, Zhang K, Li B, Du Z, Zhang W, Wang J, Wang J, Zhu L, (2021). The effects of high-density polyethylene and polypropylene microplastics on the soil and earthworm metaphire guillelmi gut microbiota. Chemosphere, 267:129219. DOI: 10.1016/J.CHEMOSPHERE.2020.129219
  • Clarke JM, Mccaig TN (1982). Evaluation of techniques for screening for drought resistance in wheat. Crop Science, 22:503-506.https://doi.org/10.2135/cropsci1982.0011183X002200030015x
  • Conti GO, Ferrante M, Banni M, Favara C, Nicolosi I, Cristaldi A, Fiore M, Zuccarello P, 2020. Micro- and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population. Environmental Research 187: 109677. ISSN 0013-9351, https://doi.org/10.1016/j.envres.2020.109677
  • Cox KD, Covernton GA, Davies HL, Dower JF, Juanes F, Dudas SE, 2019. Environ Sci Technol. 53(12):7068-7074. DOI: 10.1021/acs.est.9b01517
  • Crawford CB, Quinn B, 2017. 10 - Microplastic identification techniques, Editor (s): Crawford,C.B and B. Quinn, Microplastic Pollutants, Elsevier, 219-267, ISBN 9780128094068, https://doi.org/10.1016/B978-0-12-809406-8.00010-4.
  • de Souza Machado AA, Kloas W, Zarfl C, Hempel S, Rillig MC, 2018. Microplastics as an emerging threat to terrestrial ecosystems. Glob. Change Biol. 24(4):1405-1416.
  • Dhanda S, Sethi G, 1998. Inheritance of excised-leaf water loss and relative water content in bread wheat (Triticum aestivum). Euphytica, 104:39-47. https://doi.org/10.1023/A:1018644113378
  • Ellis RC, 2022.The potential impacts of microplastic contamination of lettuce plants on human health. MSc. Master of Science - MSc, University of Otago. New Zealand.
  • Fan W, Chunsheng Q, Qian Q, Xiangang H, Li M, Ziwei G, Xin T, 2023. Sources and identification of microplastics in soils, Soil & Environmental Health, 1(2):100019,mISSN 2949-9194, https://doi.org/10.1016/j.seh.2023.100019.
  • Gao H, Lin Y, Wei J, Zhang Y, Pan H, Ren M, Li J, Huang L, Zhang X, Huang Q, Shen H, 2021. A novel extraction protocol of nano-polystyrene from biological samples. Sci. Total Environ. 790:148085. doi: 10.1016/j.scitotenv.2021.14808.
  • Geyer R, Jambeck J, Law LK, 2017. Production, use, and fate of all plastics ever made. Sci. Adv. 3:7.
  • Golestani AS, Assad MT, 1998. Evaluation of four screening technique for drought resistance and their relationship to yield reduction ration in wheat. Euphytica, 13:293-299.
  • Hasan Md M, Jho EH, 2023. Effect of different types and shapes of microplastics on the growth of lettuce. Chem. 339:139660.
  • Hızalan E, Ünal H, 1966. Topraklarda önemli kimyasal analizler. Ankara Üniversitesi Ziraat Fakültesi Yayınları, 278. Ankara.
  • Jackson ML, 1958. Soil Chemical Analysis. Prentice-Hall Inc., Englewood Cliffs, NJ, 498 p.
  • Jia L, Liu L, Zhang Y, Fu W, Liu X, Wang Q, Tanveer M, Huang L, 2023. Microplastic stress in plants: effects on plant growth and their remediations. Front. Plant Sci. 14:1-21.
  • Kadıoğlu YK, Üstündağ Z, Deniz K, Yenikaya C, Erdoğan Y, 2009. XRF and raman characterization of antimonite. Instrum Sci Technol. 37:683-696 https://doi.org/10.1080/10739140903252956
  • Kutralam-Muniasamy G, Shruti VC, Pérez-Guevara F, Roy PD, 2023 Microplastic diagnostics in humans: “The 3Ps” Progress, problems, and prospects. Sci. Total Environ. 15(856):159164.
  • Li Y, Hou Y, Hou Q, Long M, Wang Z, Rillig MC, Liao Y, Yong T, 2023. Soil microbial community parameters affected by microplastics and other plastic residues. Front Microbiol. 12(14):1258606. doi: 10.3389/fmicb.2023.1258606. PMID: 37901816; PMCID: PMC10601715.
  • Li Z, Li Q, Li R, Zhao Y, Geng J, Wang G. 2020. Physiological responses of lettuce (Lactuca sativa L.) to microplastic pollution. Env. Sci Pollut Res Int. 27(24):30306-30314.doi:10.1007/s11356-020-09349-0
  • Liu M, Lu S, Song Y, Lei L, Hu J, Lv W, Zhou W, Cao C, Shi H, Yang X, He D, 2018. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environ. Pollut., 242:855-862.
  • Makhdoumi P, Pirsaheb M, Amin AA, Kianpour S, Hossini H, 2023. Microplastic pollution in table salt and sugar: Occurrence, qualification and quantification and risk assessment. J. Food Compos. Anal. 119:105261.
  • Munno K, de Frond H, O’Donnell B, Rochman CM, 2020. Increasing the accessibility for characterizing microplastics: introducing new application-based and spectral libraries of plastic particles (SLoPP and SLoPP-E). Anal. Chem. 92(3):2443-2451.
  • Olsen SR, Sommers LE, 1982. Phosphorus, In: Page L A, Miller R H. Keeney D R, ed. Methods of soil analysis, Part 2. Chemical and microbiological properties. American Society of Agronomy, Madison, Wisconsin, pp.539-579.
  • Piehl S, Leibner A, Löder MGJ, Dris R, Bogner C, Laforsch C, 2018. Identification and quantification of macro- and microplastics on an agricultural farmland. Sci. Rep. 8:17950. doi: 10.1038/s41598-018-36172-y
  • Prata JC, Dias-Pereira P, 2023. Microplastics in terrestrial domestic animals and human health: implications for food security and food safety and their role as sentinels. Animals, 13 (4):661. 10.3390/ani13040661
  • Premchand GS, Sangroka T, Ogatta S, 1990. Cell membrane stability as indicators of drought tolerance as affected by applied nitrogen in soybean. J Agric Sci. 11:563–566.
  • Qin W, Hu C, Oenema O, 2015. Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: a meta-analysis. Sci. Rep. 5(1):16210.
  • Rahman, A., Sarkar, A., Yadav, O. P., Achari, G., & Slobodnik, J. 2021. Potential human health risks due to environmental exposure to nano-and microplastics and knowledge gaps: A scoping review. Science of the Total Environment, 757, 143872.
  • Ramos L, Berenstein G, Hughes EA, Zalts A, Montserrat JM, 2015. Polyethylene film incorporation into the horticultural soil of small periurban production units in Argentina. Sci. Total Environ. 523:74-81.
  • Rillig MC, 2012. Microplastic in terrestrial ecosystems and the soil? Environ. Sci. Technol., 46(12):6453-6454.
  • Rillig MC, Machado AAD, Lehmann A, Klumper U, 2019. Evolutionary implications of microplastics for soil biota. Environ. Chem. 16(1):3-7.
  • Rochman CM, T Hoellein, 2020. The global odyssey of plastic pollution. Science 368(6496):1184-1185.
  • Sairam RK, 1994. Effect of moisture stress on physiological activities of two contrasting wheat genotypes. Indian J. Expt. Biol. 32:594-597.
  • Schloter M, Dilly O, Munch J.C. 2003. Indicators for evaluating soil quality. “Agriculture Ecosystem and Environment”. 98:255-262.
  • Wan Y, Wu C, Xue Q, Hui X, 2019. Effects of plastic contamination on water evaporation and desiccation cracking in soil. Sci. Total Environ. 654:576-582.
  • Wang J, Coffin S, Sun C, Schlenk D, Gan J, 2019. Negligible effects of microplastics on animal fitness and HOC bioaccumulation in earthworm Eisenia fetida in soil. Environ. Pollut. 249:776–784.
  • Weithmann N, Möller JN, Löder MG, Piehl S, Laforsch C, Freitag R, 2018. Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci. Adv. 4(4):eaap8060.
  • Wright SL, Kelly FJ, 2017. Plastic and human health: A micro issue? Environ. Sci. Technol. 51(12):6634-6647. doi: 10.1021/acs.est.7b00423

Mikroplastiklerin marul bitkisinin (Lactuca Sativa l.) fizyolojik karakteristikleri ile toprak özellikleri üzerine etkisi

Yıl 2024, Cilt: 12 Sayı: 2, 159 - 171, 16.12.2024
https://doi.org/10.33409/tbbbd.1526281

Öz

Bu çalışmada, mikroplastiklerin (MP) marul bitkisi (Lactuca sativa L.) ve toprak özellikleri üzerindeki etkileri incelenmiştir. Çalışmada, polipropilen (PP), polietilen (PE) ve polyester (PES) MP’leri farklı oranlarda (%0, %0.5, %1, %2) toprağa uygulanmıştır. Yapılan sera denemesi sonuçlarına göre, marul bitkilerinin yaş ağırlıkları kontrole (46.0 g) kıyasla %1 PP ve %2 PE uygulamalarında sırasıyla 53.4 ve 52.7g bulunmuştur. Kuru ağırlık üzerinde ise MP uygulamalarının etkisi istatistiksel olarak anlamlı bulunmamıştır. %2 PE ve %0.5 PES uygulamaları ile toprak mikrobiyal biyokütle karbonu sırasıyla 58.7 mg C kg-1 ve 52.3 mg C kg-1 olarak bulunmuş ve bu artışlar istatistiksel olarak anlamlı bulunmuştur (p<0.05). XRF analizleri sonucunda, MP’lerin toprak üzerindeki etkilerini daha iyi anlamak için, %2 PE, %2 PP ve %2 PES ilaveleri ile yapılan “toprak+MP” deneylerinde yanma kaybı (LOI) değerleri incelenmiştir. Sonuçta, kontrol grubunda %6.58 olan LOI değerinin %2 PE ile %9.85, %2 PP ile %8.65 ve %2 PES ile %7.85 olduğu görülmüştür. Bu artışlar, MP’lerin topraklarda uçucu organik madde kaybını artırdığını ve toprağın kimyasında değişimlere yol açtığını göstermektedir. Mikroplastiklerin bitki fizyolojisi üzerindeki etkilerini değerlendirmek için, yaprak nispi nem içeriği (NNİ) ve yaprak su tutma kapasitesi (YSTK) gibi parametreler incelenmiştir. %0.5 PES uygulaması ile NNİ %90.5 olarak ölçülmüş ve bu değer kontrole göre önemli bir artış göstermiştir (p< 0.05). Ancak, YSTK ve bitki membran permeabilitesi (BMP) üzerindeki etkiler istatistiksel olarak anlamlı bulunmamıştır. Fenolojik gözlemler PES uygulamasında, sulamadan sonra PES’in toprak yüzeyine çıktığı ve marul yaprağının alt yüzeyine yapıştığını göstermiştir. Bu durum MP’lerin bitkisel ürünlerle gıda zincirine katıldığını; insanlar ve hayvanlar tarafından tüketilebileceğini göstermektedir.
Sonuç olarak, MP’ lerin tarımsal ekosistemler üzerindeki potansiyel etkilerini daha iyi anlamak için farklı dozlarda ve farklı MP türleri ile daha detaylı araştırmalar yapılmalıdır. Bu çalışmadan elde edilen sonuçlar, MP kirliliğinin tarımsal ekosistemler üzerindeki potansiyel etkilerini ve bu etkilerin azaltılması için alınması gereken önlemleri ortaya koymaktadır.

Kaynakça

  • Akça MO, Sözüdoğru Ok S, 2021. Toprak Ekosistemi Üzerine Mikroplastiklerin Etkileri. Toprak Bilimi ve Bitki Besleme Dergisi, 9(2): 79-91.
  • Akça MO, Ok SS, 2022. Visual detection of microplastics derived from plastic mulch in soil. Ziraat Mühendisliği, (375):67-74.
  • Akca MO, Gündoğdu S, Akca H, Delialioğlu RA, Aksit C, Turgay OC, Harada N, 2024. An evaluation on microplastic accumulations in Turkish soils under different land uses. Sci. Total Environ. 911:168609.
  • Anderson JPE, Domsch KH, 1978. A physiological method for the quantitative measurement of microbial biomass in soils, Soil Biol. Biochem. 10(3):215-221.
  • Babujia LC, Hungria M, Franchini JC, Brookes PC, 2010. Microbial biomass and activity at various soil depths in a Brazilian oxisol after two decades of no-tillage and conventional tillage, Soil Biol. Biochem. 42(12):2174-2181. https://doi.org/10.1016/j.soilbio.2010.08.013.
  • Boot B, Russell CW, Green DS, 2019. Effects of microplastics in soil ecosystems: above and below ground. Environ. Sci. Technol. 53(19):11496-11506.
  • Bouyoucos GJ, 1951. A recalibration of hydrometer method for making mechanical analysis of soils. Agronomy Journal, 43(8):434-438.
  • Bremner JM, 1965. Total nitrogen. In: Methods of soil analysis Part 2. Chemical and microbiological properties. Black, C.A. (ed.), Amer. Soc. Of Agron. Inc. Pub. Agron.Series. No: 9, Madison, Wisconsin, USA, pp. 1149-1178.
  • Canha N, Jafarova M, Grifoni L et al. Microplastic contamination of lettuces grown in urban vegetable gardens in Lisbon (Portugal). Sci. Rep. 13:14278. https://doi.org/10.1038/s41598-023-40840-z
  • Cao D, Wang X, Luo X, Liu G, Zheng H, 2017. Effects of polystyrene microplastics on the fitness of earthworms in an agricultural soil. In IOP conference series: earth and environmental science (Vol. 61, No. 1, p. 012148). IOP Publishing.
  • Cheng Y, Song W, Tian H, Zhang K, Li B, Du Z, Zhang W, Wang J, Wang J, Zhu L, (2021). The effects of high-density polyethylene and polypropylene microplastics on the soil and earthworm metaphire guillelmi gut microbiota. Chemosphere, 267:129219. DOI: 10.1016/J.CHEMOSPHERE.2020.129219
  • Clarke JM, Mccaig TN (1982). Evaluation of techniques for screening for drought resistance in wheat. Crop Science, 22:503-506.https://doi.org/10.2135/cropsci1982.0011183X002200030015x
  • Conti GO, Ferrante M, Banni M, Favara C, Nicolosi I, Cristaldi A, Fiore M, Zuccarello P, 2020. Micro- and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population. Environmental Research 187: 109677. ISSN 0013-9351, https://doi.org/10.1016/j.envres.2020.109677
  • Cox KD, Covernton GA, Davies HL, Dower JF, Juanes F, Dudas SE, 2019. Environ Sci Technol. 53(12):7068-7074. DOI: 10.1021/acs.est.9b01517
  • Crawford CB, Quinn B, 2017. 10 - Microplastic identification techniques, Editor (s): Crawford,C.B and B. Quinn, Microplastic Pollutants, Elsevier, 219-267, ISBN 9780128094068, https://doi.org/10.1016/B978-0-12-809406-8.00010-4.
  • de Souza Machado AA, Kloas W, Zarfl C, Hempel S, Rillig MC, 2018. Microplastics as an emerging threat to terrestrial ecosystems. Glob. Change Biol. 24(4):1405-1416.
  • Dhanda S, Sethi G, 1998. Inheritance of excised-leaf water loss and relative water content in bread wheat (Triticum aestivum). Euphytica, 104:39-47. https://doi.org/10.1023/A:1018644113378
  • Ellis RC, 2022.The potential impacts of microplastic contamination of lettuce plants on human health. MSc. Master of Science - MSc, University of Otago. New Zealand.
  • Fan W, Chunsheng Q, Qian Q, Xiangang H, Li M, Ziwei G, Xin T, 2023. Sources and identification of microplastics in soils, Soil & Environmental Health, 1(2):100019,mISSN 2949-9194, https://doi.org/10.1016/j.seh.2023.100019.
  • Gao H, Lin Y, Wei J, Zhang Y, Pan H, Ren M, Li J, Huang L, Zhang X, Huang Q, Shen H, 2021. A novel extraction protocol of nano-polystyrene from biological samples. Sci. Total Environ. 790:148085. doi: 10.1016/j.scitotenv.2021.14808.
  • Geyer R, Jambeck J, Law LK, 2017. Production, use, and fate of all plastics ever made. Sci. Adv. 3:7.
  • Golestani AS, Assad MT, 1998. Evaluation of four screening technique for drought resistance and their relationship to yield reduction ration in wheat. Euphytica, 13:293-299.
  • Hasan Md M, Jho EH, 2023. Effect of different types and shapes of microplastics on the growth of lettuce. Chem. 339:139660.
  • Hızalan E, Ünal H, 1966. Topraklarda önemli kimyasal analizler. Ankara Üniversitesi Ziraat Fakültesi Yayınları, 278. Ankara.
  • Jackson ML, 1958. Soil Chemical Analysis. Prentice-Hall Inc., Englewood Cliffs, NJ, 498 p.
  • Jia L, Liu L, Zhang Y, Fu W, Liu X, Wang Q, Tanveer M, Huang L, 2023. Microplastic stress in plants: effects on plant growth and their remediations. Front. Plant Sci. 14:1-21.
  • Kadıoğlu YK, Üstündağ Z, Deniz K, Yenikaya C, Erdoğan Y, 2009. XRF and raman characterization of antimonite. Instrum Sci Technol. 37:683-696 https://doi.org/10.1080/10739140903252956
  • Kutralam-Muniasamy G, Shruti VC, Pérez-Guevara F, Roy PD, 2023 Microplastic diagnostics in humans: “The 3Ps” Progress, problems, and prospects. Sci. Total Environ. 15(856):159164.
  • Li Y, Hou Y, Hou Q, Long M, Wang Z, Rillig MC, Liao Y, Yong T, 2023. Soil microbial community parameters affected by microplastics and other plastic residues. Front Microbiol. 12(14):1258606. doi: 10.3389/fmicb.2023.1258606. PMID: 37901816; PMCID: PMC10601715.
  • Li Z, Li Q, Li R, Zhao Y, Geng J, Wang G. 2020. Physiological responses of lettuce (Lactuca sativa L.) to microplastic pollution. Env. Sci Pollut Res Int. 27(24):30306-30314.doi:10.1007/s11356-020-09349-0
  • Liu M, Lu S, Song Y, Lei L, Hu J, Lv W, Zhou W, Cao C, Shi H, Yang X, He D, 2018. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environ. Pollut., 242:855-862.
  • Makhdoumi P, Pirsaheb M, Amin AA, Kianpour S, Hossini H, 2023. Microplastic pollution in table salt and sugar: Occurrence, qualification and quantification and risk assessment. J. Food Compos. Anal. 119:105261.
  • Munno K, de Frond H, O’Donnell B, Rochman CM, 2020. Increasing the accessibility for characterizing microplastics: introducing new application-based and spectral libraries of plastic particles (SLoPP and SLoPP-E). Anal. Chem. 92(3):2443-2451.
  • Olsen SR, Sommers LE, 1982. Phosphorus, In: Page L A, Miller R H. Keeney D R, ed. Methods of soil analysis, Part 2. Chemical and microbiological properties. American Society of Agronomy, Madison, Wisconsin, pp.539-579.
  • Piehl S, Leibner A, Löder MGJ, Dris R, Bogner C, Laforsch C, 2018. Identification and quantification of macro- and microplastics on an agricultural farmland. Sci. Rep. 8:17950. doi: 10.1038/s41598-018-36172-y
  • Prata JC, Dias-Pereira P, 2023. Microplastics in terrestrial domestic animals and human health: implications for food security and food safety and their role as sentinels. Animals, 13 (4):661. 10.3390/ani13040661
  • Premchand GS, Sangroka T, Ogatta S, 1990. Cell membrane stability as indicators of drought tolerance as affected by applied nitrogen in soybean. J Agric Sci. 11:563–566.
  • Qin W, Hu C, Oenema O, 2015. Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: a meta-analysis. Sci. Rep. 5(1):16210.
  • Rahman, A., Sarkar, A., Yadav, O. P., Achari, G., & Slobodnik, J. 2021. Potential human health risks due to environmental exposure to nano-and microplastics and knowledge gaps: A scoping review. Science of the Total Environment, 757, 143872.
  • Ramos L, Berenstein G, Hughes EA, Zalts A, Montserrat JM, 2015. Polyethylene film incorporation into the horticultural soil of small periurban production units in Argentina. Sci. Total Environ. 523:74-81.
  • Rillig MC, 2012. Microplastic in terrestrial ecosystems and the soil? Environ. Sci. Technol., 46(12):6453-6454.
  • Rillig MC, Machado AAD, Lehmann A, Klumper U, 2019. Evolutionary implications of microplastics for soil biota. Environ. Chem. 16(1):3-7.
  • Rochman CM, T Hoellein, 2020. The global odyssey of plastic pollution. Science 368(6496):1184-1185.
  • Sairam RK, 1994. Effect of moisture stress on physiological activities of two contrasting wheat genotypes. Indian J. Expt. Biol. 32:594-597.
  • Schloter M, Dilly O, Munch J.C. 2003. Indicators for evaluating soil quality. “Agriculture Ecosystem and Environment”. 98:255-262.
  • Wan Y, Wu C, Xue Q, Hui X, 2019. Effects of plastic contamination on water evaporation and desiccation cracking in soil. Sci. Total Environ. 654:576-582.
  • Wang J, Coffin S, Sun C, Schlenk D, Gan J, 2019. Negligible effects of microplastics on animal fitness and HOC bioaccumulation in earthworm Eisenia fetida in soil. Environ. Pollut. 249:776–784.
  • Weithmann N, Möller JN, Löder MG, Piehl S, Laforsch C, Freitag R, 2018. Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci. Adv. 4(4):eaap8060.
  • Wright SL, Kelly FJ, 2017. Plastic and human health: A micro issue? Environ. Sci. Technol. 51(12):6634-6647. doi: 10.1021/acs.est.7b00423
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bitki Besleme ve Toprak Verimliliği
Bölüm Makaleler
Yazarlar

Sonay Sözüdoğru Ok 0000-0002-4629-7140

Hanife Akça 0000-0001-8529-6469

Mehmet Burak Taşkın 0000-0002-0889-5668

Kıymet Deniz 0000-0003-3208-1354

Muhittin Onur Akça 0000-0003-4540-9371

Yayımlanma Tarihi 16 Aralık 2024
Gönderilme Tarihi 1 Ağustos 2024
Kabul Tarihi 11 Eylül 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 12 Sayı: 2

Kaynak Göster

APA Sözüdoğru Ok, S., Akça, H., Taşkın, M. B., Deniz, K., vd. (2024). Mikroplastiklerin marul bitkisinin (Lactuca Sativa l.) fizyolojik karakteristikleri ile toprak özellikleri üzerine etkisi. Toprak Bilimi Ve Bitki Besleme Dergisi, 12(2), 159-171. https://doi.org/10.33409/tbbbd.1526281
AMA Sözüdoğru Ok S, Akça H, Taşkın MB, Deniz K, Akça MO. Mikroplastiklerin marul bitkisinin (Lactuca Sativa l.) fizyolojik karakteristikleri ile toprak özellikleri üzerine etkisi. tbbbd. Aralık 2024;12(2):159-171. doi:10.33409/tbbbd.1526281
Chicago Sözüdoğru Ok, Sonay, Hanife Akça, Mehmet Burak Taşkın, Kıymet Deniz, ve Muhittin Onur Akça. “Mikroplastiklerin Marul Bitkisinin (Lactuca Sativa l.) Fizyolojik Karakteristikleri Ile Toprak özellikleri üzerine Etkisi”. Toprak Bilimi Ve Bitki Besleme Dergisi 12, sy. 2 (Aralık 2024): 159-71. https://doi.org/10.33409/tbbbd.1526281.
EndNote Sözüdoğru Ok S, Akça H, Taşkın MB, Deniz K, Akça MO (01 Aralık 2024) Mikroplastiklerin marul bitkisinin (Lactuca Sativa l.) fizyolojik karakteristikleri ile toprak özellikleri üzerine etkisi. Toprak Bilimi ve Bitki Besleme Dergisi 12 2 159–171.
IEEE S. Sözüdoğru Ok, H. Akça, M. B. Taşkın, K. Deniz, ve M. O. Akça, “Mikroplastiklerin marul bitkisinin (Lactuca Sativa l.) fizyolojik karakteristikleri ile toprak özellikleri üzerine etkisi”, tbbbd, c. 12, sy. 2, ss. 159–171, 2024, doi: 10.33409/tbbbd.1526281.
ISNAD Sözüdoğru Ok, Sonay vd. “Mikroplastiklerin Marul Bitkisinin (Lactuca Sativa l.) Fizyolojik Karakteristikleri Ile Toprak özellikleri üzerine Etkisi”. Toprak Bilimi ve Bitki Besleme Dergisi 12/2 (Aralık 2024), 159-171. https://doi.org/10.33409/tbbbd.1526281.
JAMA Sözüdoğru Ok S, Akça H, Taşkın MB, Deniz K, Akça MO. Mikroplastiklerin marul bitkisinin (Lactuca Sativa l.) fizyolojik karakteristikleri ile toprak özellikleri üzerine etkisi. tbbbd. 2024;12:159–171.
MLA Sözüdoğru Ok, Sonay vd. “Mikroplastiklerin Marul Bitkisinin (Lactuca Sativa l.) Fizyolojik Karakteristikleri Ile Toprak özellikleri üzerine Etkisi”. Toprak Bilimi Ve Bitki Besleme Dergisi, c. 12, sy. 2, 2024, ss. 159-71, doi:10.33409/tbbbd.1526281.
Vancouver Sözüdoğru Ok S, Akça H, Taşkın MB, Deniz K, Akça MO. Mikroplastiklerin marul bitkisinin (Lactuca Sativa l.) fizyolojik karakteristikleri ile toprak özellikleri üzerine etkisi. tbbbd. 2024;12(2):159-71.