Araştırma Makalesi
BibTex RIS Kaynak Göster

Calculation of neutron capture and excitation functions of thorium and uranium and comparison with experimental data

Yıl 2017, Cilt: 6 Sayı: 2, 20 - 25, 16.12.2017

Öz



This research was conducted to determine the most optimum sowing date of
common and Narbonne vetch at the ecological conditions of Bingöl in 2015. The
study was arranged in a completely randomized block design in split plots and
it was conducted with two common vetch, two Narbonne vetch and three sowing
date. In the study; plant height, green herbage yield, dry herbage yield, seed
yield, straw yield, thousand grain weight, crude protein ratio, acid detergent
fiber (ADF) and neutral detergent fiber (NDF) characteristics were
investigated. According to the results, the highest values were obtained from
early sowing dates. Therefore, it was concluded that the best optimum sowing
date for Bingöl could be April.




Kaynakça

  • [1] Roche, C. and Rubbia, C., Some Preliminary Considerations on the Economical Issues of the Energy Amplifier.CERN AT/95-45 (ET), 1995.
  • [2] Maiorino, J.R., Carluccio, T., A review of thorium utilization as an option for advanced fuel cycles – potential option for Brazil in the future. 2004. Americas Nuclear Energy Symposium, Miami Beach, Florida, USA.
  • [3] Maiorino, J.R., Moreira, J.M.L., Laranjo, S.G., Busse, A., Santos, T.,. Thorium as a new primary source of nuclear energy. In: IX Congresso Brasileiro de Planejamento Energético (CBPE), SBPE, Florianópolis, Brasil, 2014.
  • [4] Maiorino J.R. and at al., Annals of Nuclear Energy 102 47–55, 2017.
  • [5] Rubbia. C., et al., Fast Neutron Incineration inthe Energy Amplifier as Alterantive to Geologic Storage: The Case of Spain. Eurupan Organization For Nuclear Research CERN/LHC/97-01 (EET), 1997.
  • [6] Hesketh, K., Advanced fuel designs for existing and future generations of reactors: driving factors from technical and economic points of view. Nuclear Engineering and Design, 221:277-292, 2003.
  • [7] Rubbia, C. and Rubio, J.A., A Tentative Programme towards a Full Scale Energy Amplifier. CERN/LHC/96-11 , Geneva,36 p. 1996.
  • [8] Gudowski, W., Accelerator-driven Transmutation Projects.The Importance of Nuclear Physics Research for Waste Transmutation. Nuclear Physics, A654: 436c-457c., 1999.
  • [9] Rubbia, C., et al. Conceptual design of a fastNeutron operated high power energy amplifier. CERN/AT/95-44(ET), 1995.
  • [10] Hüfner J. and Chiang C. C., Nucl. Phys. A 349, 466, 1980.
  • [11] Bogolubov N. N., (Moskov: Gostekhizdat), in Russian, 1946.
  • [12] Kaplan, A.,Aydın, A., Tel, E. and Sarer, B., “Equilibrium and Pre-Equilibrium Emissions In Proton - Induced Reactions on 203, 205Tl”, Pramana-Journal of Physics, 72 (2): 343-353, 2009.
  • [13] Gudima K.K., Mashnik S.G. and Toneev V.D., Nuclear Physics A401, 329, 1983.
  • [14] Blannand M., Vonach H.K., Global Test of Modified Precompound Decay Models Physical Review C,28(4)1475-1492, 1983.
  • [15] Blann M., Ann. Rev. Nucl. Sci. 25, 123, 1975.
  • [16] Seidel K., Seeliger D., Reif R. and Toneev V. D., Physics of Elementary Particles and Atomic Nuclei 499, 517, 1976.
  • [17] Barashenkov V. S. and V. Toneev D., (Atomizdat, in Russian 1972), RSIC CODE PACKAGE PSR-357, 1972.
  • [18] Lindner M. and at al., NEA, Data Bank, Nuclear Data Service, 10221
  • [19] Grumitt W.E. and at al., NEA, Data Bank, Nuclear Data Service, 12040.003
  • [20] Belanova T.S. and at al., NEA, Data Bank, Nuclear Data Service, 40072
  • [21] Chelnokov V.B. and at al., NEA, Data Bank, Nuclear Data Service, 40105
  • [22] Eiland H.M. and at al., NEA, Data Bank, Nuclear Data Service, 10143
  • [23] Hopkins J.C. and at al., NEA, Data Bank, Nuclear Data Service, 12331
  • [24] Cabell M.J. and at al., NEA, Data Bank, Nuclear Data Service 20459
  • [25] Tewes H.A. and at al., NEA, Data Bank, Nuclear Data Service, 11504
  • [26] Gryntakis E.M., and at al., NEA, Data Bank, Nuclear Data Service, 20625

Toryum ve uranyumun nötron yakalama ve eksitasyon fonksiyonlarının hesaplanması ve deneysel veriler ile kıyası

Yıl 2017, Cilt: 6 Sayı: 2, 20 - 25, 16.12.2017

Öz



Bu çalışmada nükleer reaksiyon modelleri
sınıflandırılarak 232Th ve 233U çekirdekler için düşük
gelme enerjilerinde nötron yakalama ve eksiton (n,xn) reaksiyon tesir
kesitlerine ait nötron yayınlanma spektrumları  hesaplanmıştır.
Hesaplamalar geometri bağımlı hibrid model, exciton model ve cascade exciton
model, optik model ve multistep istatiksel model kullanılarak yapılmıştır.
Deneysel data Uluslararası Atom Enerjisi Kurumunun ENDF/B
kütüphanelerinden temin edilmiştir. Deneysel data ile teorik hesaplamalar
sonucu elde edilen sonuçlar karşılaştırılmıştır.




Kaynakça

  • [1] Roche, C. and Rubbia, C., Some Preliminary Considerations on the Economical Issues of the Energy Amplifier.CERN AT/95-45 (ET), 1995.
  • [2] Maiorino, J.R., Carluccio, T., A review of thorium utilization as an option for advanced fuel cycles – potential option for Brazil in the future. 2004. Americas Nuclear Energy Symposium, Miami Beach, Florida, USA.
  • [3] Maiorino, J.R., Moreira, J.M.L., Laranjo, S.G., Busse, A., Santos, T.,. Thorium as a new primary source of nuclear energy. In: IX Congresso Brasileiro de Planejamento Energético (CBPE), SBPE, Florianópolis, Brasil, 2014.
  • [4] Maiorino J.R. and at al., Annals of Nuclear Energy 102 47–55, 2017.
  • [5] Rubbia. C., et al., Fast Neutron Incineration inthe Energy Amplifier as Alterantive to Geologic Storage: The Case of Spain. Eurupan Organization For Nuclear Research CERN/LHC/97-01 (EET), 1997.
  • [6] Hesketh, K., Advanced fuel designs for existing and future generations of reactors: driving factors from technical and economic points of view. Nuclear Engineering and Design, 221:277-292, 2003.
  • [7] Rubbia, C. and Rubio, J.A., A Tentative Programme towards a Full Scale Energy Amplifier. CERN/LHC/96-11 , Geneva,36 p. 1996.
  • [8] Gudowski, W., Accelerator-driven Transmutation Projects.The Importance of Nuclear Physics Research for Waste Transmutation. Nuclear Physics, A654: 436c-457c., 1999.
  • [9] Rubbia, C., et al. Conceptual design of a fastNeutron operated high power energy amplifier. CERN/AT/95-44(ET), 1995.
  • [10] Hüfner J. and Chiang C. C., Nucl. Phys. A 349, 466, 1980.
  • [11] Bogolubov N. N., (Moskov: Gostekhizdat), in Russian, 1946.
  • [12] Kaplan, A.,Aydın, A., Tel, E. and Sarer, B., “Equilibrium and Pre-Equilibrium Emissions In Proton - Induced Reactions on 203, 205Tl”, Pramana-Journal of Physics, 72 (2): 343-353, 2009.
  • [13] Gudima K.K., Mashnik S.G. and Toneev V.D., Nuclear Physics A401, 329, 1983.
  • [14] Blannand M., Vonach H.K., Global Test of Modified Precompound Decay Models Physical Review C,28(4)1475-1492, 1983.
  • [15] Blann M., Ann. Rev. Nucl. Sci. 25, 123, 1975.
  • [16] Seidel K., Seeliger D., Reif R. and Toneev V. D., Physics of Elementary Particles and Atomic Nuclei 499, 517, 1976.
  • [17] Barashenkov V. S. and V. Toneev D., (Atomizdat, in Russian 1972), RSIC CODE PACKAGE PSR-357, 1972.
  • [18] Lindner M. and at al., NEA, Data Bank, Nuclear Data Service, 10221
  • [19] Grumitt W.E. and at al., NEA, Data Bank, Nuclear Data Service, 12040.003
  • [20] Belanova T.S. and at al., NEA, Data Bank, Nuclear Data Service, 40072
  • [21] Chelnokov V.B. and at al., NEA, Data Bank, Nuclear Data Service, 40105
  • [22] Eiland H.M. and at al., NEA, Data Bank, Nuclear Data Service, 10143
  • [23] Hopkins J.C. and at al., NEA, Data Bank, Nuclear Data Service, 12331
  • [24] Cabell M.J. and at al., NEA, Data Bank, Nuclear Data Service 20459
  • [25] Tewes H.A. and at al., NEA, Data Bank, Nuclear Data Service, 11504
  • [26] Gryntakis E.M., and at al., NEA, Data Bank, Nuclear Data Service, 20625
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Makaleler
Yazarlar

İskender Demirkol

Yayımlanma Tarihi 16 Aralık 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 6 Sayı: 2

Kaynak Göster

APA Demirkol, İ. (2017). Toryum ve uranyumun nötron yakalama ve eksitasyon fonksiyonlarının hesaplanması ve deneysel veriler ile kıyası. Türk Doğa Ve Fen Dergisi, 6(2), 20-25.
AMA Demirkol İ. Toryum ve uranyumun nötron yakalama ve eksitasyon fonksiyonlarının hesaplanması ve deneysel veriler ile kıyası. TDFD. Aralık 2017;6(2):20-25.
Chicago Demirkol, İskender. “Toryum Ve Uranyumun nötron Yakalama Ve Eksitasyon fonksiyonlarının Hesaplanması Ve Deneysel Veriler Ile kıyası”. Türk Doğa Ve Fen Dergisi 6, sy. 2 (Aralık 2017): 20-25.
EndNote Demirkol İ (01 Aralık 2017) Toryum ve uranyumun nötron yakalama ve eksitasyon fonksiyonlarının hesaplanması ve deneysel veriler ile kıyası. Türk Doğa ve Fen Dergisi 6 2 20–25.
IEEE İ. Demirkol, “Toryum ve uranyumun nötron yakalama ve eksitasyon fonksiyonlarının hesaplanması ve deneysel veriler ile kıyası”, TDFD, c. 6, sy. 2, ss. 20–25, 2017.
ISNAD Demirkol, İskender. “Toryum Ve Uranyumun nötron Yakalama Ve Eksitasyon fonksiyonlarının Hesaplanması Ve Deneysel Veriler Ile kıyası”. Türk Doğa ve Fen Dergisi 6/2 (Aralık 2017), 20-25.
JAMA Demirkol İ. Toryum ve uranyumun nötron yakalama ve eksitasyon fonksiyonlarının hesaplanması ve deneysel veriler ile kıyası. TDFD. 2017;6:20–25.
MLA Demirkol, İskender. “Toryum Ve Uranyumun nötron Yakalama Ve Eksitasyon fonksiyonlarının Hesaplanması Ve Deneysel Veriler Ile kıyası”. Türk Doğa Ve Fen Dergisi, c. 6, sy. 2, 2017, ss. 20-25.
Vancouver Demirkol İ. Toryum ve uranyumun nötron yakalama ve eksitasyon fonksiyonlarının hesaplanması ve deneysel veriler ile kıyası. TDFD. 2017;6(2):20-5.