Araştırma Makalesi
BibTex RIS Kaynak Göster

Fabrication and Characterization of GNP doped Hybrid PVB-TEOS Nanofibers

Yıl 2020, Cilt: 9 Sayı: 1, 101 - 106, 18.06.2020
https://doi.org/10.46810/tdfd.726874

Öz

PVB/TEOS and PVB/TEOS/GNP (Graphene Nanoplatelet) nanofibers have been synthesized via electrospinning method and exhibit a homogeneous and bead-free morphology. Polyvinyl butyral (PVB) was used as precursor polymer that allows the silica-based nanofiber to diminish of flaws. The average diameter of PVB/TEOS (Tetraethyl orthosilicate) nanofiber ranged from 150 to 500 nm. Structures and morphologies of the PVB/TEOS and PVB/TEOS /GNP nanofibers were examined by Thermogravimetric Analyzer (TGA), Fourier Transform Infrared spectrometer (FTIR) and Scanning Electron Microscopy (SEM). The results demonstrate that the obtained nanofibers can be used as nanomaterials for a wide variety of applications such as tissue engineering, drug delivery, cancer diagnosis, battery, sensors and air filter.

Kaynakça

  • [1] Shao CL, Kim HY, Gong J, Ding B, Lee DR, Park SJ. Fiber mats of poly(vinyl alcohol)/silica composite via electrospinning. Mater Lett. 2003;57(9-10):1579-84.
  • [2] Zou H, Wu SS, Shen J. Polymer/silica nanocomposites: Preparation, characterization, properties, and applications. Chem Rev. 2008;108(9):3893-957.
  • [3] Larsen G, Velarde-Ortiz R, Minchow K, Barrero A, Loscertales IG. A method for making inorganic and hybrid (organic/inorganic) fibers and vesicles with diameters in the submicrometer and micrometer range via sol-gel chemistry and electrically forced liquid jets. J Am Chem Soc. 2003;125(5):1154-5.
  • [4] Wu SJ, Li FT, Wu YN, Xu R, Li GT. Preparation of novel poly(vinyl alcohol)/SiO2 composite nanofiber membranes with mesostructure and their application for removal of Cu2+ from waste water. Chem Commun. 2010;46(10):1694-6.
  • [5] Kulkarni SS, Kittur AA, Aralaguppi MI, Kariduraganavar MY. Synthesis and characterization of hybrid membranes using poly(vinyl alcohol) and tetraethylorthosilicate for the pervaporation separation of water-isopropanol mixtures. J Appl Polym Sci. 2004;94(3):1304-15.
  • [6] Li J, Suo JP, Deng RZ. Structure, Mechanical, and Swelling Behaviors of Poly(vinyl alcohol)/SiO2 Hybrid Membranes. J Reinf Plast Comp. 2010;29(4):618-29.
  • [7] Chen LJ, Liao JD, Lin SJ, Chuang YJ, Fu YS. Synthesis and characterization of PVB/silica nanofibers by electrospinning process. Polymer. 2009;50(15):3516-21.
  • [8] Patel AC, Li SX, Yuan JM, Wei Y. In situ encapsulation of horseradish peroxidase in electrospun porous silica fibers for potential biosensor applications. Nano Lett. 2006;6(5):1042-6.
  • [9] Cannas C, Mainas M, Musinu A, Piccaluga G. ZnO/SiO2 nanocomposites obtained by impregnation of mesoporous silica. Compos Sci Technol. 2003;63(8):1187-91.
  • [10] Loureiro SM, Ramos ML, Manoharan M. High temperature nanocomposite through engineered synthesis of hafnia nano-dispersoids in hexagonal mesoporous silica. J Am Ceram Soc. 2005;88(4):1072-5.
  • [11] Nagano T, Fujisaki S, Sato K, Hataya K, Iwamoto Y, Nomura M, et al. Relationship between the mesoporous intermediate layer structure and the gas permeation property of an amorphous silica membrane synthesized by counter diffusion chemical vapor deposition. J Am Ceram Soc. 2008;91(1):71-6.
  • [12] Zhao MW, Kang WP, Zheng LQ, Gao YA. Synthesis of silica nanoboxes via a simple hard-template method and their application in controlled release. Mater Lett. 2010;64(8):990-2.
  • [13] Ji LW, Zhang XW. Ultrafine polyacrylonitrile/silica composite fibers via electrospinning. Mater Lett. 2008;62(14):2161-4.
  • [14] Greiner A, Wendorff JH. Electrospinning: A fascinating method for the preparation of ultrathin fibres. Angew Chem Int Edit. 2007;46(30):5670-703.
  • [15] Li D, Xia YN. Electrospinning of nanofibers: Reinventing the wheel? Adv Mater. 2004;16(14):1151-70.
  • [16] Saquing CD, Manasco JL, Khan SA. Electrospun Nanoparticle-Nanofiber Composites via a One-Step Synthesis. Small. 2009;5(8):944-51.
  • [17] Bhardwaj N, Kundu SC. Electrospinning: A fascinating fiber fabrication technique. Biotechnol Adv. 2010;28(3):325-47.
  • [18] Gopal R, Kaur S, Ma ZW, Chan C, Ramakrishna S, Matsuura T. Electrospun nanofibrous filtration membrane. J Membrane Sci. 2006;281(1-2):581-6.
  • [19] Qi HX, Hu P, Xu J, Wang AJ. Encapsulation of drug reservoirs in fibers by emulsion electrospinning: Morphology characterization and preliminary release assessment. Biomacromolecules. 2006;7(8):2327-30.
  • [20] Ramaseshan R, Sundarrajan S, Jose R, Ramakrishna S. Nanostructured ceramics by electrospinning. J Appl Phys. 2007;102(11).
  • [21] Burger C, Hsiao BS, Chu B. Nanofibrous materials and their applications. Annu Rev Mater Res. 2006;36:333-68.
  • [22] Geltmeyer J, De Roo J, Van den Broeck F, Martins JC, De Buysser K, De Clerck K. The influence of tetraethoxysilane sol preparation on the electrospinning of silica nanofibers. J Sol-Gel Sci Techn. 2016;77(2):453-62.
  • [23] Lu HB, Yin JY, Xu B, Gou JH, Hui D, Fu YQ. Synergistic effects of carboxylic acid-functionalized carbon nanotube and nafion/silica nanofiber on electrical actuation efficiency of shape memory polymer nanocomposite. Compos Part B-Eng. 2016;100:146-51.
  • [24] Wang HK, Yang XM, Wu QZ, Zhang QB, Chen HX, Jing HM, et al. Encapsulating Silica/Antimony into Porous Electrospun Carbon Nanofibers with Robust Structure Stability for High-Efficiency Lithium Storage. Acs Nano. 2018;12(4):3406-16.
  • [25] Zucker I, Dizge N, Fausey CL, Shaulsky E, Sun M, Elimelech M. Electrospun silica nanofiber mats functionalized with ceria nanoparticles for water decontamination. Rsc Adv. 2019;9(34):19408-17.
  • [26] Peltola T, Jokinen M, Veittola S, Rahiala H, Yli-Urpo A. Influence of sol and stage of spinnability on in vitro bioactivity and dissolution of sol-gel-derived SiO2 fibers. Biomaterials. 2001;22(6):589-98.
  • [27] Xu YD, Zhou WC, Zhang LT, Cheng LF. Spinnability and crystallizability of silica glass fiber by the sol-gel method. J Mater Process Tech. 2000;101(1-3):44-6.
  • [28] Feller RL, Curran M, Colaluca V, Bogaard J, Bailie C. Photochemical deterioration of poly (vinylbutyral) in the range of wavelengths from middle ultraviolet to the visible. Polym Degrad Stabil. 2007;92(5):920-31.
  • [29] Jahangiri S, Ozden-Yenigun E. The stability and dispersion of carbon nanotube-polymer solutions: A molecular dynamics study. J Ind Text. 2018;47(7):1568-83.
  • [30] Weng BC, Xu FH, Garza G, Alcoutlabi M, Salinas A, Lozano K. The Production of Carbon Nanotube Reinforced Poly(vinyl) Butyral Nanofibers by the Forcespinning (R) Method. Polym Eng Sci. 2015;55(1):81-7.
  • [31] Eskizeybek V, Yar A, Avci A. CNT-PAN hybrid nanofibrous mat interleaved carbon/epoxy laminates with improved Mode I interlaminar fracture toughness. Compos Sci Technol. 2018;157:30-9.
  • [32] Kaynan O, Atescan Y, Ozden-Yenigun E, Cebeci H. Mixed Mode delamination in carbon nanotube/nanofiber interlayered composites. Compos Part B-Eng. 2018;154:186-94.
  • [33] Papkov D, Zou Y, Andalib MN, Goponenko A, Cheng SZD, Dzenis YA. Simultaneously Strong and Tough Ultrafine Continuous Nanofibers. Acs Nano. 2013;7(4):3324-31.
  • [34] Ruenraroengsak P, Florence AT. The diffusion of latex nanospheres and the effective (microscopic) viscosity of HPMC gels. Int J Pharmaceut. 2005;298(2):361-6.
  • [35] Zheng JF, He AH, Li JX, Xu JA, Han CC. Studies on the controlled morphology and wettability of polystyrene surfaces by electrospinning or electrospraying. Polymer. 2006;47(20):7095-102.
  • [36] Wei Y, Feng QW, Xu JG, Dong H, Qiu KY, Jansen SA, et al. Polymethacrylate-silica hybrid nanoporous materials: A bridge between inorganic and polymeric molecular sieves. Adv Mater. 2000;12(19):1448-50.
  • [37] Wu XW, Mahalingam S, Amir A, Porwal H, Reece MJ, Naglieri V, et al. Novel Preparation, Microstructure, and Properties of Polyacrylonitrile-Based Carbon Nanofiber-Graphene Nanoplatelet Materials. Acs Omega. 2016;1(2):202-11.
  • [38] Khan N, Kumar D, Kumar P. Microwave Assisted Synthesis of Polyvinylbutyral-silica Composites for Mercury Removal Application. Chemistryselect. 2019;4(6):1979-84.
  • [39] Ananth A, Arthanareeswaran G, Mok YS. Effects of in situ and ex situ formations of silica nanoparticles on polyethersulfone membranes. Polym Bull. 2014;71(11):2851-61.
  • [40] Wencel D, Dolan C, Barczak M, Keyes TE, McDonagh C. Synthesis, tailoring and characterization of silica nanoparticles containing a highly stable ruthenium complex. Nanotechnology. 2013;24(36).
  • [41] Chaudhry AU, Mittal V, Mishra B. Inhibition and promotion of electrochemical reactions by graphene in organic coatings. Rsc Adv. 2015;5(98):80365-8.
  • [42] Chuang YJ, Liao JD, Chen LJ. Polyvinylbutyral-assisted synthesis and characterization of mesoporous silica nanofibers by electrospinning route. J Compos Mater. 2012;46(2):227-36.
  • [43] Hajian M, Reisi MR, Koohmareh GA, Jam ARZ. Preparation and characterization of Polyvinylbutyral/Graphene Nanocomposite. J Polym Res. 2012;19(10).

GNP katkılı Hibrit PVB-TEOS Nanofiberlerin Üretimi ve Karakterizasyonu

Yıl 2020, Cilt: 9 Sayı: 1, 101 - 106, 18.06.2020
https://doi.org/10.46810/tdfd.726874

Öz

Polivinil bütral (PVB)/Tetraetil ortosilikat (TEOS) ve PVB/TEOS/ Grafen nanoplatelet (GNP) nanofiberler elektro eğirme yöntemi ile sentezlenmiş ve homojen, boncuksuz bir morfoloji sergilemiştir. PVB, silika bazlı nanofiberler içerisindeki kusurların azalmasını sağlayan öncü polimer olarak kullanılmıştır. PVB/TEOS nanofiberlerin çapları 150-500 nm arasında değişmektedir. PVB/TEOS ve PVB/TEOS/GNP nanofiberlerin yapıları ve morfolojileri termogravimetrik analizör (TGA), Fourier dönüşümlü kızılötesi spektrometresi (FTIR) ve taramalı elektron mikroskobu (SEM) analizleri ile incelenmiştir. Analizler, elde edilen nanofiberlerin doku mühendisliği, ilaç salınımı, kanser teşhisi, batarya, sensör ve hava filtresi gibi uygulamalarda nanomalzeme olarak kullanılabileceğini göstermektedir.

Kaynakça

  • [1] Shao CL, Kim HY, Gong J, Ding B, Lee DR, Park SJ. Fiber mats of poly(vinyl alcohol)/silica composite via electrospinning. Mater Lett. 2003;57(9-10):1579-84.
  • [2] Zou H, Wu SS, Shen J. Polymer/silica nanocomposites: Preparation, characterization, properties, and applications. Chem Rev. 2008;108(9):3893-957.
  • [3] Larsen G, Velarde-Ortiz R, Minchow K, Barrero A, Loscertales IG. A method for making inorganic and hybrid (organic/inorganic) fibers and vesicles with diameters in the submicrometer and micrometer range via sol-gel chemistry and electrically forced liquid jets. J Am Chem Soc. 2003;125(5):1154-5.
  • [4] Wu SJ, Li FT, Wu YN, Xu R, Li GT. Preparation of novel poly(vinyl alcohol)/SiO2 composite nanofiber membranes with mesostructure and their application for removal of Cu2+ from waste water. Chem Commun. 2010;46(10):1694-6.
  • [5] Kulkarni SS, Kittur AA, Aralaguppi MI, Kariduraganavar MY. Synthesis and characterization of hybrid membranes using poly(vinyl alcohol) and tetraethylorthosilicate for the pervaporation separation of water-isopropanol mixtures. J Appl Polym Sci. 2004;94(3):1304-15.
  • [6] Li J, Suo JP, Deng RZ. Structure, Mechanical, and Swelling Behaviors of Poly(vinyl alcohol)/SiO2 Hybrid Membranes. J Reinf Plast Comp. 2010;29(4):618-29.
  • [7] Chen LJ, Liao JD, Lin SJ, Chuang YJ, Fu YS. Synthesis and characterization of PVB/silica nanofibers by electrospinning process. Polymer. 2009;50(15):3516-21.
  • [8] Patel AC, Li SX, Yuan JM, Wei Y. In situ encapsulation of horseradish peroxidase in electrospun porous silica fibers for potential biosensor applications. Nano Lett. 2006;6(5):1042-6.
  • [9] Cannas C, Mainas M, Musinu A, Piccaluga G. ZnO/SiO2 nanocomposites obtained by impregnation of mesoporous silica. Compos Sci Technol. 2003;63(8):1187-91.
  • [10] Loureiro SM, Ramos ML, Manoharan M. High temperature nanocomposite through engineered synthesis of hafnia nano-dispersoids in hexagonal mesoporous silica. J Am Ceram Soc. 2005;88(4):1072-5.
  • [11] Nagano T, Fujisaki S, Sato K, Hataya K, Iwamoto Y, Nomura M, et al. Relationship between the mesoporous intermediate layer structure and the gas permeation property of an amorphous silica membrane synthesized by counter diffusion chemical vapor deposition. J Am Ceram Soc. 2008;91(1):71-6.
  • [12] Zhao MW, Kang WP, Zheng LQ, Gao YA. Synthesis of silica nanoboxes via a simple hard-template method and their application in controlled release. Mater Lett. 2010;64(8):990-2.
  • [13] Ji LW, Zhang XW. Ultrafine polyacrylonitrile/silica composite fibers via electrospinning. Mater Lett. 2008;62(14):2161-4.
  • [14] Greiner A, Wendorff JH. Electrospinning: A fascinating method for the preparation of ultrathin fibres. Angew Chem Int Edit. 2007;46(30):5670-703.
  • [15] Li D, Xia YN. Electrospinning of nanofibers: Reinventing the wheel? Adv Mater. 2004;16(14):1151-70.
  • [16] Saquing CD, Manasco JL, Khan SA. Electrospun Nanoparticle-Nanofiber Composites via a One-Step Synthesis. Small. 2009;5(8):944-51.
  • [17] Bhardwaj N, Kundu SC. Electrospinning: A fascinating fiber fabrication technique. Biotechnol Adv. 2010;28(3):325-47.
  • [18] Gopal R, Kaur S, Ma ZW, Chan C, Ramakrishna S, Matsuura T. Electrospun nanofibrous filtration membrane. J Membrane Sci. 2006;281(1-2):581-6.
  • [19] Qi HX, Hu P, Xu J, Wang AJ. Encapsulation of drug reservoirs in fibers by emulsion electrospinning: Morphology characterization and preliminary release assessment. Biomacromolecules. 2006;7(8):2327-30.
  • [20] Ramaseshan R, Sundarrajan S, Jose R, Ramakrishna S. Nanostructured ceramics by electrospinning. J Appl Phys. 2007;102(11).
  • [21] Burger C, Hsiao BS, Chu B. Nanofibrous materials and their applications. Annu Rev Mater Res. 2006;36:333-68.
  • [22] Geltmeyer J, De Roo J, Van den Broeck F, Martins JC, De Buysser K, De Clerck K. The influence of tetraethoxysilane sol preparation on the electrospinning of silica nanofibers. J Sol-Gel Sci Techn. 2016;77(2):453-62.
  • [23] Lu HB, Yin JY, Xu B, Gou JH, Hui D, Fu YQ. Synergistic effects of carboxylic acid-functionalized carbon nanotube and nafion/silica nanofiber on electrical actuation efficiency of shape memory polymer nanocomposite. Compos Part B-Eng. 2016;100:146-51.
  • [24] Wang HK, Yang XM, Wu QZ, Zhang QB, Chen HX, Jing HM, et al. Encapsulating Silica/Antimony into Porous Electrospun Carbon Nanofibers with Robust Structure Stability for High-Efficiency Lithium Storage. Acs Nano. 2018;12(4):3406-16.
  • [25] Zucker I, Dizge N, Fausey CL, Shaulsky E, Sun M, Elimelech M. Electrospun silica nanofiber mats functionalized with ceria nanoparticles for water decontamination. Rsc Adv. 2019;9(34):19408-17.
  • [26] Peltola T, Jokinen M, Veittola S, Rahiala H, Yli-Urpo A. Influence of sol and stage of spinnability on in vitro bioactivity and dissolution of sol-gel-derived SiO2 fibers. Biomaterials. 2001;22(6):589-98.
  • [27] Xu YD, Zhou WC, Zhang LT, Cheng LF. Spinnability and crystallizability of silica glass fiber by the sol-gel method. J Mater Process Tech. 2000;101(1-3):44-6.
  • [28] Feller RL, Curran M, Colaluca V, Bogaard J, Bailie C. Photochemical deterioration of poly (vinylbutyral) in the range of wavelengths from middle ultraviolet to the visible. Polym Degrad Stabil. 2007;92(5):920-31.
  • [29] Jahangiri S, Ozden-Yenigun E. The stability and dispersion of carbon nanotube-polymer solutions: A molecular dynamics study. J Ind Text. 2018;47(7):1568-83.
  • [30] Weng BC, Xu FH, Garza G, Alcoutlabi M, Salinas A, Lozano K. The Production of Carbon Nanotube Reinforced Poly(vinyl) Butyral Nanofibers by the Forcespinning (R) Method. Polym Eng Sci. 2015;55(1):81-7.
  • [31] Eskizeybek V, Yar A, Avci A. CNT-PAN hybrid nanofibrous mat interleaved carbon/epoxy laminates with improved Mode I interlaminar fracture toughness. Compos Sci Technol. 2018;157:30-9.
  • [32] Kaynan O, Atescan Y, Ozden-Yenigun E, Cebeci H. Mixed Mode delamination in carbon nanotube/nanofiber interlayered composites. Compos Part B-Eng. 2018;154:186-94.
  • [33] Papkov D, Zou Y, Andalib MN, Goponenko A, Cheng SZD, Dzenis YA. Simultaneously Strong and Tough Ultrafine Continuous Nanofibers. Acs Nano. 2013;7(4):3324-31.
  • [34] Ruenraroengsak P, Florence AT. The diffusion of latex nanospheres and the effective (microscopic) viscosity of HPMC gels. Int J Pharmaceut. 2005;298(2):361-6.
  • [35] Zheng JF, He AH, Li JX, Xu JA, Han CC. Studies on the controlled morphology and wettability of polystyrene surfaces by electrospinning or electrospraying. Polymer. 2006;47(20):7095-102.
  • [36] Wei Y, Feng QW, Xu JG, Dong H, Qiu KY, Jansen SA, et al. Polymethacrylate-silica hybrid nanoporous materials: A bridge between inorganic and polymeric molecular sieves. Adv Mater. 2000;12(19):1448-50.
  • [37] Wu XW, Mahalingam S, Amir A, Porwal H, Reece MJ, Naglieri V, et al. Novel Preparation, Microstructure, and Properties of Polyacrylonitrile-Based Carbon Nanofiber-Graphene Nanoplatelet Materials. Acs Omega. 2016;1(2):202-11.
  • [38] Khan N, Kumar D, Kumar P. Microwave Assisted Synthesis of Polyvinylbutyral-silica Composites for Mercury Removal Application. Chemistryselect. 2019;4(6):1979-84.
  • [39] Ananth A, Arthanareeswaran G, Mok YS. Effects of in situ and ex situ formations of silica nanoparticles on polyethersulfone membranes. Polym Bull. 2014;71(11):2851-61.
  • [40] Wencel D, Dolan C, Barczak M, Keyes TE, McDonagh C. Synthesis, tailoring and characterization of silica nanoparticles containing a highly stable ruthenium complex. Nanotechnology. 2013;24(36).
  • [41] Chaudhry AU, Mittal V, Mishra B. Inhibition and promotion of electrochemical reactions by graphene in organic coatings. Rsc Adv. 2015;5(98):80365-8.
  • [42] Chuang YJ, Liao JD, Chen LJ. Polyvinylbutyral-assisted synthesis and characterization of mesoporous silica nanofibers by electrospinning route. J Compos Mater. 2012;46(2):227-36.
  • [43] Hajian M, Reisi MR, Koohmareh GA, Jam ARZ. Preparation and characterization of Polyvinylbutyral/Graphene Nanocomposite. J Polym Res. 2012;19(10).
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Adem Yar 0000-0002-1432-9590

Yayımlanma Tarihi 18 Haziran 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 9 Sayı: 1

Kaynak Göster

APA Yar, A. (2020). GNP katkılı Hibrit PVB-TEOS Nanofiberlerin Üretimi ve Karakterizasyonu. Türk Doğa Ve Fen Dergisi, 9(1), 101-106. https://doi.org/10.46810/tdfd.726874
AMA Yar A. GNP katkılı Hibrit PVB-TEOS Nanofiberlerin Üretimi ve Karakterizasyonu. TDFD. Haziran 2020;9(1):101-106. doi:10.46810/tdfd.726874
Chicago Yar, Adem. “GNP katkılı Hibrit PVB-TEOS Nanofiberlerin Üretimi Ve Karakterizasyonu”. Türk Doğa Ve Fen Dergisi 9, sy. 1 (Haziran 2020): 101-6. https://doi.org/10.46810/tdfd.726874.
EndNote Yar A (01 Haziran 2020) GNP katkılı Hibrit PVB-TEOS Nanofiberlerin Üretimi ve Karakterizasyonu. Türk Doğa ve Fen Dergisi 9 1 101–106.
IEEE A. Yar, “GNP katkılı Hibrit PVB-TEOS Nanofiberlerin Üretimi ve Karakterizasyonu”, TDFD, c. 9, sy. 1, ss. 101–106, 2020, doi: 10.46810/tdfd.726874.
ISNAD Yar, Adem. “GNP katkılı Hibrit PVB-TEOS Nanofiberlerin Üretimi Ve Karakterizasyonu”. Türk Doğa ve Fen Dergisi 9/1 (Haziran 2020), 101-106. https://doi.org/10.46810/tdfd.726874.
JAMA Yar A. GNP katkılı Hibrit PVB-TEOS Nanofiberlerin Üretimi ve Karakterizasyonu. TDFD. 2020;9:101–106.
MLA Yar, Adem. “GNP katkılı Hibrit PVB-TEOS Nanofiberlerin Üretimi Ve Karakterizasyonu”. Türk Doğa Ve Fen Dergisi, c. 9, sy. 1, 2020, ss. 101-6, doi:10.46810/tdfd.726874.
Vancouver Yar A. GNP katkılı Hibrit PVB-TEOS Nanofiberlerin Üretimi ve Karakterizasyonu. TDFD. 2020;9(1):101-6.