Araştırma Makalesi
BibTex RIS Kaynak Göster

Optimizing Weight in Gear Wheels with Different Filling Geometries

Yıl 2024, Cilt: 13 Sayı: 4, 135 - 140, 30.12.2024
https://doi.org/10.46810/tdfd.1529360

Öz

Gears are machine elements widely used in the industry. A gear mechanism can consist of two gears, or machines with many gears of different sizes can be used. Particularly when many gears are used, this significantly increases the weight and cost of the machine. With the advancement of technology in recent years, production methods have also developed, making it possible to manufacture parts with almost any geometry. In this study, utilizing the capabilities of advanced production methods, designs with triangular, square, and hexagonal geometries were made on the body of a spur gear to minimize the weight of the gear. To find the lightest gear that can work without damage, different designs with various edge lengths and fill thicknesses were modeled separately using the Solidworks software package. The finite element analysis of the modeled gears was performed using the ANSYS software package. As a result of the analyses, among the gears with three different designed geometries and hollowed bodies, the gear with a square profile achieved the lightest weight. Compared to the solid-bodied gear, a significant weight reduction of 63,65% was achieved with this designed gear.

Kaynakça

  • Ramadani, R., Belsak, A., Kegl, M., Predan, J., & Pehan, S. (2018). Topology Optimization Based Design of Lightweight and Low Vibration Gear Bodies. International Journal of Simulation Modelling, 17(1), 92-104.
  • Karpat, F., Çavdar, K., & Babalık, F. C. (2002). Bilgisayar Yardımıyla Düz, Helisel, Konik ve Sonsuz Vida Dişli Mekanizmalarının Boyutlandırılması ve Analizi. Mühendis ve Makine Dergisi, 510.
  • Akpolat, A. (2020). Analysis of Contact Stresses in Spur Gears by Finite Element Method. Avrupa Bilim ve Teknoloji Dergisi, (17), 539-545.
  • Patel, M., Valiulla, H., Khatod, V., Chaudhary, B., & Gondalia, V. (2019). Topology Optimization of Automotive Gear Using FEA. International Journal of Recent Technology and Engineering, 8(4), 1079-1084.
  • Ayyıldız, M., Çiçek, A., & Fuat, K. (2010). Bilgisayar Destekli Tasarımda Parametrik Dişli Çark Uygulamaları. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 25(3).
  • Kapelevich, A. (2000). Geometry and Design of Involute Spur Gears with Asymmetric Teeth. Mechanism and Machine Theory, 35(1), 117-130.
  • Doğan, O., & Kamer, M. S. (2022). Eklemeli İmalat Yöntemi ile Optimum Düz Dişli Çark Tasarımı ve Üretimi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 10(3), 1093-1103.
  • Kramberger, J., Šraml, M., Glodež, S., Flašker, J., & Potrč, I. (2004). Computational Model for the Analysis of Bending Fatigue in Gears. Computers & Structures, 82(23–26), 2261-2269.
  • ASTM. (2014). D638. Standard Test Method for Tensile Properties of Plastics. American Society for Testing and Materials Standard.
  • Sharma, A., Gupta, R., & Mehta, P. (2017). Effect of Heat Treatment on Weight Reduction and Performance of Spur Gears. Materials Today: Proceedings, 4(8), 7657-7663.
  • Maiti, S., Singh, K., & Das, S. (2019). Composite Materials in Spur Gear Applications: A Weight Reduction Perspective. Journal of Composite Materials, 53(4), 453-465.
  • Sharma, P., Singh, R., & Gupta, M. (2020). Topology Optimization for Lightweight Gear Design. Advances in Mechanical Engineering, 12(6), 113-122.
  • Tiwari, D., Mishra, A., & Verma, V. (2021). Combined Material Removal and Surface Treatment for Weight Reduction in Helical Gears. International Journal of Precision Engineering and Manufacturing, 22(3), 345-355.
  • Singh, R., Kaur, H., & Sandhu, K. (2019). Geometric Design Optimization of Spur Gears with Advanced Filling Techniques. Mechanics and Design Journal, 6(2), 231-242.
  • Kara, S., & Altun, M. (2022). The Impact of Lattice Structures on Weight Reduction of Gears. Mechanical Systems and Signal Processing, 35(8), 101234.

Farklı Dolgu Geometrilerine Sahip Dişli Çarklarda Ağırlığın Optimize Edilmesi

Yıl 2024, Cilt: 13 Sayı: 4, 135 - 140, 30.12.2024
https://doi.org/10.46810/tdfd.1529360

Öz

Dişli çarklar endüstride yaygın olarak kullanılan makine elemanlarıdır. Bir dişli çark mekanizması iki dişli çarktan oluşabildiği gibi ikiden çok fazla sayıda ve farklı büyüklükte dişli çarkların kullanıldığı makineler mevcuttur. Özellikle fazla sayıda dişli çark kullanıldığında bu durum makinenin ağırlığını ve fiyatını ciddi oranda arttırmaktadır. Özellikle son yıllarda teknolojinin gelişmesi ile birlikte üretim yöntemleri de gelişmiş ve bu sayede hemen her geometriye sahip parça imalatları gerçekleşebilir olmuştur. Bu çalışmada, gelişen üretim yöntemleri olanakları kullanılarak, dişli çarkın ağırlığını minimuma getirebilecek şekilde düz dişli çarkın gövdesi üzerine üçgen, kare ve altıgen geometrilerde tasarımlar yapılmıştır. Bu tasarımlarda hasara uğramadan sorunsuz şekilde çalışabilecek en hafif dişli çarkı bulabilmek için farklı kenar uzunlukları ve dolgu kalınlıklarında tasarımlar, Solidworks paket programında kullanılarak ayrı ayrı modellenmişlerdir. Modellenen dişli çarkların ANSYS paket programı ile sonlu eleman analizleri yapılmıştır. Yapılan analizler sonucunda, tasarlanmış olan üç farklı geometri ile gövdesi boşaltılmış dişli çarklar arasından, kare profile sahip olan dişli çark ile en hafif ağırlığa ulaşılmıştır. Tasarlanmış olan bu dişli çark ile gövdesi dolu dişli çark karşılaştırıldığında %63,65 gibi büyük bir oranda ağırlıkça hafifletme gerçekleştirilmiştir.

Kaynakça

  • Ramadani, R., Belsak, A., Kegl, M., Predan, J., & Pehan, S. (2018). Topology Optimization Based Design of Lightweight and Low Vibration Gear Bodies. International Journal of Simulation Modelling, 17(1), 92-104.
  • Karpat, F., Çavdar, K., & Babalık, F. C. (2002). Bilgisayar Yardımıyla Düz, Helisel, Konik ve Sonsuz Vida Dişli Mekanizmalarının Boyutlandırılması ve Analizi. Mühendis ve Makine Dergisi, 510.
  • Akpolat, A. (2020). Analysis of Contact Stresses in Spur Gears by Finite Element Method. Avrupa Bilim ve Teknoloji Dergisi, (17), 539-545.
  • Patel, M., Valiulla, H., Khatod, V., Chaudhary, B., & Gondalia, V. (2019). Topology Optimization of Automotive Gear Using FEA. International Journal of Recent Technology and Engineering, 8(4), 1079-1084.
  • Ayyıldız, M., Çiçek, A., & Fuat, K. (2010). Bilgisayar Destekli Tasarımda Parametrik Dişli Çark Uygulamaları. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 25(3).
  • Kapelevich, A. (2000). Geometry and Design of Involute Spur Gears with Asymmetric Teeth. Mechanism and Machine Theory, 35(1), 117-130.
  • Doğan, O., & Kamer, M. S. (2022). Eklemeli İmalat Yöntemi ile Optimum Düz Dişli Çark Tasarımı ve Üretimi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 10(3), 1093-1103.
  • Kramberger, J., Šraml, M., Glodež, S., Flašker, J., & Potrč, I. (2004). Computational Model for the Analysis of Bending Fatigue in Gears. Computers & Structures, 82(23–26), 2261-2269.
  • ASTM. (2014). D638. Standard Test Method for Tensile Properties of Plastics. American Society for Testing and Materials Standard.
  • Sharma, A., Gupta, R., & Mehta, P. (2017). Effect of Heat Treatment on Weight Reduction and Performance of Spur Gears. Materials Today: Proceedings, 4(8), 7657-7663.
  • Maiti, S., Singh, K., & Das, S. (2019). Composite Materials in Spur Gear Applications: A Weight Reduction Perspective. Journal of Composite Materials, 53(4), 453-465.
  • Sharma, P., Singh, R., & Gupta, M. (2020). Topology Optimization for Lightweight Gear Design. Advances in Mechanical Engineering, 12(6), 113-122.
  • Tiwari, D., Mishra, A., & Verma, V. (2021). Combined Material Removal and Surface Treatment for Weight Reduction in Helical Gears. International Journal of Precision Engineering and Manufacturing, 22(3), 345-355.
  • Singh, R., Kaur, H., & Sandhu, K. (2019). Geometric Design Optimization of Spur Gears with Advanced Filling Techniques. Mechanics and Design Journal, 6(2), 231-242.
  • Kara, S., & Altun, M. (2022). The Impact of Lattice Structures on Weight Reduction of Gears. Mechanical Systems and Signal Processing, 35(8), 101234.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Fiziği
Bölüm Makaleler
Yazarlar

Hanife Kara 0000-0003-3087-748X

Mahir Uzun 0000-0002-0907-6875

Yayımlanma Tarihi 30 Aralık 2024
Gönderilme Tarihi 7 Ağustos 2024
Kabul Tarihi 10 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 13 Sayı: 4

Kaynak Göster

APA Kara, H., & Uzun, M. (2024). Optimizing Weight in Gear Wheels with Different Filling Geometries. Türk Doğa Ve Fen Dergisi, 13(4), 135-140. https://doi.org/10.46810/tdfd.1529360
AMA Kara H, Uzun M. Optimizing Weight in Gear Wheels with Different Filling Geometries. TDFD. Aralık 2024;13(4):135-140. doi:10.46810/tdfd.1529360
Chicago Kara, Hanife, ve Mahir Uzun. “Optimizing Weight in Gear Wheels With Different Filling Geometries”. Türk Doğa Ve Fen Dergisi 13, sy. 4 (Aralık 2024): 135-40. https://doi.org/10.46810/tdfd.1529360.
EndNote Kara H, Uzun M (01 Aralık 2024) Optimizing Weight in Gear Wheels with Different Filling Geometries. Türk Doğa ve Fen Dergisi 13 4 135–140.
IEEE H. Kara ve M. Uzun, “Optimizing Weight in Gear Wheels with Different Filling Geometries”, TDFD, c. 13, sy. 4, ss. 135–140, 2024, doi: 10.46810/tdfd.1529360.
ISNAD Kara, Hanife - Uzun, Mahir. “Optimizing Weight in Gear Wheels With Different Filling Geometries”. Türk Doğa ve Fen Dergisi 13/4 (Aralık 2024), 135-140. https://doi.org/10.46810/tdfd.1529360.
JAMA Kara H, Uzun M. Optimizing Weight in Gear Wheels with Different Filling Geometries. TDFD. 2024;13:135–140.
MLA Kara, Hanife ve Mahir Uzun. “Optimizing Weight in Gear Wheels With Different Filling Geometries”. Türk Doğa Ve Fen Dergisi, c. 13, sy. 4, 2024, ss. 135-40, doi:10.46810/tdfd.1529360.
Vancouver Kara H, Uzun M. Optimizing Weight in Gear Wheels with Different Filling Geometries. TDFD. 2024;13(4):135-40.