Atık Su Analizlerinde Potansiyometrik Sensörlerin Kullanımı
Year 2020,
Volume: 1 Issue: 2, 70 - 78, 30.06.2020
Oğuz Özbek
,
Ömer Işıldak
,
Kamil Mert Yiğit
,
Alper Çetin
Abstract
Evsel ve endüstriyel su kirliliği ciddi bir çevre sorunudur. Metal iyonları madencilik, metal kaplama, elektrokaplama, ilaç ve pil üretimi gibi endüstriyel işlemlerde kullanıldığından dolayı, birçok metal ve ağır metal endüstriyel su kirliliğine neden olabilir. Genel olarak, bu metallerin tayini enstrümantal cihazlar tarafından yapılır. Potansiyometrik iyon seçici sensörler, avantajları nedeniyle analitik kimyagerler tarafından uzun yıllardır kapsamlı bir şekilde araştırılmaktadır. Geliştirilen potansiyometrik sensörler çevresel örneklerin analizinde başarıyla kullanılmış ve günümüze kadar farklı sensörler geliştirilerek, literatüre sunulmuştur. Bu derlemede, atık su örneklerine başarıyla uygulanan potansiyometrik sensör çalışmaları araştırılmıştır.
References
- Afkhami, A., Khoshsafar, H., Madrakian, T., Shirzadmehr, A. (2014). A new nano-composite electrode as a copper (II) selective potentiometric sensor. Journal of the Iranian Chemical Society, 11, 1373-1380. https://doi.org/10.1007/s13738-014-0406-x
- Badakhshan, S., Ahmadzadeh, S., Mohseni‑Bandpei, A., Aghasi, M., Basiri, A. (2019).Potentiometric sensor for iron (III) quantitative determination: experimental and computational approaches. BMC Chemistry, 13, 131. https://doi.org/10.1186/s13065-019-0648-x
- Bagheri, H., Afkhami, A., Shirzadmehr, A., Khoshsafar, H., Khoshsafar, H., Ghaedi, H. (2013). Novel potentiometric sensor for the determination of Cd2Y based on a new nano-composite. International Journal of Environmental Analytical Chemistry, 93(5), 578-591. http://dx.doi.org/10.1080/03067319.2011.649741
- Canpolat, Ö ve Uzun S. (2019). Kahramanmaraş Organize Sanayi Bölgesi Atık Sularının Sır Baraj Gölü’nde Meydana Getirdiği Ağır Metal Kirliliğinin Belirlenmesi. BEÜ Fen Bilimleri Dergisi, 8 (3), 816-825. https://doi.org/10.17798/bitlisfen.535940
- Cunha, C. O., Silva, R. C. R., Amorim, C. G., Jfflnior, S. A., Araffljo, A. N., Montenegro, M. C. B. S. M., Silva, V. L. (2010). Tetracycline Potentiometric Sensor Based on Cyclodextrin for Pharmaceuticals and Waste Water Analysis. Electroanalysis, 22(24), 2967-2972. https://doi.org/10.1002/elan.201000301
- Dündar, M. Ş., Altundağ, H., Kaygaldurak S., Şar, V., Acar, A. (2012). Çeşitli Endüstriyel Atık Sularda Ağır Metal Düzeylerinin Belirlenmesi. SAÜ Fen Bilimleri Dergisi, 16(1), 6-12.
- Ensafi, A. A., Meghdadi, S., Sedighi, S. (2009). Sensitive cadmium potentiometric sensor based on 4-hydroxy salophen as a fast tool for water samples analysis. Desalination, 242(1-3), 336-345. https://doi.org/10.1016/j.desal.2008.06.002
- Frag, E. Y. Z., Aglan, R. F., Mohamed, H. A. (2016). Lanthanum(III) potentiometric sensors based on ethyl benzoyl acetate. Arabian Journal of Chemistry, 12, 388–397. http://dx.doi.org/10.1016/j.arabjc.2016.11.015
- Ganjali, M. R., Faridbod, F., Davarkhah, N., Shahtaheri, S. J., Norouzi, P. (2015). All Solid State Graphene Based Potentiometric Sensors forMonitoring of Mercury Ions inWasteWater Samples. International Journal of Environmental Research, 9(1), 333-340. https://doi.org/10.22059/IJER.2015.905
- Ganjali, M. R., Mizani, F., Salavati-Niasari, M., Javanbakht, M. (2003). Novel potentiometric membrane sensor for the determination of trace amounts of chromium(III) ions. Analytical Sciences, 19(2), 235- 238. https://doi.org/10.2116/analsci.19.235
- Gupta, V. V., Jain, A. K., Al Khayat, M., Bhargavac, S. K., Raisoni, J. R. (2008). Electroanalytical studies on cobalt(II) selective potentiometric sensor based on bridge modified calixarene in poly(vinyl chloride). Electrochimica Acta, 53, 5409-5414. https://doi.org/10.1016/j.electacta.2008.02.085
- Gupta, V. K., Jain, A. K., Maheshwari G. (2007).Synthesis, Characterization and Pb(II) Ion Selectivity of N, N´-bis(2-hydroxy-1-napthalene)-2,6-pyridiamine (BHNPD). International Journal of Electrochemical Science, 2, 102-112.
- Isildak, Ö., Özbek, O., Yigit, K. M. (2019). Zinc(II)-selective PVC membrane potentiometric sensor for analysis of Zn2+ in drug sample and different environmental samples. International Journal of Environmental Analytical Chemistry, 1-11. https://doi.org/10.1080/03067319.2019.1691542
- Isildak, O., Deligönül, N., Ozbek, O. (2019). A novel silver(I)-selective PVC membrane sensor and its potentiometric applications. Turkish Journal of Chemistry, 43, 1149-1158. https://doi.org/10.3906/kim-1812-29.
- Isildak, Ö., Özbek, O. (2020). Silver(I)-selective PVC membrane potentiometric sensor based on 5,10,15,20- tetra(4-pyridyl)-21H, 23H-porphine and potentiometric applications. Journal of Chemical Science, 132, 29. https://doi.org/10.1007/s12039-019-1734-2
- Isildak, Ö., Özbek, O. (2020). Application of Potentiometric Sensors in Real Samples. Critical Reviews in Analytical Chemistry, 1-14. https://doi.org/10.1080/10408347.2019.1711013
- Kadirvelu, K., Thamaraiselvi, K., Namasivayam, C. (2001). Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste. Bioresource Technology, 76(1), 63-65. https://doi.org/10.1016/S0960-8524(00)00072-9
- Kamal, A., Tejpal, R., Bhalla, V., Kumar, M., Mahajan, R. K. (2015). Selective and sensitive lead (II) solid- contact potentiometric sensor based on naphthalene-sulfonamide derivative. International Journal of Environmental Science and Technology, 12, 2567–2578. https://doi.org/ 10.1007/s13762-014-0621-0
- Kanberoglu, G. S., Coldur, F., Topcu, C., Cubuk, O. (2015). PVC-membrane potentiometric sensor for the determination of Tamoxifen in pharmaceutical formulations. IEEE Sensors Journal, 15(11), 6199- 6207. https://doi.org/10.1109/JSEN.2015.2454053
- Kopytin, A. V., German, K. E., Zhizhin, K. Y., Zhukov, A. F., Ilyin, E. G., Zhukova T. V. (2016). Ion selective potentiometric sensor based on single crystalline KTiOPO4 for determination of K+-ions. Procedia Engineering, 168, 440-443. https://doi.org/10.1016/j.proeng.2016.11.539
- Kumar, P. (2012). All Solid State Nickel(II)-Selective Potentiometric Sensor Based on an Upper Rim Substituted Calixarene. Electroanalysis, 24(10), 2005-2012. https://doi.org/10.1002/elan.201200228
- Kumar, P., Shim, Y-B. (2009). A novel cobalt(II)-selective potentiometric sensor based on p-(4-n- butylphenylazo)calix[4]arene. Talanta, 77, 1057-1062. https://doi.org/10.1016/j.talanta.2008.08.003
- Masrournia, M., Zamani H. A., Mohamadzadeh, H., Seyedi, S. M., Ganjali, M. R., Eshghi H. (2009). A Silver(I) PVC-Membrane Sensor Based on Synthesized Dilaktam Crown Ether. Journal of the Chilean Chemical Society, 53(5), 63-67. http://dx.doi.org/10.4067/S0717-97072009000100015
- Murali Krishna, I. V., Manickam, V. (2017). Environmental Management: Science and Engineering for Industry. (1st ed.) USA.
- Rezaei, B., Hadadzadeh, H., Azimi, A. (2011). Nickel(II) Selective PVC-BasedMembrane Sensor Using a Schiff Base. International Journal of Spectroscopy, 1-7. http://dx.doi.org/10.1155/2011/746372
- Singh, A. K., Mehtab, S., Singh, U. P., Aggarwal, V. (2007). Tripodal chelating ligand-based sensor for selective determination of Zn(II) in biological and environmental samples. Analytical and Bioanalytical Chemistry, 388,1867–1876. https://doi.org/10.1007/s00216-007-1434-5
- Topcu, C., Coldur, F., Andac, M., Isildak, I., Senyüz, N., Bati, H. (2011). Ag+- selective poly vinyl chloride membrane electrode based on [N,N-ethylenebis-(3-methoxy-salicylaldimine)]. Current Analytical Chemistry, 7(2), 136-145. https://doi.org/10.2174/157341111794814995
- Topcu, C. (2016). Nikel-Sakkarin Temelli PVC-Membran Karbonat (CO32-) Seçici Elektrot ve Potansiyometrik Uygulamaları. Karaelmas Fen ve Mühendislik Dergisi, 6(2), 283-292. http://dx.doi.org/10.7212%2Fzkufbd.v6i2.231
- Uner Bahar, D., Topcu, C., Ozcimen, D., Isildak, I. (2020). A Novel Borate Ion Selective Electrode Based On Carbon Nanotube-Silver Borate. International Journal of Electrochemical Science, 15, 899-914. https://doi.org/ 10.20964/2020.01.40
- Vlascici, D., Fagadar-Cosma, E., Pica, E. M., Cosma, V., Bizerea, O., Mihailescu, G., Olenic, L. (2008). Free Base Porphyrins as Ionophores for Heavy Metal Sensors. Sensors, 8, 4995-5004. https://doi.org/10.3390/s8084995
- Yolcu, M. ve Dere, N. (2009). A novel copper selective sensor based on ion imprinted 2-vinylpyridine polymer. Canadian Journal of Chemistry, 96, 1027-1036. https://doi.org/10.1139/cjc-2018-0178
- Zamani, A. Z. ve Sahebnasagh, S. (2013). Potentiometric detection of Cr3+ ions in solution by a chromium(III) electrochemical sensor based on diethyl 2-phthalimidomalonate doped in polymeric membrane. International Journal of Electrochemical Science, 8, 3708-3720.
- Zamani, A. Z., Ganjali, M. R., Pooyamanesh, M. J. (2006). Zinc(II) PVC-Based Membrane Sensor Based on 5,6-Benzo-4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8,8,8]hexacos-5-ene. Journal of the Brazilian Chemical Society, 17(1), 149-155.
The use of potentiometric sensors in wastewater analysis
Year 2020,
Volume: 1 Issue: 2, 70 - 78, 30.06.2020
Oğuz Özbek
,
Ömer Işıldak
,
Kamil Mert Yiğit
,
Alper Çetin
Abstract
Domestic and industrial water pollution is a serious environmental problem. Because metal ions are used in industrial processes such as mining, metal coating, electroplating, medicine and battery production, many metals and heavy metals can cause industrial water pollution. Generally, the determination of these metals is made by instrumental devices. Potentiometric ion selective sensors have been extensively studied by analytical chemists for many years due to their advantages. The developed potentiometric sensors have been used successfully in environmental sample analysis and different sensors have been developed till today and introduced into the literature. In this review, we investigated potentiometric sensor studies which have been successfully applied to the developed wastewater samples.
References
- Afkhami, A., Khoshsafar, H., Madrakian, T., Shirzadmehr, A. (2014). A new nano-composite electrode as a copper (II) selective potentiometric sensor. Journal of the Iranian Chemical Society, 11, 1373-1380. https://doi.org/10.1007/s13738-014-0406-x
- Badakhshan, S., Ahmadzadeh, S., Mohseni‑Bandpei, A., Aghasi, M., Basiri, A. (2019).Potentiometric sensor for iron (III) quantitative determination: experimental and computational approaches. BMC Chemistry, 13, 131. https://doi.org/10.1186/s13065-019-0648-x
- Bagheri, H., Afkhami, A., Shirzadmehr, A., Khoshsafar, H., Khoshsafar, H., Ghaedi, H. (2013). Novel potentiometric sensor for the determination of Cd2Y based on a new nano-composite. International Journal of Environmental Analytical Chemistry, 93(5), 578-591. http://dx.doi.org/10.1080/03067319.2011.649741
- Canpolat, Ö ve Uzun S. (2019). Kahramanmaraş Organize Sanayi Bölgesi Atık Sularının Sır Baraj Gölü’nde Meydana Getirdiği Ağır Metal Kirliliğinin Belirlenmesi. BEÜ Fen Bilimleri Dergisi, 8 (3), 816-825. https://doi.org/10.17798/bitlisfen.535940
- Cunha, C. O., Silva, R. C. R., Amorim, C. G., Jfflnior, S. A., Araffljo, A. N., Montenegro, M. C. B. S. M., Silva, V. L. (2010). Tetracycline Potentiometric Sensor Based on Cyclodextrin for Pharmaceuticals and Waste Water Analysis. Electroanalysis, 22(24), 2967-2972. https://doi.org/10.1002/elan.201000301
- Dündar, M. Ş., Altundağ, H., Kaygaldurak S., Şar, V., Acar, A. (2012). Çeşitli Endüstriyel Atık Sularda Ağır Metal Düzeylerinin Belirlenmesi. SAÜ Fen Bilimleri Dergisi, 16(1), 6-12.
- Ensafi, A. A., Meghdadi, S., Sedighi, S. (2009). Sensitive cadmium potentiometric sensor based on 4-hydroxy salophen as a fast tool for water samples analysis. Desalination, 242(1-3), 336-345. https://doi.org/10.1016/j.desal.2008.06.002
- Frag, E. Y. Z., Aglan, R. F., Mohamed, H. A. (2016). Lanthanum(III) potentiometric sensors based on ethyl benzoyl acetate. Arabian Journal of Chemistry, 12, 388–397. http://dx.doi.org/10.1016/j.arabjc.2016.11.015
- Ganjali, M. R., Faridbod, F., Davarkhah, N., Shahtaheri, S. J., Norouzi, P. (2015). All Solid State Graphene Based Potentiometric Sensors forMonitoring of Mercury Ions inWasteWater Samples. International Journal of Environmental Research, 9(1), 333-340. https://doi.org/10.22059/IJER.2015.905
- Ganjali, M. R., Mizani, F., Salavati-Niasari, M., Javanbakht, M. (2003). Novel potentiometric membrane sensor for the determination of trace amounts of chromium(III) ions. Analytical Sciences, 19(2), 235- 238. https://doi.org/10.2116/analsci.19.235
- Gupta, V. V., Jain, A. K., Al Khayat, M., Bhargavac, S. K., Raisoni, J. R. (2008). Electroanalytical studies on cobalt(II) selective potentiometric sensor based on bridge modified calixarene in poly(vinyl chloride). Electrochimica Acta, 53, 5409-5414. https://doi.org/10.1016/j.electacta.2008.02.085
- Gupta, V. K., Jain, A. K., Maheshwari G. (2007).Synthesis, Characterization and Pb(II) Ion Selectivity of N, N´-bis(2-hydroxy-1-napthalene)-2,6-pyridiamine (BHNPD). International Journal of Electrochemical Science, 2, 102-112.
- Isildak, Ö., Özbek, O., Yigit, K. M. (2019). Zinc(II)-selective PVC membrane potentiometric sensor for analysis of Zn2+ in drug sample and different environmental samples. International Journal of Environmental Analytical Chemistry, 1-11. https://doi.org/10.1080/03067319.2019.1691542
- Isildak, O., Deligönül, N., Ozbek, O. (2019). A novel silver(I)-selective PVC membrane sensor and its potentiometric applications. Turkish Journal of Chemistry, 43, 1149-1158. https://doi.org/10.3906/kim-1812-29.
- Isildak, Ö., Özbek, O. (2020). Silver(I)-selective PVC membrane potentiometric sensor based on 5,10,15,20- tetra(4-pyridyl)-21H, 23H-porphine and potentiometric applications. Journal of Chemical Science, 132, 29. https://doi.org/10.1007/s12039-019-1734-2
- Isildak, Ö., Özbek, O. (2020). Application of Potentiometric Sensors in Real Samples. Critical Reviews in Analytical Chemistry, 1-14. https://doi.org/10.1080/10408347.2019.1711013
- Kadirvelu, K., Thamaraiselvi, K., Namasivayam, C. (2001). Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste. Bioresource Technology, 76(1), 63-65. https://doi.org/10.1016/S0960-8524(00)00072-9
- Kamal, A., Tejpal, R., Bhalla, V., Kumar, M., Mahajan, R. K. (2015). Selective and sensitive lead (II) solid- contact potentiometric sensor based on naphthalene-sulfonamide derivative. International Journal of Environmental Science and Technology, 12, 2567–2578. https://doi.org/ 10.1007/s13762-014-0621-0
- Kanberoglu, G. S., Coldur, F., Topcu, C., Cubuk, O. (2015). PVC-membrane potentiometric sensor for the determination of Tamoxifen in pharmaceutical formulations. IEEE Sensors Journal, 15(11), 6199- 6207. https://doi.org/10.1109/JSEN.2015.2454053
- Kopytin, A. V., German, K. E., Zhizhin, K. Y., Zhukov, A. F., Ilyin, E. G., Zhukova T. V. (2016). Ion selective potentiometric sensor based on single crystalline KTiOPO4 for determination of K+-ions. Procedia Engineering, 168, 440-443. https://doi.org/10.1016/j.proeng.2016.11.539
- Kumar, P. (2012). All Solid State Nickel(II)-Selective Potentiometric Sensor Based on an Upper Rim Substituted Calixarene. Electroanalysis, 24(10), 2005-2012. https://doi.org/10.1002/elan.201200228
- Kumar, P., Shim, Y-B. (2009). A novel cobalt(II)-selective potentiometric sensor based on p-(4-n- butylphenylazo)calix[4]arene. Talanta, 77, 1057-1062. https://doi.org/10.1016/j.talanta.2008.08.003
- Masrournia, M., Zamani H. A., Mohamadzadeh, H., Seyedi, S. M., Ganjali, M. R., Eshghi H. (2009). A Silver(I) PVC-Membrane Sensor Based on Synthesized Dilaktam Crown Ether. Journal of the Chilean Chemical Society, 53(5), 63-67. http://dx.doi.org/10.4067/S0717-97072009000100015
- Murali Krishna, I. V., Manickam, V. (2017). Environmental Management: Science and Engineering for Industry. (1st ed.) USA.
- Rezaei, B., Hadadzadeh, H., Azimi, A. (2011). Nickel(II) Selective PVC-BasedMembrane Sensor Using a Schiff Base. International Journal of Spectroscopy, 1-7. http://dx.doi.org/10.1155/2011/746372
- Singh, A. K., Mehtab, S., Singh, U. P., Aggarwal, V. (2007). Tripodal chelating ligand-based sensor for selective determination of Zn(II) in biological and environmental samples. Analytical and Bioanalytical Chemistry, 388,1867–1876. https://doi.org/10.1007/s00216-007-1434-5
- Topcu, C., Coldur, F., Andac, M., Isildak, I., Senyüz, N., Bati, H. (2011). Ag+- selective poly vinyl chloride membrane electrode based on [N,N-ethylenebis-(3-methoxy-salicylaldimine)]. Current Analytical Chemistry, 7(2), 136-145. https://doi.org/10.2174/157341111794814995
- Topcu, C. (2016). Nikel-Sakkarin Temelli PVC-Membran Karbonat (CO32-) Seçici Elektrot ve Potansiyometrik Uygulamaları. Karaelmas Fen ve Mühendislik Dergisi, 6(2), 283-292. http://dx.doi.org/10.7212%2Fzkufbd.v6i2.231
- Uner Bahar, D., Topcu, C., Ozcimen, D., Isildak, I. (2020). A Novel Borate Ion Selective Electrode Based On Carbon Nanotube-Silver Borate. International Journal of Electrochemical Science, 15, 899-914. https://doi.org/ 10.20964/2020.01.40
- Vlascici, D., Fagadar-Cosma, E., Pica, E. M., Cosma, V., Bizerea, O., Mihailescu, G., Olenic, L. (2008). Free Base Porphyrins as Ionophores for Heavy Metal Sensors. Sensors, 8, 4995-5004. https://doi.org/10.3390/s8084995
- Yolcu, M. ve Dere, N. (2009). A novel copper selective sensor based on ion imprinted 2-vinylpyridine polymer. Canadian Journal of Chemistry, 96, 1027-1036. https://doi.org/10.1139/cjc-2018-0178
- Zamani, A. Z. ve Sahebnasagh, S. (2013). Potentiometric detection of Cr3+ ions in solution by a chromium(III) electrochemical sensor based on diethyl 2-phthalimidomalonate doped in polymeric membrane. International Journal of Electrochemical Science, 8, 3708-3720.
- Zamani, A. Z., Ganjali, M. R., Pooyamanesh, M. J. (2006). Zinc(II) PVC-Based Membrane Sensor Based on 5,6-Benzo-4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8,8,8]hexacos-5-ene. Journal of the Brazilian Chemical Society, 17(1), 149-155.