Araştırma Makalesi
BibTex RIS Kaynak Göster

Metoksi Sübstitüe Kalkon İçeren Metalliftalosiyanin Bileşiklerinin Sentezi ve Karakterizasyonu

Yıl 2021, Cilt: 10 Sayı: 1, 217 - 223, 25.06.2021
https://doi.org/10.46810/tdfd.876114

Öz

Bu çalışmada, öncelikle 4-hidroksifenil-3-(4-metoksifenil) kalkon (1) bileşiği sentezlendi. Daha sonra 1 bileşiği 4-nitroftalonitrille reaksiyona sokularak 4-(4-(3-(4-metoksifenil)akriloil)fenoksi)ftalonitril (2) bileşiği sentezlendi. 2 bileşiğinden yola çıkarak DBU katalizörlüğünde metalli ftalosiyanin bileşikleri elde edildi. Elde edilen yeni metalli ftalosiyanin bileşikleri DCM, THF, DMF ve DMSO gibi yaygın olarak kullanılan çözücülerde kolaylıkla çözünebilmektedir. Sentez sonucu elde edilen bileşiklerin karakterizasyonu FT-IR, 1H-NMR, 13C-NMR, UV–Vis ve MALDİ-TOF gibi spektroskopik yöntemler kullanılarak aydınlatılmıştır.

Kaynakça

  • [1] Kadish, K. M., Smith, K. M., & Guilard, R.. Handbook of Porphyrin Science: with Applications to Chemistry, Physics, Materials Science, Engineering, Biology and Medicine (Volumes 1-5). World Scientific: Singapore, 2010, 1-35.
  • [2] Yazıcı, A, Dalbul, N, Altındal, A, Salih, B, Bekaroğlu, Ö. Ethanol sensing property of novel phthalocyanines substituted with 3,4-dihydroxy-3-cyclobuten-1,2-dione. Sensors and Actuators B. 2014;202:14–22.
  • [3] Mert Sevim A, Ilgün C, Gül A. Preparation of heterogeneous phthalocyanine catalysts by cotton fabric dyeing. Dyes and Pigments. 2011;89:162–168.
  • [4] Yazıcı A, Dalbul N, Altındal A, Salih B, Bekaroğlu Ö. Ethanol sensing property of novel phthalocyanines substituted with 3,4-dihydroxy-3-cyclobuten-1,2-dione. Sensors and Actuators B. 2014;202:14–22.
  • [5] Zheng BY, Zhang HP, Ke MR, Huang JD. Synthesis and antifungal photodynamic activities of a series of novel zinc (II) phthalocyanines substituted with piperazinyl moieties. Dyes and Pigments. 2013;99:185–191.
  • [6] Soylu M, Ocaya R, Tuncer H, Al-Ghamdi AA, Dere A, Sari DC, Yakuphanoglu F. Analysis of photovoltaic behavior of Si-based junctions containing novel graphene oxide/nickel (II) phthalocyanine composite films. Microelectronic Engineering. 2016;154:53–61.
  • [7] Sena P, Dumludag F, Salih B, Özkaya AR, Bekaroglu Ö. Synthesis and electrochemical, electrochromic and electrical properties of novel s-triazine bridged trinuclear Zn (II), Cu (II) and Lu (III) and a tris double-decker Lu (III) phthalocyanines. Synthetic Metals. 2011;161:1245–1254.
  • [8] Grobosch M, Schmidt C, Kraus R, Knupfer M. Electronic properties of transition metal phthalocyanines: The impact of the central metal atom (d5–d10). Organic Electronics. 2010;11:1483–1488.
  • [9] Dinçer HA, Koca A, Gül A, Koçak MB. Novel phthalocyanines bearing both quaternizable and bulky substituents. Dyes and Pigments. 2008;76:825-831.
  • [10] Kantar C, Mavi V, Baltas N, Islamoğlu F, Şaşmaz S. Novel zinc (II) phthalocyanines bearing azo-containing schiff base: Determination of pKa values, absorption, emission, enzyme inhibition and photochemical properties. Journal of Molecular Structure. 2016;1122:88-99.
  • [11] Kantar GK, Baltaş N, Menteşe E, Şaşmaz S. Microwave-assisted synthesis and investigation of xanthine oxidase inhibition of new phthalonitrile and phthalocyanines containing morpholino substituted 1,2,4-triazole-3-one. Journal of Organometallic Chemistry. 2015;787:8-13.
  • [12] Demirol, M., Sirka, L., Çalışkan, E., Biryan, F., Koran, K., Görgülü, A. O., & Yakuphanoğlu, F.. Synthesis and photodiode properties of chalcone substituted metallo-phthalocyanine. Journal of Molecular Structure. 2020; 1219, 128571.
  • [13] Tataroglu, A., Koran, K., Çaliskan, E., Al-Sehemi, A. G., Görgülü, A. O., Al-Ghamdi, A., & Yakuphanoglu, F. Metallo-Phthalocyanines Based Photocapacitors. Silicon. 2019;11(3), 1275-1286.
  • [14] Koran, K., Tekin, Ç., Biryan, F., Tekin, S., Sandal, S., & Görgülü, A. O. Synthesis, structural and thermal characterizations, dielectric properties and in vitro cytotoxic activities of new 2,2,4,4-tetra(4′-oxy-substituted-chalcone)-6,6-diphenylcyclotri-phosphazene derivatives. Medicinal Chemistry Research. 2017; 26(5), 962-974.
  • [15] Koran, K., Tekin, Ç., Çalışkan, E., Tekin, S., Sandal, S., & Görgülü, A. O. Synthesis, structural and thermal characterizations and in vitro cytotoxic activities of new cyclotriphosphazene derivatives. Phosphorus, Sulfur, and Silicon and the Related Elements. 2017;192(9), 1002-1011.
  • [16] Jin H, Li X, Tan T, Wang S, Xiao Y, Tian J. Electrochromic properties of novel chalcones containing triphenylamine moiety. Dyes and Pigments. 2014;106:154-160.
  • [17] Patil PS, Maidur SR, l Rao SV, Dharmaprakash S.M. Crystalline perfection, third-order nonlinear optical properties and optical limiting studies of 3, 4-Dimethoxy-4׳-methoxychalcone single crystal. Optics & Laser Technology. 2016;81:70–76. [18] Koran K, Özen F, Biryan F, Demirelli K, Görgülü AO. Eu+3-doped chalcone substituted cyclotriphosphazenes: Synthesis, characterizations, thermal and dielectrical properties. Inorganica Chimica Acta. 2016;450:162–169.
  • [19] Koran K, Ozen F, Torğut G, Pıhtılı G, Cil E, Gorgulu AO, Arslan M. Synthesis, characterization and dielectric properties of phosphazenes containing chalcones. Polyhedron. 2014;79:213–220.
  • [20] Koran, K. Structural, chemical and electrical characterization of organocyclotri-phosphazene derivatives and their graphene-based composites. Journal of Molecular Structure, 2019;1179, 224-232.
  • [21] Gupta R, Chaudhary RP. Synthesis, antimicrobial and DFT studies of novel fused thiazolopyrimidine derivatives. Heterocycl Commun. 2013;19:207–214.
  • [22] Cole AL, Hossain S, Cole AM, Phanstiel O. Synthesis and bioevaluation of substituted chalcones, coumaranones and other flavonoids as anti-HIV agents. Bioorganic & Medicinal Chemistry. 2016;24:2768–2776. [23] Hu G, Li X, Zhang X, Li Y, Ma L, Yang LM, Liu G, Li W, Huang J, Shen X, Hu L, Zheng YT, Tang Y. Discovery of ınhibitors to block ınteractions of HIV 1 ıntegrase with human LEDGF/p75 via structure-based virtual screening and bioassays. J Med Chem. 2012;55:10108−10117.
  • [24] Rudrapal M, Satyanandam RS, Swaroopini TS, Lakshmi TN, Jaha SK, Zaheera S. Synthesis and antibacterial activity of some new hydrazones. Med Chem Res. 2013;22:2840–2846.
  • [25] Lın CT, Kumar KJS, Tseng YH, Wang ZJ, Pan MY, Xıao JH, Chıen SC, Wang SY. Anti-inflammatory activity of flavokawain b from alpinia pricei hayata. J Agric Food Chem. 2009;57:6060–6065.
  • [26] Li YY, Huang SS, Lee MM, Deng JS, Huang GJ. Anti-inflammatory activities of cardamonin from Alpinia katsumadai through heme oxygenase-1 induction and inhibition of NF-KB and MAPK signaling pathway in the carrageenan-induced paw edema. International Immunopharmacology. 2015;25:332–339.
  • [27] Gorgulu AO, Koran K, Ozen F, Tekin S, Sandal S. Synthesis, structural characterization and anti-carcinogenic activityof new cyclotriphosphazenes containing dioxybiphenyl and chalcone groups. Journal of Molecular Structure. 2015;1087:1–10.
  • [28] Lee Y, Kim BS, Ahn S, Koh D, Lee YH, Shin SY, Lim Y. Anticancer and structure-activity relationship evaluation of 3-(naphthalen-2-yl)-N,5-diphenyl-pyrazoline-1-carbothioamide analogs of chalcone. Bioorganic Chemistry. 2016;68:166–176.
  • [29] Kamal A, Shankaraiah N, Prabhakar S, Reddy CR, Markandeya N, Reddy KL, Devaiah V. Solid-phase synthesis of new pyrrolobenzodiazepine–chalcone conjugates: DNA-binding affinity and anticancer activity. Bioorganic & Medicinal Chemistry Letters. 2008;18:2434–2439.
  • [30] Li H, Chen Y, Zhang B, Niu X, Song M, Luo Z, Lu G, Liu B, Zhao X, Wang J, Deng X. Inhibition of sortase A by chalcone prevents listeria monocytogenes infection. Biochemical Pharmacology. 2016;106:19–29.
  • [31] Wang H, Wang Y, Chen Z, Chan FL, Leung LK. Hydroxychalcones exhibit differential effects on XRE Transactivation. Toxicology. 2005;207:303–313.
  • [32] B.S. Funiss, A.J. Hannford, P.W.G. Smith, A.R. Tatchell, Vogel’s Textbook of Practical Org. Chem. 5th ed., Longman, London, 2004. p1032–1035.
  • [33] Shakir M, Azam M, Parveen S, Khan A U, Firdaus F. Synthesis and spectroscopic studies on complexes of N,N’-bis-(2-pyridinecarboxaldimine)-1,8-diaminonaphthalene (L); DNA binding studies on Cu (II) complex.Spectrochim Acta A. 2009;71:1851–1856.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Furkan Özen 0000-0003-1178-1167

Yayımlanma Tarihi 25 Haziran 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 10 Sayı: 1

Kaynak Göster

APA Özen, F. (2021). Metoksi Sübstitüe Kalkon İçeren Metalliftalosiyanin Bileşiklerinin Sentezi ve Karakterizasyonu. Türk Doğa Ve Fen Dergisi, 10(1), 217-223. https://doi.org/10.46810/tdfd.876114
AMA Özen F. Metoksi Sübstitüe Kalkon İçeren Metalliftalosiyanin Bileşiklerinin Sentezi ve Karakterizasyonu. TDFD. Haziran 2021;10(1):217-223. doi:10.46810/tdfd.876114
Chicago Özen, Furkan. “Metoksi Sübstitüe Kalkon İçeren Metalliftalosiyanin Bileşiklerinin Sentezi Ve Karakterizasyonu”. Türk Doğa Ve Fen Dergisi 10, sy. 1 (Haziran 2021): 217-23. https://doi.org/10.46810/tdfd.876114.
EndNote Özen F (01 Haziran 2021) Metoksi Sübstitüe Kalkon İçeren Metalliftalosiyanin Bileşiklerinin Sentezi ve Karakterizasyonu. Türk Doğa ve Fen Dergisi 10 1 217–223.
IEEE F. Özen, “Metoksi Sübstitüe Kalkon İçeren Metalliftalosiyanin Bileşiklerinin Sentezi ve Karakterizasyonu”, TDFD, c. 10, sy. 1, ss. 217–223, 2021, doi: 10.46810/tdfd.876114.
ISNAD Özen, Furkan. “Metoksi Sübstitüe Kalkon İçeren Metalliftalosiyanin Bileşiklerinin Sentezi Ve Karakterizasyonu”. Türk Doğa ve Fen Dergisi 10/1 (Haziran 2021), 217-223. https://doi.org/10.46810/tdfd.876114.
JAMA Özen F. Metoksi Sübstitüe Kalkon İçeren Metalliftalosiyanin Bileşiklerinin Sentezi ve Karakterizasyonu. TDFD. 2021;10:217–223.
MLA Özen, Furkan. “Metoksi Sübstitüe Kalkon İçeren Metalliftalosiyanin Bileşiklerinin Sentezi Ve Karakterizasyonu”. Türk Doğa Ve Fen Dergisi, c. 10, sy. 1, 2021, ss. 217-23, doi:10.46810/tdfd.876114.
Vancouver Özen F. Metoksi Sübstitüe Kalkon İçeren Metalliftalosiyanin Bileşiklerinin Sentezi ve Karakterizasyonu. TDFD. 2021;10(1):217-23.