Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, , 24 - 34, 30.09.2021
https://doi.org/10.51972/tfsd.983961

Öz

Destekleyen Kurum

Nişantaşı Üniversitesi, Bilimsel Araştırma Projeleri (BAP) Birimi

Proje Numarası

BAP00017

Kaynakça

  • Adem, S., Eyupoglu, V., Sarfraz, I. et al. (2020). Identification of Potent COVID-19 Main Protease (Mpro) Inhibitors from Natural Polyphenols: An in silico Strategy Unveils a Hope against CORONA. Preprints. doi:10.20944/preprints202003.0333.v1
  • Aouidi, F., Dupuy, N., Artaud, J. et al. (2012). Rapid quantitative determination of oleuropein in olive leaves (Olea europaea) using mid-infrared spectroscopy combined with chemometric analyses. Industrial Crops and Products, 37, 292-297. https://doi.org/10.1016/j.indcrop.2011.12.024
  • Bastolla, U. (2021). Mathematical model of SARS-Cov-2 propagation versus ACE2 fits COVID-19 lethality across age and sex and predicts that of SARS. Frontiers in Molecular Biosciences, 8, 706122. https://doi.org/10.3389/fmolb.2021.706122
  • Boonpawa, R., Spenkelink, A., Punt, A. et al. (2017). Physiologically based kinetic modeling of hesperidin metabolism and its use to predict in vivo effective doses in humans. Molecular Nutrition Food Research, 61(8), 1600894. https://doi.org/10.1002/mnfr.201600894
  • Carneiro, B. M., Batista, M. N., Braga, A. C. S. et al. (2016). The green tea molecule EGCG inhibits Zika virus entry. Virology, 496, 215-218. https://doi.org/10.1016/j.virol.2016.06.012
  • Chacko, S. M., Thambi, P.T., Kuttan, R. et al. (2010). Beneficial effects of green tea: a literature review. Chinese Medicine, 5, 13. https://doi.org/10.1186/1749-8546-5-13
  • Chen, Y. W., Yiu, C-P. B., Wong, K-Y. (2020). Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CL pro) structure: virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates. F1000Research, 9, 129. https://doi.org/10.12688/f1000research.22457.2
  • Ciesek, S., Hahn von T., Colpitts, C. et al. (2011). The green tea polyphenol, epigallocatechin-3-gallate, inhibits hepatitis C virus entry. Hepatology, 54(6), 1947-55. https://doi.org/10.1002/hep.24610
  • Cifá, D., Skrt, M., Pittia, P. et al. (2018). Enhanced yield of oleuropein from olive leaves using ultrasound-assisted extraction. Food Science & Nutrition, 6, 1128-37. https://doi.org/10.1002/fsn3.654
  • Clercq, E. De. (2000). Current lead natural products for the chemotherapy of human immunodeficiency virus (HIV) infection. Medicinal Research Reviews, 20, 323-349. https://doi.org/10.1002/1098-1128(200009)20:5<323::AID-MED1>3.0.CO;2-A
  • Conti, C., Genovese, D., Santoro, R. et al. (1990). Activities and mechanisms of action of halogen-substituted flavanoids against poliovirus type 2 infection in vitro. Antimicrobial Agents and Chemotherapy, 34(3), 460-466. https://doi.org/10.1128/AAC.34.3.460
  • Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. (2020). The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology, 5, 536-544. https://doi.org/10.1038/s41564-020-0695-z
  • Dalluge, J. J., Nelson, B. C., Thomas, J. B. et al. (1998). Selection of column and gradient elution system for the separation of catechins in green tea using high-performance liquid chromatography. Journal of Chromatography A, 793(2), 265-74. https://doi.org/10.1016/S0021-9673(97)00906-0
  • Fang, L., Karakiulakis, G., Roth, M. (2020). Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? The Lancet Respiratory Medicine, 8(4), e21. https://doi.org/10.1016/S2213-2600(20)30116-8
  • Fecka, I., and Turek, S. (2007). Determination of water-soluble polyphenolic compounds in commercial herbal teas from Lamiaceae: peppermint, melissa, and sage. Journal of Agricultural and Food Chemistry, 55(26), 10908-17. https://doi.org/10.1021/jf072284d
  • Genovese, D., Conti, C., Tomao, P. et al. (1995). Effect of chloro-, cyano-, and amidino-substituted flavanoids on enterovirus infection in vitro. Antiviral Research, 27, 123-136. https://doi.org/10.1016/0166-3542(95)00088-4
  • González, Y., Torres-Mendoza, D., Jones, G. E. et al. (2015). Marine Diterpenoids as Potential Anti-Inflammatory Agents. Mediators of Inflammation, 2015, 263543-14. https://doi.org/10.1155/2015/263543
  • Guan, W-J., Ni, Z-Y., Hu, Y. et al. (2020). Clinical Characteristics of Coronavirus Disease 2019 in China. The New England Journal of Medicine, 58(4), 711-712. https://doi.org/10.1016/j.jemermed.2020.04.004
  • Isaacs, C. E., Wen, G. Y., Xu, W. et al. (2008). Epigallocatechin gallate inactivates clinical isolates of herpes simplex virus. Antimicrobial Agents and Chemotherapy, 52, 962-70. https://doi.org/10.1128/AAC.00825-07
  • Iyer, M., Jayaramayya, K., Subramaniam, M. D. et al. (2020). COVID-19: an update on diagnostic and therapeutic approaches. BMB Reports, 53(4), 191-205. https://doi.org/10.5483/BMBRep.2020.53.4.080
  • Khaerunnisa, S., Kurniawan, H., Awaluddin, R. et al. (2020). Potential Inhibitor of COVID-19 Main Protease (Mpro) From Several Medicinal Plant Compounds by Molecular Docking Study. Preprints, 2020030226. doi:10.20944/preprints202003.0226.v1
  • Lahmer, N., Belboukhari, N., Cheriti, K. et al. (2015). Hesperidin and Hesperitin preparation and purification from citrus sinensis peels. Der Pharma Chemica, 7, 1-4.
  • Lee, K. J., and Lee, S. H. (2008). Extraction behavior of caffeine and EGCG from green and black tea. Biotechnology and Bioprocess Engineering, 13, 646-9. https://doi.org/10.1007/s12257-008-0034-3
  • Li, J., Song, D., Wang, S. et al. (2020). Antiviral Effect of Epigallocatechin Gallate via Impairing Porcine Circovirus Type 2 Attachment to Host Cell Receptor. Viruses, 12(2), 176. https://doi.org/10.3390/v12020176
  • Liu, P., Lindstedt, A., Markkinen, N. et al. (2014). Characterization of metabolite profiles of leaves of bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea L.). Journal of Agricultural and Food Chemistry, 62, 12015-26. https://doi.org/10.1021/jf503521m
  • Lu, H. (2020). Drug treatment options for the 2019-new coronavirus (2019-nCoV). BioScience Trends, 14(1), 69-71. https://doi.org/10.5582/bst.2020.01020
  • Lu, R., Zhao, X., Li, J. et al. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet, 395, 565-574. https://doi.org/10.1016/S0140-6736(20)30251-8
  • Mendes, R. A., Almeida, S. K. C., Soares, I. N. et al. (2019). Evaluation of the antioxidant potential of myricetin 3-O-α-L-rhamnopyranoside and myricetin 4'-O-α-L-rhamnopyranoside through a computational study. Journal of Molecular Modeling, 25, 89. https://doi.org/10.1007/s00894-019-3959-x
  • Meneguzzo, F., Ciriminna, R., Zabini, F. et al. (2020). Hydrodynamic Cavitation-based Rapid Expansion of Hesperidin-rich Products from Waste Citrus Peel as a Potential Tool Against COVID-19. Processes 2020, 8, 549. doi:10.20944/preprints202004.0152.v1
  • Narotzki, B., Reznick, A. Z., Aizenbud, D. et al. (2012). Green tea: a promising natural product in oral health. Archives of Oral Biology, 57(5), 429-35. https://doi.org/10.1016/j.archoralbio.2011.11.017
  • Nguyen, T. T. H., Woo, H-J., Kang, H-K. et al. (2012). Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnology Letters, 34, 831-8. https://doi.org/10.1007/s10529-011-0845-8
  • Omar, S. H. (2010). Oleuropein in olive and its pharmacological effects. Scientia Pharmaceutica, 78, 133-54. https://doi.org/10.3797/scipharm.0912-18
  • Peterson, L. (2020). In silico Molecular Dynamics Docking of Drugs to the Inhibitory Active Site of SARS-CoV-2 Protease and Their Predicted Toxicology and ADME. SSRN Journal, http://dx.doi.org/10.2139/ssrn.3580951
  • Rigacci, S., Stefani, M. (2016). Nutraceutical Properties of Olive Oil Polyphenols. An Itinerary from Cultured Cells through Animal Models to Humans. International Journal of Molecular Science, 17(6), 843. https://doi.org/10.3390/ijms17060843
  • Rodriguez-Morales, A. J., Bonilla-Aldana, D. K., Tiwari, R. et al. (2020). COVID-19, an Emerging Coronavirus Infection: Current Scenario and Recent Developments - An Overview. Journal of Pure and Applied Microbiology, 14, 05-12. https://doi.org/10.22207/JPAM.14.1.02
  • Ryu, Y. B., Jeong, H. J., Kim, J. H. et al. (2010). Biflavonoids from Torreya nucifera displaying SARS-CoV 3CLpro inhibition. Bioorganic & Medicinal Chemistry, 18(22), 7940-7. https://doi.org/10.1016/j.bmc.2010.09.035
  • Sahin, S., Demir, C., Malyer, H. (2011). Determination of phenolic compounds in Prunella L. by liquid chromatography-diode array detection. Journal of Pharmaceutical and Biomedical Analysis, 55(5), 1227-30. https://doi.org/10.1016/j.jpba.2011.03.016
  • Silva, S., Gomes, L., Leitão, F. et al. (2016). Phenolic Compounds and Antioxidant Activity of Olea europaea L. Fruits and Leaves. Food Science and Technology International, 12(5), 385-95. https://doi.org/10.1177/1082013206070166
  • Superti, F., Seganti, L., Orsi, N. et al. (1990). In vitro effect of synthetic flavanoids on astrovirus infection. Antiviral Research, 13, 201-208. https://doi.org/10.1016/0166-3542(90)90038-9
  • Umashankar, N., Pemmanda, B., Gopkumar, P. et al. (2018). Effectiveness of topical green tea against multidrug-resistant Staphylococcus aureus in cases of primary pyoderma: An open controlled trial. Indian Journal of Dermatology, Venereology and Leprology, 84, 163-8. doi:10.4103/ijdvl.IJDVL_207_16
  • Wang, S-J., Tong, Y., Lu, S. et al. (2010). Anti-inflammatory activity of myricetin isolated from Myrica rubra Sieb. et Zucc. leaves. Planta Medica, 76(14), 1492-6. doi:10.1055/s-0030-1249780
  • Wei, F., Ma, S-C., Ma, L-Y. et al. (2004). Antiviral flavonoids from the seeds of Aesculus chinensis. Journal of Natural Products, 67(4), 650-653. https://doi.org/10.1021/np030470h
  • Xu, H. X., Lee, S. F. (2001). Activity of plant flavonoids against antibiotic-resistant bacteria. Phytotherapy Research 15, 39-43. https://doi.org/10.1002/1099-1573(200102)15:1<39::AID-PTR684>3.0.CO;2-R
  • Yamaguchi, K., Honda, M., Ikigai, H. et al. (2002). Inhibitory effects of (-)-epigallocatechin gallate on the life cycle of human immunodeficiency virus type 1 (HIV-1). Antiviral Research, 53, 19-34. https://doi.org/10.1016/S0166-3542(01)00189-9
  • Yu, M-S., Lee, J., Lee, J. M. et al. (2012). Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorganic & Medicinal Chemistry Letters, 22(12), 4049-4054. https://doi.org/10.1016/j.bmcl.2012.04.081
  • Zhu, J., Ou, L., Zhou, Y. et al. (2020). (-)-Epigallocatechin-3-gallate induces interferon-λ2 expression to anti-influenza A virus in human bronchial epithelial cells (BEAS-2B) through p38 MAPK signaling pathway. Journal of Thoracic Disease, 12(3), 989-97. http://dx.doi.org/10.21037/jtd.2020.03.20
  • Zhu, N., Zhang, D., Wang, W. et al. (2020). A Novel Coronavirus from Patients with Pneumonia in China, 2019. The New England Journal of Medicine, 382, 727-733. https://www.nejm.org/doi/10.1056/NEJMoa2001017

Antiviral Effects of Some Flavonoids on SARS-CoV-2

Yıl 2021, , 24 - 34, 30.09.2021
https://doi.org/10.51972/tfsd.983961

Öz

Covid-19 disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a global epidemic that affects millions of lives. To date, there is no definitive cure for the disease and global vaccination efforts with newly produced vaccines will take years to complete. In silico studies have suggested that different flavonoids play an antiviral role against SARS-CoV-2. In this study, based on in silico findings, we examined the in vitro effects of four promising flavonoids, Hesperidin, Oleuropein, Epigallocatechin gallate (EGCG), and Myricetin. First, we extracted these flavonoids from natural plant sources and purified by using liquid chromatography (LC). Next, we analysed the cell toxicity and antiviral activity of these four flavonoids at different concentrations against SARS-CoV-2. Our results using the SARS-CoV-2 infected Vero E6 cell model were found to contradict previous in silico findings, and these flavonoids were found to have no antiviral effects in vitro. Studies investigating the antiviral activity of flavonoids on SARS-CoV-2 should be directed to those other than oleuropein, hesperidin, EGCG, and Myricetin.

Proje Numarası

BAP00017

Kaynakça

  • Adem, S., Eyupoglu, V., Sarfraz, I. et al. (2020). Identification of Potent COVID-19 Main Protease (Mpro) Inhibitors from Natural Polyphenols: An in silico Strategy Unveils a Hope against CORONA. Preprints. doi:10.20944/preprints202003.0333.v1
  • Aouidi, F., Dupuy, N., Artaud, J. et al. (2012). Rapid quantitative determination of oleuropein in olive leaves (Olea europaea) using mid-infrared spectroscopy combined with chemometric analyses. Industrial Crops and Products, 37, 292-297. https://doi.org/10.1016/j.indcrop.2011.12.024
  • Bastolla, U. (2021). Mathematical model of SARS-Cov-2 propagation versus ACE2 fits COVID-19 lethality across age and sex and predicts that of SARS. Frontiers in Molecular Biosciences, 8, 706122. https://doi.org/10.3389/fmolb.2021.706122
  • Boonpawa, R., Spenkelink, A., Punt, A. et al. (2017). Physiologically based kinetic modeling of hesperidin metabolism and its use to predict in vivo effective doses in humans. Molecular Nutrition Food Research, 61(8), 1600894. https://doi.org/10.1002/mnfr.201600894
  • Carneiro, B. M., Batista, M. N., Braga, A. C. S. et al. (2016). The green tea molecule EGCG inhibits Zika virus entry. Virology, 496, 215-218. https://doi.org/10.1016/j.virol.2016.06.012
  • Chacko, S. M., Thambi, P.T., Kuttan, R. et al. (2010). Beneficial effects of green tea: a literature review. Chinese Medicine, 5, 13. https://doi.org/10.1186/1749-8546-5-13
  • Chen, Y. W., Yiu, C-P. B., Wong, K-Y. (2020). Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CL pro) structure: virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates. F1000Research, 9, 129. https://doi.org/10.12688/f1000research.22457.2
  • Ciesek, S., Hahn von T., Colpitts, C. et al. (2011). The green tea polyphenol, epigallocatechin-3-gallate, inhibits hepatitis C virus entry. Hepatology, 54(6), 1947-55. https://doi.org/10.1002/hep.24610
  • Cifá, D., Skrt, M., Pittia, P. et al. (2018). Enhanced yield of oleuropein from olive leaves using ultrasound-assisted extraction. Food Science & Nutrition, 6, 1128-37. https://doi.org/10.1002/fsn3.654
  • Clercq, E. De. (2000). Current lead natural products for the chemotherapy of human immunodeficiency virus (HIV) infection. Medicinal Research Reviews, 20, 323-349. https://doi.org/10.1002/1098-1128(200009)20:5<323::AID-MED1>3.0.CO;2-A
  • Conti, C., Genovese, D., Santoro, R. et al. (1990). Activities and mechanisms of action of halogen-substituted flavanoids against poliovirus type 2 infection in vitro. Antimicrobial Agents and Chemotherapy, 34(3), 460-466. https://doi.org/10.1128/AAC.34.3.460
  • Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. (2020). The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology, 5, 536-544. https://doi.org/10.1038/s41564-020-0695-z
  • Dalluge, J. J., Nelson, B. C., Thomas, J. B. et al. (1998). Selection of column and gradient elution system for the separation of catechins in green tea using high-performance liquid chromatography. Journal of Chromatography A, 793(2), 265-74. https://doi.org/10.1016/S0021-9673(97)00906-0
  • Fang, L., Karakiulakis, G., Roth, M. (2020). Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? The Lancet Respiratory Medicine, 8(4), e21. https://doi.org/10.1016/S2213-2600(20)30116-8
  • Fecka, I., and Turek, S. (2007). Determination of water-soluble polyphenolic compounds in commercial herbal teas from Lamiaceae: peppermint, melissa, and sage. Journal of Agricultural and Food Chemistry, 55(26), 10908-17. https://doi.org/10.1021/jf072284d
  • Genovese, D., Conti, C., Tomao, P. et al. (1995). Effect of chloro-, cyano-, and amidino-substituted flavanoids on enterovirus infection in vitro. Antiviral Research, 27, 123-136. https://doi.org/10.1016/0166-3542(95)00088-4
  • González, Y., Torres-Mendoza, D., Jones, G. E. et al. (2015). Marine Diterpenoids as Potential Anti-Inflammatory Agents. Mediators of Inflammation, 2015, 263543-14. https://doi.org/10.1155/2015/263543
  • Guan, W-J., Ni, Z-Y., Hu, Y. et al. (2020). Clinical Characteristics of Coronavirus Disease 2019 in China. The New England Journal of Medicine, 58(4), 711-712. https://doi.org/10.1016/j.jemermed.2020.04.004
  • Isaacs, C. E., Wen, G. Y., Xu, W. et al. (2008). Epigallocatechin gallate inactivates clinical isolates of herpes simplex virus. Antimicrobial Agents and Chemotherapy, 52, 962-70. https://doi.org/10.1128/AAC.00825-07
  • Iyer, M., Jayaramayya, K., Subramaniam, M. D. et al. (2020). COVID-19: an update on diagnostic and therapeutic approaches. BMB Reports, 53(4), 191-205. https://doi.org/10.5483/BMBRep.2020.53.4.080
  • Khaerunnisa, S., Kurniawan, H., Awaluddin, R. et al. (2020). Potential Inhibitor of COVID-19 Main Protease (Mpro) From Several Medicinal Plant Compounds by Molecular Docking Study. Preprints, 2020030226. doi:10.20944/preprints202003.0226.v1
  • Lahmer, N., Belboukhari, N., Cheriti, K. et al. (2015). Hesperidin and Hesperitin preparation and purification from citrus sinensis peels. Der Pharma Chemica, 7, 1-4.
  • Lee, K. J., and Lee, S. H. (2008). Extraction behavior of caffeine and EGCG from green and black tea. Biotechnology and Bioprocess Engineering, 13, 646-9. https://doi.org/10.1007/s12257-008-0034-3
  • Li, J., Song, D., Wang, S. et al. (2020). Antiviral Effect of Epigallocatechin Gallate via Impairing Porcine Circovirus Type 2 Attachment to Host Cell Receptor. Viruses, 12(2), 176. https://doi.org/10.3390/v12020176
  • Liu, P., Lindstedt, A., Markkinen, N. et al. (2014). Characterization of metabolite profiles of leaves of bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea L.). Journal of Agricultural and Food Chemistry, 62, 12015-26. https://doi.org/10.1021/jf503521m
  • Lu, H. (2020). Drug treatment options for the 2019-new coronavirus (2019-nCoV). BioScience Trends, 14(1), 69-71. https://doi.org/10.5582/bst.2020.01020
  • Lu, R., Zhao, X., Li, J. et al. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet, 395, 565-574. https://doi.org/10.1016/S0140-6736(20)30251-8
  • Mendes, R. A., Almeida, S. K. C., Soares, I. N. et al. (2019). Evaluation of the antioxidant potential of myricetin 3-O-α-L-rhamnopyranoside and myricetin 4'-O-α-L-rhamnopyranoside through a computational study. Journal of Molecular Modeling, 25, 89. https://doi.org/10.1007/s00894-019-3959-x
  • Meneguzzo, F., Ciriminna, R., Zabini, F. et al. (2020). Hydrodynamic Cavitation-based Rapid Expansion of Hesperidin-rich Products from Waste Citrus Peel as a Potential Tool Against COVID-19. Processes 2020, 8, 549. doi:10.20944/preprints202004.0152.v1
  • Narotzki, B., Reznick, A. Z., Aizenbud, D. et al. (2012). Green tea: a promising natural product in oral health. Archives of Oral Biology, 57(5), 429-35. https://doi.org/10.1016/j.archoralbio.2011.11.017
  • Nguyen, T. T. H., Woo, H-J., Kang, H-K. et al. (2012). Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnology Letters, 34, 831-8. https://doi.org/10.1007/s10529-011-0845-8
  • Omar, S. H. (2010). Oleuropein in olive and its pharmacological effects. Scientia Pharmaceutica, 78, 133-54. https://doi.org/10.3797/scipharm.0912-18
  • Peterson, L. (2020). In silico Molecular Dynamics Docking of Drugs to the Inhibitory Active Site of SARS-CoV-2 Protease and Their Predicted Toxicology and ADME. SSRN Journal, http://dx.doi.org/10.2139/ssrn.3580951
  • Rigacci, S., Stefani, M. (2016). Nutraceutical Properties of Olive Oil Polyphenols. An Itinerary from Cultured Cells through Animal Models to Humans. International Journal of Molecular Science, 17(6), 843. https://doi.org/10.3390/ijms17060843
  • Rodriguez-Morales, A. J., Bonilla-Aldana, D. K., Tiwari, R. et al. (2020). COVID-19, an Emerging Coronavirus Infection: Current Scenario and Recent Developments - An Overview. Journal of Pure and Applied Microbiology, 14, 05-12. https://doi.org/10.22207/JPAM.14.1.02
  • Ryu, Y. B., Jeong, H. J., Kim, J. H. et al. (2010). Biflavonoids from Torreya nucifera displaying SARS-CoV 3CLpro inhibition. Bioorganic & Medicinal Chemistry, 18(22), 7940-7. https://doi.org/10.1016/j.bmc.2010.09.035
  • Sahin, S., Demir, C., Malyer, H. (2011). Determination of phenolic compounds in Prunella L. by liquid chromatography-diode array detection. Journal of Pharmaceutical and Biomedical Analysis, 55(5), 1227-30. https://doi.org/10.1016/j.jpba.2011.03.016
  • Silva, S., Gomes, L., Leitão, F. et al. (2016). Phenolic Compounds and Antioxidant Activity of Olea europaea L. Fruits and Leaves. Food Science and Technology International, 12(5), 385-95. https://doi.org/10.1177/1082013206070166
  • Superti, F., Seganti, L., Orsi, N. et al. (1990). In vitro effect of synthetic flavanoids on astrovirus infection. Antiviral Research, 13, 201-208. https://doi.org/10.1016/0166-3542(90)90038-9
  • Umashankar, N., Pemmanda, B., Gopkumar, P. et al. (2018). Effectiveness of topical green tea against multidrug-resistant Staphylococcus aureus in cases of primary pyoderma: An open controlled trial. Indian Journal of Dermatology, Venereology and Leprology, 84, 163-8. doi:10.4103/ijdvl.IJDVL_207_16
  • Wang, S-J., Tong, Y., Lu, S. et al. (2010). Anti-inflammatory activity of myricetin isolated from Myrica rubra Sieb. et Zucc. leaves. Planta Medica, 76(14), 1492-6. doi:10.1055/s-0030-1249780
  • Wei, F., Ma, S-C., Ma, L-Y. et al. (2004). Antiviral flavonoids from the seeds of Aesculus chinensis. Journal of Natural Products, 67(4), 650-653. https://doi.org/10.1021/np030470h
  • Xu, H. X., Lee, S. F. (2001). Activity of plant flavonoids against antibiotic-resistant bacteria. Phytotherapy Research 15, 39-43. https://doi.org/10.1002/1099-1573(200102)15:1<39::AID-PTR684>3.0.CO;2-R
  • Yamaguchi, K., Honda, M., Ikigai, H. et al. (2002). Inhibitory effects of (-)-epigallocatechin gallate on the life cycle of human immunodeficiency virus type 1 (HIV-1). Antiviral Research, 53, 19-34. https://doi.org/10.1016/S0166-3542(01)00189-9
  • Yu, M-S., Lee, J., Lee, J. M. et al. (2012). Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorganic & Medicinal Chemistry Letters, 22(12), 4049-4054. https://doi.org/10.1016/j.bmcl.2012.04.081
  • Zhu, J., Ou, L., Zhou, Y. et al. (2020). (-)-Epigallocatechin-3-gallate induces interferon-λ2 expression to anti-influenza A virus in human bronchial epithelial cells (BEAS-2B) through p38 MAPK signaling pathway. Journal of Thoracic Disease, 12(3), 989-97. http://dx.doi.org/10.21037/jtd.2020.03.20
  • Zhu, N., Zhang, D., Wang, W. et al. (2020). A Novel Coronavirus from Patients with Pneumonia in China, 2019. The New England Journal of Medicine, 382, 727-733. https://www.nejm.org/doi/10.1056/NEJMoa2001017
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapısal Biyoloji
Bölüm Makaleler
Yazarlar

Aynur Müdüroğlu Kırmızıbekmez 0000-0001-8552-4994

Cihan Mehmet Altıntaş 0000-0002-2982-5378

Ali Arslan 0000-0002-8722-591X

Ihsan Kara 0000-0001-6701-5870

Proje Numarası BAP00017
Yayımlanma Tarihi 30 Eylül 2021
Gönderilme Tarihi 20 Ağustos 2021
Kabul Tarihi 8 Eylül 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Müdüroğlu Kırmızıbekmez, A., Altıntaş, C. M., Arslan, A., Kara, I. (2021). Antiviral Effects of Some Flavonoids on SARS-CoV-2. Turkish Journal of Science and Health, 2(3), 24-34. https://doi.org/10.51972/tfsd.983961








Turkish Journal of Science and Health (TFSD) 

E-mail:  tfsdjournal@gmail.com

Creative Commons Lisansı

Bu eser Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.

18106    18107    18238 18235 1839418234 1823618237    19024   18234   19690 19305215142164821682 21909  23284 30073

27460


25763