Araştırma Makalesi
BibTex RIS Kaynak Göster

n-Si / GaN ince filmlerin karakterizasyonu: azot akış hızının etkisi

Yıl 2020, Cilt: 9 Sayı: Özel Sayı, 141 - 147, 23.10.2020
https://doi.org/10.46810/tdfd.744947

Öz

GaN ince filmi, Radyo Frekansı magnetron saçtırma yöntemi ile n-tipi Si üzerinde farklı azot oranları uygulanarak üretildi. XRD analizleri üretilen filmin polikristal yapıda olduğunu (oryantasyon (110) ve (100)) teyit etmiştir. Farklı azot akışlarında malzemenin yapısal parametrelerinin değiştiği görülmektedir. Optik analiz, çeşitli azot akış hızının Azot boşluğunun azalması nedeniyle ince film optik bant boşluk enerjisini değiştirdiğini göstermektedir. AFM resimleri, GaN ince filminin Nano yapılı bir yüzeye sahip olduğunu ve periyodik tanecik yapısı gösterdiğini neredeyse homojen olan yapıyı göstermiştir. SEM resimlerinden GaN ince filminin yüzeyinde topaklar tespit ettik. Bunların olası nedenleri tartışıldı. Raman sonuçları, altıgen GaN'nin karşılık gelen karakteristik E2 (yüksek) optic fonon titreşimini kanıtlamıştır ve tüm ince filmlerin sıkıştırma gerginliğine sahip olduğunu göstermiştir. Filmde oluşan bu stresin nedenleri tartışıldı. GaN ince filmin optik, morfolojik, yapısal parametreleri azot akışlarının kontrol edilmesiyle iyileştirilebilir. Üretilen ince filmler, güneş pilleri, Işık Yayan Diyot (LED) gibi cihaz uygulamalarında temel malzeme olabilir.

Kaynakça

  • [1] Hu X-l, Wen R-l, Qi Z-y, Wang H. III-nitride ultraviolet, blue and green LEDs with SiO2 photonic crystals fabricated by UV-nanoimprint lithography. Materials Science in Semiconductor Processing. 2018;79:61-5. doi: 10.1016/j.mssp.2018.01.024. [2] Mohanty G, Sahoo BK. Effect of III-V nitrides on performance of graphene based SPR biosensor for detection of hemoglobin in human blood sample: A comparative analysis. Current Applied Physics. 2016;16(12):1607-13. doi: 10.1016/j.cap.2016.09.006. [3] Moon WH, Kim HJ, Choi CH. Molecular dynamics simulation of melting behavior of GaN nanowires. Scripta Materialia. 2007;56(5):345-8. doi: 10.1016/j.scriptamat.2006.11.013. [4] He XG, Zhao DG, Jiang DS, Zhu JJ, Chen P, Liu ZS, et al. GaN high electron mobility transistors with AlInN back barriers. Journal of Alloys and Compounds. 2016;662:16-9. doi: 10.1016/j.jallcom.2015.12.031. [5] Saito W, Suwa T, Uchihara T, Naka T, Kobayashi T. Breakdown behaviour of high-voltage GaN-HEMTs. Microelectronics Reliability. 2015;55(9):1682-6. doi: 10.1016/j.microrel.2015.06.126. [6] Miyoshi M, Tsutsumi T, Kabata T, Mori T, Egawa T. Effect of well layer thickness on quantum and energy conversion efficiencies for InGaN/GaN multiple quantum well solar cells. Solid-State Electronics. 2017;129:29-34. doi: 10.1016/j.sse.2016.12.009. [7] Sheu J-K, Chen P-C, Shin C-L, Lee M-L, Liao P-H, Lai W-C. Manganese-doped AlGaN/GaN heterojunction solar cells with intermediate band absorption. Solar Energy Materials and Solar Cells. 2016;157:727-32. doi: 10.1016/j.solmat.2016.07.047. [8] Dong Y, Son D-h, Dai Q, Lee J-H, Won C-H, Kim J-G, et al. AlGaN/GaN heterostructure pH sensor with multi-sensing segments. Sensors and Actuators B: Chemical. 2018;260:134-9. doi: 10.1016/j.snb.2017.12.188. [9] Liu Z, Chong WC, Wong KM, Lau KM. GaN-based LED micro-displays for wearable applications. Microelectronic Engineering. 2015;148:98-103. doi: 10.1016/j.mee.2015.09.007. [10] Lin J-H, Huang S-J, Su Y-K, Huang K-W. The improvement of GaN-based LED grown on concave nano-pattern sapphire substrate with SiO2 blocking layer. Applied Surface Science. 2015;354:168-72. doi: 10.1016/j.apsusc.2015.02.151. [11] Abud SH, Selman AM, Hassan Z. Investigation of structural and optical properties of GaN on flat and porous silicon. Superlattices and Microstructures. 2016;97:586-90. doi: 10.1016/j.spmi.2016.07.017. [12] Schulz H, Thiemann KH. Crystal structure refinement of AlN and GaN. Solid State Communications. 1977;23(11):815-9. doi: 10.1016/0038-1098(77)90959-0. [13] Yeh C-Y, Lu ZW, Froyen S, Zunger A. Zinc-blende\char21{}wurtzite polytypism in semiconductors. Physical Review B. 1992;46(16):10086-97. doi: 10.1103/PhysRevB.46.10086. [14] Miyoshi M, Tsutsumi T, Kabata T, Mori T, Egawa T. Effect of well layer thickness on quantum and energy conversion efficiencies for InGaN/GaN multiple quantum well solar cells. Solid-State Electronics. 2017;129:29-34. doi: 10.1016/j.sse.2016.12.009. [15] Kudrawiec R, Nyk M, Syperek M, Podhorodecki A, Misiewicz J, Strek W. Photoluminescence from GaN nanopowder: The size effect associated with the surface-to-volume ratio. Applied Physics Letters. 2006;88(18):181916. doi: 10.1063/1.2199489. [16] Li J, Liu H, Wu L. The optical properties of GaN (001)surface modified by intrinsic defects from density functional theory calculation. Optik - International Journal for Light and Electron Optics. 2018;154:378-82. doi: 10.1016/j.ijleo.2017.10.040. [17] Said A, Debbichi M, Said M. Theoretical study of electronic and optical properties of BN, GaN and B x Ga 1− x N in zinc blende and wurtzite structures. Optik-International Journal for Light and Electron Optics. 2016;127(20):9212-21. doi: 10.1016/j.ijleo.2016.06.103. [18] Harima H. Properties of GaN and related compounds studied by means of Raman scattering. Journal of Physics: Condensed Matter. 2002;14(38):R967. doi: 10.1088/0953-8984/14/38/201. [19] Sekine T, Komatsu Y, Iwaya R, Kuroe H, Kikuchi A, Kishino K. Surface Phonons Studied by Raman Scattering in GaN Nanostructures. Journal of the Physical Society of Japan. 2017;86(7):074602. doi: 10.7566/JPSJ.86.074602. [20] Nootz G, Schulte A, Chernyak L, Osinsky A, Jasinski J, Benamara M, et al. Correlations between spatially resolved Raman shifts and dislocation density in GaN films. Applied Physics Letters. 2002;80(8):1355-7. doi: 10.1063/1.1449523.
Yıl 2020, Cilt: 9 Sayı: Özel Sayı, 141 - 147, 23.10.2020
https://doi.org/10.46810/tdfd.744947

Öz

Teşekkür

We would like to thank the staff and experts of the Eastern Anatolian High Technology Institute (DAYTAM) for their assistance in the measurements.

Kaynakça

  • [1] Hu X-l, Wen R-l, Qi Z-y, Wang H. III-nitride ultraviolet, blue and green LEDs with SiO2 photonic crystals fabricated by UV-nanoimprint lithography. Materials Science in Semiconductor Processing. 2018;79:61-5. doi: 10.1016/j.mssp.2018.01.024. [2] Mohanty G, Sahoo BK. Effect of III-V nitrides on performance of graphene based SPR biosensor for detection of hemoglobin in human blood sample: A comparative analysis. Current Applied Physics. 2016;16(12):1607-13. doi: 10.1016/j.cap.2016.09.006. [3] Moon WH, Kim HJ, Choi CH. Molecular dynamics simulation of melting behavior of GaN nanowires. Scripta Materialia. 2007;56(5):345-8. doi: 10.1016/j.scriptamat.2006.11.013. [4] He XG, Zhao DG, Jiang DS, Zhu JJ, Chen P, Liu ZS, et al. GaN high electron mobility transistors with AlInN back barriers. Journal of Alloys and Compounds. 2016;662:16-9. doi: 10.1016/j.jallcom.2015.12.031. [5] Saito W, Suwa T, Uchihara T, Naka T, Kobayashi T. Breakdown behaviour of high-voltage GaN-HEMTs. Microelectronics Reliability. 2015;55(9):1682-6. doi: 10.1016/j.microrel.2015.06.126. [6] Miyoshi M, Tsutsumi T, Kabata T, Mori T, Egawa T. Effect of well layer thickness on quantum and energy conversion efficiencies for InGaN/GaN multiple quantum well solar cells. Solid-State Electronics. 2017;129:29-34. doi: 10.1016/j.sse.2016.12.009. [7] Sheu J-K, Chen P-C, Shin C-L, Lee M-L, Liao P-H, Lai W-C. Manganese-doped AlGaN/GaN heterojunction solar cells with intermediate band absorption. Solar Energy Materials and Solar Cells. 2016;157:727-32. doi: 10.1016/j.solmat.2016.07.047. [8] Dong Y, Son D-h, Dai Q, Lee J-H, Won C-H, Kim J-G, et al. AlGaN/GaN heterostructure pH sensor with multi-sensing segments. Sensors and Actuators B: Chemical. 2018;260:134-9. doi: 10.1016/j.snb.2017.12.188. [9] Liu Z, Chong WC, Wong KM, Lau KM. GaN-based LED micro-displays for wearable applications. Microelectronic Engineering. 2015;148:98-103. doi: 10.1016/j.mee.2015.09.007. [10] Lin J-H, Huang S-J, Su Y-K, Huang K-W. The improvement of GaN-based LED grown on concave nano-pattern sapphire substrate with SiO2 blocking layer. Applied Surface Science. 2015;354:168-72. doi: 10.1016/j.apsusc.2015.02.151. [11] Abud SH, Selman AM, Hassan Z. Investigation of structural and optical properties of GaN on flat and porous silicon. Superlattices and Microstructures. 2016;97:586-90. doi: 10.1016/j.spmi.2016.07.017. [12] Schulz H, Thiemann KH. Crystal structure refinement of AlN and GaN. Solid State Communications. 1977;23(11):815-9. doi: 10.1016/0038-1098(77)90959-0. [13] Yeh C-Y, Lu ZW, Froyen S, Zunger A. Zinc-blende\char21{}wurtzite polytypism in semiconductors. Physical Review B. 1992;46(16):10086-97. doi: 10.1103/PhysRevB.46.10086. [14] Miyoshi M, Tsutsumi T, Kabata T, Mori T, Egawa T. Effect of well layer thickness on quantum and energy conversion efficiencies for InGaN/GaN multiple quantum well solar cells. Solid-State Electronics. 2017;129:29-34. doi: 10.1016/j.sse.2016.12.009. [15] Kudrawiec R, Nyk M, Syperek M, Podhorodecki A, Misiewicz J, Strek W. Photoluminescence from GaN nanopowder: The size effect associated with the surface-to-volume ratio. Applied Physics Letters. 2006;88(18):181916. doi: 10.1063/1.2199489. [16] Li J, Liu H, Wu L. The optical properties of GaN (001)surface modified by intrinsic defects from density functional theory calculation. Optik - International Journal for Light and Electron Optics. 2018;154:378-82. doi: 10.1016/j.ijleo.2017.10.040. [17] Said A, Debbichi M, Said M. Theoretical study of electronic and optical properties of BN, GaN and B x Ga 1− x N in zinc blende and wurtzite structures. Optik-International Journal for Light and Electron Optics. 2016;127(20):9212-21. doi: 10.1016/j.ijleo.2016.06.103. [18] Harima H. Properties of GaN and related compounds studied by means of Raman scattering. Journal of Physics: Condensed Matter. 2002;14(38):R967. doi: 10.1088/0953-8984/14/38/201. [19] Sekine T, Komatsu Y, Iwaya R, Kuroe H, Kikuchi A, Kishino K. Surface Phonons Studied by Raman Scattering in GaN Nanostructures. Journal of the Physical Society of Japan. 2017;86(7):074602. doi: 10.7566/JPSJ.86.074602. [20] Nootz G, Schulte A, Chernyak L, Osinsky A, Jasinski J, Benamara M, et al. Correlations between spatially resolved Raman shifts and dislocation density in GaN films. Applied Physics Letters. 2002;80(8):1355-7. doi: 10.1063/1.1449523.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Asim Mantarcı 0000-0001-8369-3559

Yayımlanma Tarihi 23 Ekim 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 9 Sayı: Özel Sayı

Kaynak Göster

APA Mantarcı, A. (2020). n-Si / GaN ince filmlerin karakterizasyonu: azot akış hızının etkisi. Türk Doğa Ve Fen Dergisi, 9(Özel Sayı), 141-147. https://doi.org/10.46810/tdfd.744947
AMA Mantarcı A. n-Si / GaN ince filmlerin karakterizasyonu: azot akış hızının etkisi. TDFD. Ekim 2020;9(Özel Sayı):141-147. doi:10.46810/tdfd.744947
Chicago Mantarcı, Asim. “N-Si / GaN Ince Filmlerin Karakterizasyonu: Azot akış hızının Etkisi”. Türk Doğa Ve Fen Dergisi 9, sy. Özel Sayı (Ekim 2020): 141-47. https://doi.org/10.46810/tdfd.744947.
EndNote Mantarcı A (01 Ekim 2020) n-Si / GaN ince filmlerin karakterizasyonu: azot akış hızının etkisi. Türk Doğa ve Fen Dergisi 9 Özel Sayı 141–147.
IEEE A. Mantarcı, “n-Si / GaN ince filmlerin karakterizasyonu: azot akış hızının etkisi”, TDFD, c. 9, sy. Özel Sayı, ss. 141–147, 2020, doi: 10.46810/tdfd.744947.
ISNAD Mantarcı, Asim. “N-Si / GaN Ince Filmlerin Karakterizasyonu: Azot akış hızının Etkisi”. Türk Doğa ve Fen Dergisi 9/Özel Sayı (Ekim 2020), 141-147. https://doi.org/10.46810/tdfd.744947.
JAMA Mantarcı A. n-Si / GaN ince filmlerin karakterizasyonu: azot akış hızının etkisi. TDFD. 2020;9:141–147.
MLA Mantarcı, Asim. “N-Si / GaN Ince Filmlerin Karakterizasyonu: Azot akış hızının Etkisi”. Türk Doğa Ve Fen Dergisi, c. 9, sy. Özel Sayı, 2020, ss. 141-7, doi:10.46810/tdfd.744947.
Vancouver Mantarcı A. n-Si / GaN ince filmlerin karakterizasyonu: azot akış hızının etkisi. TDFD. 2020;9(Özel Sayı):141-7.