Araştırma Makalesi
BibTex RIS Kaynak Göster

The effect of alumina additive on the properties of sheep hydroxyapatite

Yıl 2023, Cilt: 12 Sayı: 3, 118 - 127, 27.09.2023
https://doi.org/10.46810/tdfd.1324471

Öz

Bu çalışmada ağırlıkça %1-10 arasında değişmekte olan alumina (Al2O3) ilavesinin koyun femur kemiklerinden elde edilmiş olan hidroksiapatitin (SHA) özelliklerine etkisi incelenmiştir. SHA tüm sinterleme sıcaklıklarında dekompoze olmuş ve toplam dekompoze olma oranı artan sıcaklıkla %1.4'ten %4.1' e çıkmıştır. Al2O3 ilaveli SHA' lerde dekompoze olma oranı ise artan Al2O3 ve sinterleme sıcaklığı ile %60.1' e artmıştır. SHA' nın yoğunluğu (2,16±0,03' ten 2,98±0,02 g/cm3' e) ve sertliği (0,93±0,15 GPa' dan 3,90±0,27 GPa' ya) artan sıcaklık arttıkça artmış, ancak; en yüksek basma dayanımı (82±5,05 MPa) ve kırılma tokluğu (0,70±0,11 MPam1/2) 1200oC sıcaklıkta elde edilmiştir. SHA' ya %1 ve %2.5 oranında Al2O3 ilavesi, %5 ve %10' dan daha iyi özelliklerin elde edilmesine katkı sağladı; optimum Al2O3 oranı %2.5 ve sinterleme sıcaklığı 1200oC’ dır. %2.5 oranında Al2O3 ilavesi ile SHA' nın kırılma tokluğu değeri 0,70±0,11 MPam1/2' den 1,70±0,15 MPam1/2' ye, basma dayanımı 82.48±5.05 MPa' dan 207.85±5.85 MPa' ya yükselmiştir. SHA' nın kırılganlık indeksi artan sıcaklıkla 1.70±0.27'den 7.10±0.50 μ-1/2'ye yükseldi. SHA' ya Al2O3 ilavesiyle maksimum değer olarak 3,56±0,18 μ-1/2' ye yükseldi. 28 günlük daldırma süresi sonunda SHA yüzeyinin büyük bir kısmının, SHA-2.5Al2O3 kompozitinin yüzeyinin ise tamamının apatit tabakası ile kaplandığı belirlendi.

Destekleyen Kurum

-

Proje Numarası

-

Teşekkür

-

Kaynakça

  • [1] Boutinguiza M., Pou J., Comesaña R., Lusquiños F., de Carlos A., León B. Biological hydroxyapatite obtained from fish bones. Mater. Sci. Eng. C. 2012;32:478-86.
  • [2] Hart A., Ebiundu K., Peretomode E., Onyeaka H., Nwabore O.F., Obileke K. Value-added materials recovered from waste bone biomass: technologies and applications. RSC Adv. 2022;12:22302-20.
  • [3] Buddhachat K., Klinhom S., Siengdee P., Brown J.L., Nomsiri R., Kaewmong P., Thitaram C., Mahakkanukrauh P., Nganvongpanit K. Elemental analysis of bone, teeth, horn and antler in different animal species using nonınvasive handheld X-ray fluorescence. PloS One. 2016; doi: 10.1371/journal.pone.0155458.
  • [4] Hussain F., Alshahrani S., Abbas M.M., Khan H.M., Jamil A., Yaqoob H., Soudagar M., Imran M., Ahmad M., Munir M. Waste animal bones as catalysts for biodiesel production; A mini review. Catalysts. 2021;11:630-45.
  • [5] Foroutan R., Peighambardoust S.J., Hosseini S.S., Akbari A., Ramavandi B. Hydroxyapatite biomaterial production from chicken (femur and beak) and fish bone waste through a chemical less method for Cd2+ removal from shipbuilding waste water. J. Hazard. Mater. 2021;413:125428-40.
  • [6] Esmaeilkhanian A., Sharifianjazi F., Abouchenari A., Rouhani A., Parvin N., Irani M. Synthesis and characterization of natural nano-hydroxyapatite derived from turkey femur-bone waste. Appl. Biochem. Biotechnol. 2019;189:919-32.
  • [7] Herliansyah M.K., Dewo P., M. Shukor H.A., Ide-Ektessabi Ari. Development and characterization of bovine hydroxyapatite porous bone graft for biomedical applications. Adv. Mater. Res. 2011;277:59-65.
  • [8] Ismail S.A., Abdullah H.Z. Extraction and characterization of natural hydroxyapatite from goat bone for biomedical applications. Mater. Sci. Forum. 2020;1010:573-78.
  • [9] Buasri A., Inkaew T., Kodephun L., Yenying W., Loryuenyong V. Natural hydroxyapatite (NHAp) derived from pork bone as a renewable catalyst for biodiesel production via microwave irradiation. Key Eng. Mater. 2015;659:216-20.
  • [10] Sartoretto S.C., Uzeda M.J., Miguel F.B., Nascimento J.R., Ascoli F., Calasans-Maia M.D. Sheep as an experimental model for biomaterial implant evaluation. Acta Ortop Bras. 2016;24(5):262-66.
  • [11] Li Y., Chen S.K., Li L., Qin L., Wang X.L., Lai Y.X. Bone defect animal models for testing efficacy of bone substitute biomaterials. J. Orthop. Translat. 2015;3:95-04.
  • [12] Rehman I., Smith R., Hench L.L., Bonfield W. Structural evaluation of human and sheep, bone and comparison with synthetic hydroxyapatite by FT-Raman spectroscopy. J. Biomed. Mater. Res. 1995;29(10):1287-94.
  • [13] Indra A., Putra A.B., Handra N., Fahmi H., Nurzal A., Perdana M., Subardi A., Jon Affi J. Behavior of sintered body properties of hydroxyapatite ceramics: effect of uniaxial pressure on green body fabrication. Mater. Today Sustain. 2022;17:100100-08.
  • [14] Demirkol N., Oktar F.N., Kayali E.S. Influence of niobium oxide on the mechanical properties of hydroxyapatite. Key Eng. Mater. 2013;529-530: 29-33.
  • [15] Angioni D., Cannillo V., Orrù R., Cao G., Garroni S., Bellucci D. Bioactivity enhancement by a ball milling treatment in novel bioactive glass-hydroxyapatite composites produced by spark plasma sintering. J. Eur. Ceram. Soc. 2023;43:1220-29.
  • [16] Bazin T., Magnaudeix A., Mayet R., Carles P., Julien I., Demourgues A., Gaudon M., Champion E. Sintering and biocompatibility of copper-doped hydroxyapatite bioceramics. Ceram. Int. 2021;47:13644-54.
  • [17] Demirkol N., Oktar F.N., Kayali E.S. Mechanical and microstructural properties of sheep hydroxyapatite (SHA)-niobium oxide composites. Acta Phys. Pol. A. 2012;121(1):274-76.
  • [18] Akıllı A., Evlen H., Demirkol N. Biological and morphological effects of apatite kinds (Sheep/Synthetic) on MgO reinforced bone tissue with hydroxyapatite matrix. Acta Phys. Pol. A. 2022;142(2):201-10.
  • [19] Karip E., Muratoğlu M. A study on using expanded perlite with hydroxyapatite: Reinforced bio-composites. Proc. Inst. Mech. Eng. H: J. Eng. Med. 2021;235(5):574-82.
  • [20] Ekren N. Reinforcement of sheep-bone derived hydroxyapatite with bioactive glass. J. Ceram. Process. Res. 2017;18(1):64-68.
  • [21] Landek D., Ćurković L., Gabelica I., Mustafa M.K., Žmak I. Optimization of sintering process of alumina ceramics using response surface methodology. Sustainability. 2021;13:6739-53.
  • [22] Pan Y., Li H., Liu Y., Liu Y., Hu K., Wang N., Lu Z., Liang J. He S. Effect of holding time during sintering on microstructure and properties of 3D printed alumina ceramics. Front. Mater. 2020;7:54-66.
  • [23] Zhang L., Liu H., Yao H., Zeng Y., Chen J. Preparation, microstructure, and properties of ZrO2(3Y)/Al2O3 bioceramics for 3D printing of all-ceramic dental implants by vat photopolymerization. Chin. J. Mech. Eng. 2022;1(2):100023-36.
  • [24] Visbal S., Lira-Olivares J., Sekino T., Niihara K., Moon B.K., Lee S.W. Mechanical properties of Al2O3-TiO2-SiC nanocomposites for the femoral head of hip joint replacement. Mater. Sci. Forum. 2005;486-487:197-00.
  • [25] Aminzare M., Eskandari A., Baroonian M.H., Berenov A., Hesabi Z.R., Taheri M., Sadrnezhaad S.K. Hydroxyapatite nanocomposites: Synthesis, sintering and mechanical properties. Ceram. Int. 2013;39:2197-06.
  • [26] Epure L.M., Dimitrievska S., Merhi Y., Yahia L.H. The effect of varying Al2O3 percentage in hydroxyapatite/Al2O3 composite materials: Morphological, chemical and cytotoxic evaluation. J. Biomed. Mater. Res. 2007;83A(4):1009-23.
  • [27] Ji H., Marquis P.M. Preparation and characterization of Al2O3 reinforced hydroxyapatite. Biomaterials. 1992;13(11):744-48.
  • [28] Öksüz K.E., Özer A. Microstructural and phase study of Y2O3 doped hydroxyapatite/Al2O3 biocomposites. Dig. J. Nanomater. Biostructures. 2016;11(1):167-72.
  • [29] Mezahi F.Z. Effect of ZrO2, TiO2, and Al2O3 additions on process and kinetics of bonelike apatite formation on sintered natural hydroxyapatite surfaces. Int. J. Appl. Ceram. Technol. 2012;9(3):529-40.
  • [30] British Standard Non-Metallic Materials for Surgical Implants. Part 2: Specifications for Ceramic Materials Based on Alumina, BS 7253: Part 2: 1990 ISO 6474-1981.
  • [31] Majling J., Znáik P., Palová A., Stevĭk S., Kovalĭk S., Agrawal D.K., Roy R. Sintering of the ultrahigh pressure densified hydroxyapatite monolithic xerogels. J. Mater. Res. 1997;12(1):198-02.
  • [32] Rahimiana M., Ehsani N., Parvin N., Baharvandi H.R. The effect of particle size, sintering temperature and sintering time on the properties of Al-Al2O3 composites, made by powder metallurgy. J. Mater. Process. Technol. 2009;209:5387-93.
  • [33] Niihara K. Indentation microfracture of ceramics-its application and problems. J. Ceram. Soc. Jpn. 1985;20:12-18.
  • [34] Pandey A., Nigam V.K., Balani K. Multi-length scale tribology of hydroxyapatite reinforced with ceria and silver. Wear. 2018;404-405:12-21.
  • [35] Demirkol N., Turan M. Production and characterization of ternary sheep hydroxyapatite (SHA)-wollastonite (W)-commercial inert glass (CIG) biocomposite. Res. Eng. Struct. Mater. 2019;5(2):167-74.
  • [36] Kim S.R., Lee J.H., Kim Y.T., Riu D.H., Jung S.J., Lee Y.J., Chung S.C., Kim Y.H. Synthesis of Si, Mg substituted hydroxyapatites and their sintering behaviors. Biomaterials. 2003;24:1389-99.
  • [37] Herliansyah M.K., Hamdi M., Ide-Ektessabi A., Wildan M.W., Toque J.A. The influence of sintering temperature on the properties of compacted bovine hydroxyapatite. Mater. Sci. Eng. C 2009;29:1674-80.
  • [38] Liao C.J., Lin F.H., Chen K.S., Sun J.S. Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere. Biomaterials. 1999;20:1807-13.
  • [39] Rapacz-Kmita A., Paluszkiewicz C., Ślósarczyk A., Paszkiewicz Z. FTIR and XRD investigations on the thermal stability of hydroxyapatite during hot pressing and pressureless sintering processes. J. Mol. Struct. 2005;744-747:653-56.
  • [40] Göller G., Oktar F.N. Sintering effects on mechanical properties of biologically derived dentine hydroxyapatite. Mater. Lett. 2002;56:142-47.
  • [41] Niakan A., Ramesh S., Tan C.Y., Hamdi M., Teng W.D. Characteristics of sintered bovine hydroxyapatite. Appl. Mech. Mater. 2013;372:177-80.
  • [42] Rao R.R., Kannan T.S. Synthesis and sintering of hydroxyapatite–zirconia composites. Mater. Sci. Eng. C 2002;20:187-93.
  • [43] Indrani D.J., Soegijono B., Adi W.A., Trout N. Phase composition and crystallinity of hydroxyapatite with various heat treatment temperatures. Int. J. App. Pharm. 2017;9(2):87-91.
  • [44] Wei L., Pang D., He L., Deng C. Crystal structure analysis of selenium-doped hydroxyapatite samples and their thermal stability. Ceram. Int. 2017;43:16141-48.
  • [45] Xu J.L., Khor K.A. Chemical analysis of silica doped hydroxyapatite biomaterials consolidated by a spark plasma sintering method. J. Inorg. Biochem. 2007;101:187-95.
  • [46] Lim K.F., Muchtar A., Mustaffa R., Tan C.Y. Sintering of HA/Zirconia composite for biomedical and dental applications: A review. Adv. Mater. Res. 2013;686:290-95.
  • [47] The British Standards Institution 2018, ISBN 978 0 580 86939-6
  • [48] Santos J.D., Silva P. L., Knowles J. C., Talal S., Monteiro F. J. Reinforcement of hydroxyapatite by adding P2O5-CaO glasses with Na2O, K2O and MgO. J. Mater. Sci.: Mater. Med. 1996;7:187-89.
  • [49] Sung Y.M., Lee J.C., Yang J.W. Crystallization and sintering characteristics of chemically precipitated hydroxyapatite nanopowder. J. Cryst. Growth. 2004;262:467-72.
  • [50] Ou S.F., Chiou S.Y., Ou K.L. Phase transformation on hydroxyapatite decomposition. Ceram. Int. 2013;39:3809-16.
  • [51] Youness R.A., Taha M.A., Ibrahim M.A. Effect of sintering temperatures on the in vitro bioactivity, molecular structure and mechanical properties of titanium/carbonated hydroxyapatite nano biocomposites. J. Mol. Struct. 2017;1150:188-95.
  • [52] Sobczak-Kupiec A., Wzorek Z. The influence of calcination parameters on free calcium oxide content in natural hydroxyapatite. Ceram. Int. 2012;38:641-47.
  • [53] Evis Z., Usta M., Kutbay I. Improvement in sinterability and phase stability of hydroxyapatite and partially stabilized zirconia composites. J. Eur. Ceram. Soc. 2009;29:621-28.
  • [54] Nath S., Tripathi R., Basu B. Understanding phase stability, microstructure development and biocompatibility in calcium phosphate-titania composites, synthesized from hydroxyapatite and titanium powder mix. Mater. Sci. Eng. C 2009;29(1):97-07.
  • [55] Oktar F.N., Agathopoulos S., Ozyegin L.S., Gunduz O., Demirkol N., Bozkurt Y., Salman S. Mechanical properties of bovine hydroxyapatite (BHA) composites doped with SiO2, MgO, Al2O3, and ZrO2. J. Mater. Sci: Mater. Med. 2007;18:2137-43.
  • [56] Tayyebi S., Mirjalili F., Samadi H., Nemati A. A review of synthesis and properties of hydroxyapatite/alumina nano composite powder. J. Chem. 2015;5(2):20-28.
  • [57] Bohner M., Santoni B.L.G., Döbelin N. β-tricalcium phosphate for bone substitution: Synthesis and properties. Acta Biomater. 2000;13:23-41.
  • [58] Sinusaite L., Renner A.M., Schütz M.B., Antuzevics A., Rogulis U., Grigoraviciute-Puroniene I., Mathur S., Zarkov A. Effect of Mn doping on the low-temperature synthesis of tricalcium phosphate (TCP) polymorphs. J. Eur. Ceram. Soc. 2019;39(10):3257-63.
  • [59] Kahlenberg V., Fischer R.X., Shaw C.S.J. High-pressure Ca4Al6O13: An example of a calcium aluminate with three different types of coordination polyhedra for aluminum. Am. Mineral. 2000;85:1492-96.
  • [60] Kumar P.N., Ferreira J.M.F., Kannan S. Phase transition mechanisms involved in the formation of structurally stable β-Ca3(PO4)2-α-Al2O3 composites. J. Eur. Ceram. Soc. 2017;37:2953-63.
  • [61] Mei H., Zhong Y., Wang P., Jia Z., Li C., Cheng N. Electronic, optical, and lattice dynamical properties of tetracalcium trialuminate (Ca4Al6O13). Materi. 2018;11:449-61.
  • [62] Salomão R., Ferreira V.L., Costa L.M.M., de Oliveira I.R. Effects of the initial CaO-Al2O3 ratio on the microstructure development and mechanical properties of porous calcium hexaluminate. Ceram. Int. 2017;42(2):2626-31.
  • [63] Akao M., Aoki H., Kato K., Sato A. Dense polycrystalline β-tricalcium phosphate for prosthetic applications. J. Mater. Sci. 1982;17:343-46.
  • [64] Takahashi K., Fujishiro Y., Yin S., Sato T. Preparation and compressive strength of a-tricalcium phosphate based cement dispersed with ceramic particles. Ceram. Int. 2004;30:199-03.
  • [65] Mimi M. M., Shakil A.-M.-O.-R., Haque M. R., Hasan, M. R. Effect of addition of CaO on compressive strength of high-volume fly ash concrete. J. Civ. Eng. Sci. Technol. 2003;14(1):64-76.
  • [66] Trzaskowska M., Vivcharenko V., Przekora A. The impact of hydroxyapatite sintering temperature on its microstructural, mechanical, and biological properties. Int. J. Mol. Sci. 2023;24:5083-04.
  • [67] Dasgupta S., Tarafder S., Bandyopadhyay A., Bose S. Effect of grain size on mechanical, surface and biological properties of microwave sintered hydroxyapatite. Mater. Sci. Eng. C 20123;33:2846-54.
  • [68] Szutkowska M. Fracture toughness of advanced alumina ceramics and alumina matrix composites used for cutting tool edges. J. Achiev. Mater. Manuf. Eng. 2012;54(2):202-10.
  • [69] Afzal M.A.F., Kesarwani P., Reddy K.M., Kalmodia S., Basu B., Balani K. Functionally graded hydroxyapatite-alumina-zirconia biocomposite: Synergy of toughness and biocompatibility. Mater. Sci. Eng. C 2012;32:1164-73.
  • [70] Akao M., Miura N., Aoki H. Fracture toughness of sintered hydroxyapatite and β-tricalcium phosphate. JCS-Japan. 1984;92(107):672-74.
  • [71] Shaly A.A., Priya G.H., Mahendiran M., Linet J.M., Arul J., Mani M. An intrinsic analysis on the nature of alumina (Al2O3) reinforced hydroxyapatite nanocomposite. Physica B: Condensed Matter. 2022;642(1):414100.
  • [72] Shaly, A.A., Priya, G.H., Linet, J.M.: An exploration on the configurational and mechanical aspects of hydrothermally procured MgO/HA bioceramic nanocomposite. Phys. B 2021;617:413131
  • [73] Chien C.S., Liao T.Y., Hong T.F., Kuo T.Y., Chang C.H., Yeh M.L., Lee T.M. Surface microstructure and bioactivity of hydroxyapatite and fluorapatite coatings deposited on Ti-6Al-4V substrates using Nd-YAG laser. J. Med. Biol. Eng. 2014; 34(2):109-15.
  • [74] Sainz M.A., Pena P., Serena S., Caballero A. Influence of design on bioactivity of novel CaSiO3-CaMg(SiO3)2 bioceramics: In vitro simulated body fluid test and thermodynamic simulation. Acta Biomater. 2010;6:2797-07.
  • [75] Wu C., Chang J. Synthesis and in vitro bioactivity of bredigite powders. J. Biomater. Appl. 2007;21: 251-63.
  • [76] García-Álvarez J., Escobedo-Bocardo C., Cortés-Hernández D.A., Almanza-Robles J. M. Bioactivity and mechanical properties of scaffolds based on calcium aluminate and bioactive glass. Int. J. Mater. Res. 2018;110(4):343-50.
Yıl 2023, Cilt: 12 Sayı: 3, 118 - 127, 27.09.2023
https://doi.org/10.46810/tdfd.1324471

Öz

Proje Numarası

-

Kaynakça

  • [1] Boutinguiza M., Pou J., Comesaña R., Lusquiños F., de Carlos A., León B. Biological hydroxyapatite obtained from fish bones. Mater. Sci. Eng. C. 2012;32:478-86.
  • [2] Hart A., Ebiundu K., Peretomode E., Onyeaka H., Nwabore O.F., Obileke K. Value-added materials recovered from waste bone biomass: technologies and applications. RSC Adv. 2022;12:22302-20.
  • [3] Buddhachat K., Klinhom S., Siengdee P., Brown J.L., Nomsiri R., Kaewmong P., Thitaram C., Mahakkanukrauh P., Nganvongpanit K. Elemental analysis of bone, teeth, horn and antler in different animal species using nonınvasive handheld X-ray fluorescence. PloS One. 2016; doi: 10.1371/journal.pone.0155458.
  • [4] Hussain F., Alshahrani S., Abbas M.M., Khan H.M., Jamil A., Yaqoob H., Soudagar M., Imran M., Ahmad M., Munir M. Waste animal bones as catalysts for biodiesel production; A mini review. Catalysts. 2021;11:630-45.
  • [5] Foroutan R., Peighambardoust S.J., Hosseini S.S., Akbari A., Ramavandi B. Hydroxyapatite biomaterial production from chicken (femur and beak) and fish bone waste through a chemical less method for Cd2+ removal from shipbuilding waste water. J. Hazard. Mater. 2021;413:125428-40.
  • [6] Esmaeilkhanian A., Sharifianjazi F., Abouchenari A., Rouhani A., Parvin N., Irani M. Synthesis and characterization of natural nano-hydroxyapatite derived from turkey femur-bone waste. Appl. Biochem. Biotechnol. 2019;189:919-32.
  • [7] Herliansyah M.K., Dewo P., M. Shukor H.A., Ide-Ektessabi Ari. Development and characterization of bovine hydroxyapatite porous bone graft for biomedical applications. Adv. Mater. Res. 2011;277:59-65.
  • [8] Ismail S.A., Abdullah H.Z. Extraction and characterization of natural hydroxyapatite from goat bone for biomedical applications. Mater. Sci. Forum. 2020;1010:573-78.
  • [9] Buasri A., Inkaew T., Kodephun L., Yenying W., Loryuenyong V. Natural hydroxyapatite (NHAp) derived from pork bone as a renewable catalyst for biodiesel production via microwave irradiation. Key Eng. Mater. 2015;659:216-20.
  • [10] Sartoretto S.C., Uzeda M.J., Miguel F.B., Nascimento J.R., Ascoli F., Calasans-Maia M.D. Sheep as an experimental model for biomaterial implant evaluation. Acta Ortop Bras. 2016;24(5):262-66.
  • [11] Li Y., Chen S.K., Li L., Qin L., Wang X.L., Lai Y.X. Bone defect animal models for testing efficacy of bone substitute biomaterials. J. Orthop. Translat. 2015;3:95-04.
  • [12] Rehman I., Smith R., Hench L.L., Bonfield W. Structural evaluation of human and sheep, bone and comparison with synthetic hydroxyapatite by FT-Raman spectroscopy. J. Biomed. Mater. Res. 1995;29(10):1287-94.
  • [13] Indra A., Putra A.B., Handra N., Fahmi H., Nurzal A., Perdana M., Subardi A., Jon Affi J. Behavior of sintered body properties of hydroxyapatite ceramics: effect of uniaxial pressure on green body fabrication. Mater. Today Sustain. 2022;17:100100-08.
  • [14] Demirkol N., Oktar F.N., Kayali E.S. Influence of niobium oxide on the mechanical properties of hydroxyapatite. Key Eng. Mater. 2013;529-530: 29-33.
  • [15] Angioni D., Cannillo V., Orrù R., Cao G., Garroni S., Bellucci D. Bioactivity enhancement by a ball milling treatment in novel bioactive glass-hydroxyapatite composites produced by spark plasma sintering. J. Eur. Ceram. Soc. 2023;43:1220-29.
  • [16] Bazin T., Magnaudeix A., Mayet R., Carles P., Julien I., Demourgues A., Gaudon M., Champion E. Sintering and biocompatibility of copper-doped hydroxyapatite bioceramics. Ceram. Int. 2021;47:13644-54.
  • [17] Demirkol N., Oktar F.N., Kayali E.S. Mechanical and microstructural properties of sheep hydroxyapatite (SHA)-niobium oxide composites. Acta Phys. Pol. A. 2012;121(1):274-76.
  • [18] Akıllı A., Evlen H., Demirkol N. Biological and morphological effects of apatite kinds (Sheep/Synthetic) on MgO reinforced bone tissue with hydroxyapatite matrix. Acta Phys. Pol. A. 2022;142(2):201-10.
  • [19] Karip E., Muratoğlu M. A study on using expanded perlite with hydroxyapatite: Reinforced bio-composites. Proc. Inst. Mech. Eng. H: J. Eng. Med. 2021;235(5):574-82.
  • [20] Ekren N. Reinforcement of sheep-bone derived hydroxyapatite with bioactive glass. J. Ceram. Process. Res. 2017;18(1):64-68.
  • [21] Landek D., Ćurković L., Gabelica I., Mustafa M.K., Žmak I. Optimization of sintering process of alumina ceramics using response surface methodology. Sustainability. 2021;13:6739-53.
  • [22] Pan Y., Li H., Liu Y., Liu Y., Hu K., Wang N., Lu Z., Liang J. He S. Effect of holding time during sintering on microstructure and properties of 3D printed alumina ceramics. Front. Mater. 2020;7:54-66.
  • [23] Zhang L., Liu H., Yao H., Zeng Y., Chen J. Preparation, microstructure, and properties of ZrO2(3Y)/Al2O3 bioceramics for 3D printing of all-ceramic dental implants by vat photopolymerization. Chin. J. Mech. Eng. 2022;1(2):100023-36.
  • [24] Visbal S., Lira-Olivares J., Sekino T., Niihara K., Moon B.K., Lee S.W. Mechanical properties of Al2O3-TiO2-SiC nanocomposites for the femoral head of hip joint replacement. Mater. Sci. Forum. 2005;486-487:197-00.
  • [25] Aminzare M., Eskandari A., Baroonian M.H., Berenov A., Hesabi Z.R., Taheri M., Sadrnezhaad S.K. Hydroxyapatite nanocomposites: Synthesis, sintering and mechanical properties. Ceram. Int. 2013;39:2197-06.
  • [26] Epure L.M., Dimitrievska S., Merhi Y., Yahia L.H. The effect of varying Al2O3 percentage in hydroxyapatite/Al2O3 composite materials: Morphological, chemical and cytotoxic evaluation. J. Biomed. Mater. Res. 2007;83A(4):1009-23.
  • [27] Ji H., Marquis P.M. Preparation and characterization of Al2O3 reinforced hydroxyapatite. Biomaterials. 1992;13(11):744-48.
  • [28] Öksüz K.E., Özer A. Microstructural and phase study of Y2O3 doped hydroxyapatite/Al2O3 biocomposites. Dig. J. Nanomater. Biostructures. 2016;11(1):167-72.
  • [29] Mezahi F.Z. Effect of ZrO2, TiO2, and Al2O3 additions on process and kinetics of bonelike apatite formation on sintered natural hydroxyapatite surfaces. Int. J. Appl. Ceram. Technol. 2012;9(3):529-40.
  • [30] British Standard Non-Metallic Materials for Surgical Implants. Part 2: Specifications for Ceramic Materials Based on Alumina, BS 7253: Part 2: 1990 ISO 6474-1981.
  • [31] Majling J., Znáik P., Palová A., Stevĭk S., Kovalĭk S., Agrawal D.K., Roy R. Sintering of the ultrahigh pressure densified hydroxyapatite monolithic xerogels. J. Mater. Res. 1997;12(1):198-02.
  • [32] Rahimiana M., Ehsani N., Parvin N., Baharvandi H.R. The effect of particle size, sintering temperature and sintering time on the properties of Al-Al2O3 composites, made by powder metallurgy. J. Mater. Process. Technol. 2009;209:5387-93.
  • [33] Niihara K. Indentation microfracture of ceramics-its application and problems. J. Ceram. Soc. Jpn. 1985;20:12-18.
  • [34] Pandey A., Nigam V.K., Balani K. Multi-length scale tribology of hydroxyapatite reinforced with ceria and silver. Wear. 2018;404-405:12-21.
  • [35] Demirkol N., Turan M. Production and characterization of ternary sheep hydroxyapatite (SHA)-wollastonite (W)-commercial inert glass (CIG) biocomposite. Res. Eng. Struct. Mater. 2019;5(2):167-74.
  • [36] Kim S.R., Lee J.H., Kim Y.T., Riu D.H., Jung S.J., Lee Y.J., Chung S.C., Kim Y.H. Synthesis of Si, Mg substituted hydroxyapatites and their sintering behaviors. Biomaterials. 2003;24:1389-99.
  • [37] Herliansyah M.K., Hamdi M., Ide-Ektessabi A., Wildan M.W., Toque J.A. The influence of sintering temperature on the properties of compacted bovine hydroxyapatite. Mater. Sci. Eng. C 2009;29:1674-80.
  • [38] Liao C.J., Lin F.H., Chen K.S., Sun J.S. Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere. Biomaterials. 1999;20:1807-13.
  • [39] Rapacz-Kmita A., Paluszkiewicz C., Ślósarczyk A., Paszkiewicz Z. FTIR and XRD investigations on the thermal stability of hydroxyapatite during hot pressing and pressureless sintering processes. J. Mol. Struct. 2005;744-747:653-56.
  • [40] Göller G., Oktar F.N. Sintering effects on mechanical properties of biologically derived dentine hydroxyapatite. Mater. Lett. 2002;56:142-47.
  • [41] Niakan A., Ramesh S., Tan C.Y., Hamdi M., Teng W.D. Characteristics of sintered bovine hydroxyapatite. Appl. Mech. Mater. 2013;372:177-80.
  • [42] Rao R.R., Kannan T.S. Synthesis and sintering of hydroxyapatite–zirconia composites. Mater. Sci. Eng. C 2002;20:187-93.
  • [43] Indrani D.J., Soegijono B., Adi W.A., Trout N. Phase composition and crystallinity of hydroxyapatite with various heat treatment temperatures. Int. J. App. Pharm. 2017;9(2):87-91.
  • [44] Wei L., Pang D., He L., Deng C. Crystal structure analysis of selenium-doped hydroxyapatite samples and their thermal stability. Ceram. Int. 2017;43:16141-48.
  • [45] Xu J.L., Khor K.A. Chemical analysis of silica doped hydroxyapatite biomaterials consolidated by a spark plasma sintering method. J. Inorg. Biochem. 2007;101:187-95.
  • [46] Lim K.F., Muchtar A., Mustaffa R., Tan C.Y. Sintering of HA/Zirconia composite for biomedical and dental applications: A review. Adv. Mater. Res. 2013;686:290-95.
  • [47] The British Standards Institution 2018, ISBN 978 0 580 86939-6
  • [48] Santos J.D., Silva P. L., Knowles J. C., Talal S., Monteiro F. J. Reinforcement of hydroxyapatite by adding P2O5-CaO glasses with Na2O, K2O and MgO. J. Mater. Sci.: Mater. Med. 1996;7:187-89.
  • [49] Sung Y.M., Lee J.C., Yang J.W. Crystallization and sintering characteristics of chemically precipitated hydroxyapatite nanopowder. J. Cryst. Growth. 2004;262:467-72.
  • [50] Ou S.F., Chiou S.Y., Ou K.L. Phase transformation on hydroxyapatite decomposition. Ceram. Int. 2013;39:3809-16.
  • [51] Youness R.A., Taha M.A., Ibrahim M.A. Effect of sintering temperatures on the in vitro bioactivity, molecular structure and mechanical properties of titanium/carbonated hydroxyapatite nano biocomposites. J. Mol. Struct. 2017;1150:188-95.
  • [52] Sobczak-Kupiec A., Wzorek Z. The influence of calcination parameters on free calcium oxide content in natural hydroxyapatite. Ceram. Int. 2012;38:641-47.
  • [53] Evis Z., Usta M., Kutbay I. Improvement in sinterability and phase stability of hydroxyapatite and partially stabilized zirconia composites. J. Eur. Ceram. Soc. 2009;29:621-28.
  • [54] Nath S., Tripathi R., Basu B. Understanding phase stability, microstructure development and biocompatibility in calcium phosphate-titania composites, synthesized from hydroxyapatite and titanium powder mix. Mater. Sci. Eng. C 2009;29(1):97-07.
  • [55] Oktar F.N., Agathopoulos S., Ozyegin L.S., Gunduz O., Demirkol N., Bozkurt Y., Salman S. Mechanical properties of bovine hydroxyapatite (BHA) composites doped with SiO2, MgO, Al2O3, and ZrO2. J. Mater. Sci: Mater. Med. 2007;18:2137-43.
  • [56] Tayyebi S., Mirjalili F., Samadi H., Nemati A. A review of synthesis and properties of hydroxyapatite/alumina nano composite powder. J. Chem. 2015;5(2):20-28.
  • [57] Bohner M., Santoni B.L.G., Döbelin N. β-tricalcium phosphate for bone substitution: Synthesis and properties. Acta Biomater. 2000;13:23-41.
  • [58] Sinusaite L., Renner A.M., Schütz M.B., Antuzevics A., Rogulis U., Grigoraviciute-Puroniene I., Mathur S., Zarkov A. Effect of Mn doping on the low-temperature synthesis of tricalcium phosphate (TCP) polymorphs. J. Eur. Ceram. Soc. 2019;39(10):3257-63.
  • [59] Kahlenberg V., Fischer R.X., Shaw C.S.J. High-pressure Ca4Al6O13: An example of a calcium aluminate with three different types of coordination polyhedra for aluminum. Am. Mineral. 2000;85:1492-96.
  • [60] Kumar P.N., Ferreira J.M.F., Kannan S. Phase transition mechanisms involved in the formation of structurally stable β-Ca3(PO4)2-α-Al2O3 composites. J. Eur. Ceram. Soc. 2017;37:2953-63.
  • [61] Mei H., Zhong Y., Wang P., Jia Z., Li C., Cheng N. Electronic, optical, and lattice dynamical properties of tetracalcium trialuminate (Ca4Al6O13). Materi. 2018;11:449-61.
  • [62] Salomão R., Ferreira V.L., Costa L.M.M., de Oliveira I.R. Effects of the initial CaO-Al2O3 ratio on the microstructure development and mechanical properties of porous calcium hexaluminate. Ceram. Int. 2017;42(2):2626-31.
  • [63] Akao M., Aoki H., Kato K., Sato A. Dense polycrystalline β-tricalcium phosphate for prosthetic applications. J. Mater. Sci. 1982;17:343-46.
  • [64] Takahashi K., Fujishiro Y., Yin S., Sato T. Preparation and compressive strength of a-tricalcium phosphate based cement dispersed with ceramic particles. Ceram. Int. 2004;30:199-03.
  • [65] Mimi M. M., Shakil A.-M.-O.-R., Haque M. R., Hasan, M. R. Effect of addition of CaO on compressive strength of high-volume fly ash concrete. J. Civ. Eng. Sci. Technol. 2003;14(1):64-76.
  • [66] Trzaskowska M., Vivcharenko V., Przekora A. The impact of hydroxyapatite sintering temperature on its microstructural, mechanical, and biological properties. Int. J. Mol. Sci. 2023;24:5083-04.
  • [67] Dasgupta S., Tarafder S., Bandyopadhyay A., Bose S. Effect of grain size on mechanical, surface and biological properties of microwave sintered hydroxyapatite. Mater. Sci. Eng. C 20123;33:2846-54.
  • [68] Szutkowska M. Fracture toughness of advanced alumina ceramics and alumina matrix composites used for cutting tool edges. J. Achiev. Mater. Manuf. Eng. 2012;54(2):202-10.
  • [69] Afzal M.A.F., Kesarwani P., Reddy K.M., Kalmodia S., Basu B., Balani K. Functionally graded hydroxyapatite-alumina-zirconia biocomposite: Synergy of toughness and biocompatibility. Mater. Sci. Eng. C 2012;32:1164-73.
  • [70] Akao M., Miura N., Aoki H. Fracture toughness of sintered hydroxyapatite and β-tricalcium phosphate. JCS-Japan. 1984;92(107):672-74.
  • [71] Shaly A.A., Priya G.H., Mahendiran M., Linet J.M., Arul J., Mani M. An intrinsic analysis on the nature of alumina (Al2O3) reinforced hydroxyapatite nanocomposite. Physica B: Condensed Matter. 2022;642(1):414100.
  • [72] Shaly, A.A., Priya, G.H., Linet, J.M.: An exploration on the configurational and mechanical aspects of hydrothermally procured MgO/HA bioceramic nanocomposite. Phys. B 2021;617:413131
  • [73] Chien C.S., Liao T.Y., Hong T.F., Kuo T.Y., Chang C.H., Yeh M.L., Lee T.M. Surface microstructure and bioactivity of hydroxyapatite and fluorapatite coatings deposited on Ti-6Al-4V substrates using Nd-YAG laser. J. Med. Biol. Eng. 2014; 34(2):109-15.
  • [74] Sainz M.A., Pena P., Serena S., Caballero A. Influence of design on bioactivity of novel CaSiO3-CaMg(SiO3)2 bioceramics: In vitro simulated body fluid test and thermodynamic simulation. Acta Biomater. 2010;6:2797-07.
  • [75] Wu C., Chang J. Synthesis and in vitro bioactivity of bredigite powders. J. Biomater. Appl. 2007;21: 251-63.
  • [76] García-Álvarez J., Escobedo-Bocardo C., Cortés-Hernández D.A., Almanza-Robles J. M. Bioactivity and mechanical properties of scaffolds based on calcium aluminate and bioactive glass. Int. J. Mater. Res. 2018;110(4):343-50.
Toplam 76 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ağız, Yüz ve Çene Cerrahisi
Bölüm Makaleler
Yazarlar

Süleyman Serdar Pazarlıoğlu 0000-0002-7870-8418

Proje Numarası -
Erken Görünüm Tarihi 27 Eylül 2023
Yayımlanma Tarihi 27 Eylül 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 12 Sayı: 3

Kaynak Göster

APA Pazarlıoğlu, S. S. (2023). The effect of alumina additive on the properties of sheep hydroxyapatite. Türk Doğa Ve Fen Dergisi, 12(3), 118-127. https://doi.org/10.46810/tdfd.1324471
AMA Pazarlıoğlu SS. The effect of alumina additive on the properties of sheep hydroxyapatite. TDFD. Eylül 2023;12(3):118-127. doi:10.46810/tdfd.1324471
Chicago Pazarlıoğlu, Süleyman Serdar. “The Effect of Alumina Additive on the Properties of Sheep Hydroxyapatite”. Türk Doğa Ve Fen Dergisi 12, sy. 3 (Eylül 2023): 118-27. https://doi.org/10.46810/tdfd.1324471.
EndNote Pazarlıoğlu SS (01 Eylül 2023) The effect of alumina additive on the properties of sheep hydroxyapatite. Türk Doğa ve Fen Dergisi 12 3 118–127.
IEEE S. S. Pazarlıoğlu, “The effect of alumina additive on the properties of sheep hydroxyapatite”, TDFD, c. 12, sy. 3, ss. 118–127, 2023, doi: 10.46810/tdfd.1324471.
ISNAD Pazarlıoğlu, Süleyman Serdar. “The Effect of Alumina Additive on the Properties of Sheep Hydroxyapatite”. Türk Doğa ve Fen Dergisi 12/3 (Eylül 2023), 118-127. https://doi.org/10.46810/tdfd.1324471.
JAMA Pazarlıoğlu SS. The effect of alumina additive on the properties of sheep hydroxyapatite. TDFD. 2023;12:118–127.
MLA Pazarlıoğlu, Süleyman Serdar. “The Effect of Alumina Additive on the Properties of Sheep Hydroxyapatite”. Türk Doğa Ve Fen Dergisi, c. 12, sy. 3, 2023, ss. 118-27, doi:10.46810/tdfd.1324471.
Vancouver Pazarlıoğlu SS. The effect of alumina additive on the properties of sheep hydroxyapatite. TDFD. 2023;12(3):118-27.