Derleme
BibTex RIS Kaynak Göster

Effects Of Probiotics On Cholesterol Metabolism: Biochemical Mechanisms And Clinical Potential

Yıl 2025, Cilt: 6 Sayı: 3, 242 - 248, 30.09.2025

Öz

In recent years, the increasing prevalence of cardiovascular diseases has accelerated the search for natural and effective strategies to regulate cholesterol metabolism. In this context, the hypocholesterolemic potential of probiotic microorganisms has attracted growing scientific attention. Probiotics are live microorganisms that, when consumed in adequate amounts, provide health benefits to the host. They are primarily composed of species from the Lactobacillus and Bifidobacterium genera.
Numerous studies have shown that probiotic strains can influence cholesterol metabolism through various biochemical mechanisms. These include bile salt hydrolase (BSH) activity for bile salt deconjugation, cholesterol assimilation and degradation, precipitation with secondary bile acids, binding to the microbial cell wall or membrane, and the effects of short-chain fatty acids produced during prebiotic fermentation. Several studies have reported that specific strains—particularly Lacticaseibacillus casei, Lactobacillus acidophilus, and Lactiplantibacillus plantarum—can effectively exert these effects. However, as most mechanisms have been investigated under in vitro conditions, their actual efficacy under physiological (in vivo) settings may be limited.
This review examines the impact of probiotics on cholesterol metabolism in detail and analyzes the relevant mechanisms based on findings in the literature. The current evidence suggests that probiotics can exert cholesterol-lowering effects in a strain-specific manner. Nevertheless, further controlled and long-term clinical studies are needed to confirm these effects and support their potential role in therapeutic administrations.

Etik Beyan

Not subject to ethical approval in terms of research quality.

Destekleyen Kurum

-

Teşekkür

-

Kaynakça

  • Al-Muzafar, HM., and Amin, KA. (2017). Probiotic mixture improves fatty liver disease by virtue of its action on lipid profiles, leptin, and inflammatory biomarkers. BMC Complement Altern Med, 17, 43-49. https://doi.org/10.1186/s12906-016-1540-z
  • Al-Sheraji, SH., Amin, I., Azlan, A., Manap, MY., and Hassan, FA. (2015). Effects of Bifidobacterium longum BB536 on lipid profile and histopathological changes in hypercholesterolaemic rats. Benef Microbes, 6(5), 661-668. https://doi.org/10.3920/BM2014.0032
  • Anandharaj, M., Sivasankari, B., and Rani, RP. (2020). Corrigendum to “effects of probiotics, prebiotics, and synbiotics on hypercholesterolemia: a review”. Chi J Biol, 2020, 8236703. https://doi.org/10.1155/2020/8236703
  • Begley, M., Hill, C., and Gahan, CGM. (2006). Bile Salt Hydrolase Activity in Probiotics. Appl Environ Microbiol, 72, 1729-1738. https://doi.org/10.1128/AEM.72.3.1729-1738.2006
  • Bhat, B., and Bajaj, BK. (2020). Multifarious cholesterol lowering potential of lactic acid bacteria equipped with desired probiotic functional attributes. 3 Biotech, 10(5), 1-16. https://doi.org/10.1007/s13205-020- 02183-8
  • Hara, H., Haga, S., Aoyama, Y., and Kiriyama, S. (1999). Short-chain fatty acids suppress cholesterol synthesis in rat liver and intestine. J Nutr, 129(5), 942-948. https://doi.org/10.1093/jn/129.5.942
  • Heller, KJ. (2001). Probiotic bacteria in fermented foods: product characteristics and starter organisms. Am J Clin Nutr, 73, 374-379. https://doi.org/10.1093/ajcn/73.2.374s
  • Hernández-Gómez, JG., López-Bonilla, A., Trejo-Tapia, G., Ávila-Reyes, SV., Jiménez-Aparicio, AR., and Hernández-Sánchez, H. (2018). In Vitro Bile Salt Hydrolase (BSH) Activity Screening of Different Probiotic Microorganisms. Foods, 10(3), 674-682. https://doi.org/10.3390/foods10030674
  • Jones, ML., Chen, H., Ouyang, W., Metz, T., and Prakash, S. (2004). Microencapsulated genetically engineered Lactiplantibacillus plantarum 80 (pCBH1) for bile acid deconjugation and its implication in lowering cholesterol. J Biomed Biotechnol, 2004(1), 61-69. https://doi.org/10.1155/S1110724304307011
  • Juste, C., and Gérard, P. (2021). Cholesterol-to- Coprostanol Conversion by the Gut Microbiota: What We Know, Suspect, and Ignore. Microorganisms, 9(9), 1881. https://doi.org/10.3390/microorganisms9091881
  • Keleszade, E., Kolida, S., and Costabile, A. (2022). The cholesterol lowering efficacy of Lactiplantibacillus plantarum ECGC 13110402 in hypercholesterolemic adults: a double-blind, randomized, placebo controlled, pilot human intervention study. J Funct Foods, 89: 104939. https://doi.org/10.1016/j.jff.2022.104939
  • Kimoto, H., Ohmomo, S., and Okamoto, T. (2002). Cholesterol removal from media by lactococci. J Dairy Sci, 85(12), 3182-3188. https://doi.org/10.3168/jds.S0022-0302(02)74406-8
  • Klaver, FAM., and Meer, RVD. (1993). The assumed assimilation of cholesterol by lactobacilli and Bifidobacterium bifidum is due to their bile saltdeconjugating activity. Appl Environ Microbiol, 59(4), 1120-1124. https://doi.org/10.1128/aem.59.4.1120- 1124.1993
  • Li, Y., Chen, M., Ma, Y., Yang, Y., Cheng, Y., Ma, H., Ren, D., and Chen, P. (2022). Regulation of viable/inactivated/lysed probiotic Lactiplantibacillus plantarum H6 on intestinal microbiota and metabolites in hypercholesterolemic mice. NPJ Sci Food, 6(1), 50-59. https://doi.org/10.1038/s41538- 022-00167-x
  • Lin, MY., and Chen, TW. (2000). Reduction of cholesterol by Lactobacillus acidophilus in culture broth. J Food Drug Anal, 8(2), 97-102. https://doi.org/10.38212/2224-6614.2840
  • Lye, HS., Rahmat-Ali, GR., and Liong, MT. (2010a). Mechanisms of cholesterol removal by lactobacilli under conditions that mimic the human gastrointestinal tract. Int Dairy J, 20(3), 169-175. https://doi.org/10.1016/j.idairyj.2009.10.003
  • Lye, HS., Rusul, G., and Liong, MT. (2010b). Removal of cholesterol by lactobacilli via incorporation and conversion to coprostanol. J Dairy Sci, 93, 1383-1392. https://doi.org/10.3168/jds.2009-2574
  • Markowiak-Kopeć, P., and Śliżewska, K. (2020). The Effect of Probiotics on the Production of Short-Chain Fatty Acids by Human Intestinal Microbiome. Nutrients, 12(4), 1107-1111. https://doi.org/10.3390/nu12041107
  • Ooi, LG., and Liong, MT. (2010). Cholesterol-Lowering Effects of Probiotics and Prebiotics: A Review of in Vivo and in Vitro Findings. Int J Mol Sci, 11(6), 2499-2522. https://doi.org/10.3390/ijms11062499
  • Önür, ND., and Beyler, AR. (2001). Safra asitleri metabolizması. J Ankara Univ Fac Med, 54(1), 65-76. https://doi.org/10.1501/Tipfak_0000000295
  • Pereira, DIA., and Gibson, GR. (2002). Cholesterol Assimilation by Lactic Acid Bacteria and Bifidobacteria Isolated from the Human Gut. Appl Environ Microbiol, 68, 4689-4693. https://doi.org/10.1128/AEM.68.9.4689-4693.2002
  • Reis, SA., Conceição, LL., Rosa, DD., Siqueira, NP., and Peluzio, MCG. (2017). Mechanisms responsible for the hypocholesterolaemic effect of regular consumption of probiotics. Nutr Res Rev, 30(1), 36-49. https://doi.org/10.1017/S0954422416000226
  • Sharma, S., Kurpad, AV., and Puri, S. (2016). Potential of probiotics in hypercholesterolemia: A meta-analysis. Indian J Public Health, 60(4), 280-286. https://doi.org/10.4103/0019-557X.195859
  • Shobharani, P., and Halami, PM. (2016). In vitro evaluation of the cholesterol-reducing ability of a potential probiotic Bacillus spp. Ann Microbiol, 66, 643-651. https://doi.org/10.1007/s13213-015-1146-6
  • Tomaro-Duchesneau, C., Jones, M. L., Shah, D., Jain, P., Saha, S., and Prakash, S. (2014). Cholesterol assimilation by Lactobacillus probiotic bacteria: an in vitro investigation. BioMed Research International, 2014, 380316. https://doi.org/10.1155/2014/380316
  • Tsai, CC., Lin, PP., Hsieh, YM., Zhang, ZY., Wu, HC., and Huang, CC. (2014). Cholesterol-lowering potentials of lactic acid bacteria based on bile-salt hydrolase activity and effect of potent strains on cholesterol metabolism in vitro and in vivo. Sci World J, 2014, 690752. https://doi.org/10.1155/2014/690752
  • Wang, CS., Li, WB., Wang, HY., Ma, YM., Zhao, XH., Yang, H., Qian, JM., and Li, JN. (2018). VSL#3 can prevent ulcerative colitis-associated carcinogenesis in mice. Worl J Gastroenterol, 24(37), 4254-4262.

PROBİYOTİKLERİN KOLESTEROL METABOLİZMASINA ETKİLERİ: BİYOKİMYASAL MEKANİZMALAR VE KLİNİK POTANSİYEL

Yıl 2025, Cilt: 6 Sayı: 3, 242 - 248, 30.09.2025

Öz

Son yıllarda kardiyovasküler hastalıkların görülme sıklığında yaşanan artış, kolesterol metabolizmasının düzenlenmesine yönelik doğal ve etkili çözümler arayışını hızlandırmıştır. Bu doğrultuda, probiyotik mikroorganizmaların hipokolesterolemik potansiyeli, bilimsel çevrelerde yoğun ilgi görmektedir. Probiyotikler, yeterli miktarda alındığında konakçının sağlığı üzerinde olumlu etkiler oluşturan canlı mikroorganizmalardır ve çoğunlukla Lactobacillus ve Bifidobacterium cinslerine ait türleri içermektedir.
Literatürde yer alan çok sayıda in vitro ve in vivo çalışmada, probiyotik suşların kolesterol metabolizması üzerinde çeşitli biyokimyasal mekanizmalar aracılığıyla etkili olabildiği gösterilmiştir. Bu mekanizmalar arasında; safra tuzlarının dekonjugasyonunu sağlayan safra tuzu hidrolaz (BSH) aktivitesi, kolesterolün asimilasyonu ve katabolizasyonu, sekonder safra asitleri ile çökeltilmesi, hücre duvarına veya hücre zarına bağlanması, prebiyotik fermentasyonu sonucu oluşan kısa zincirli yağ asitlerinin etkisi gibi süreçler yer almaktadır.
Bazı probiyotik suşların, özellikle Lacticaseibacillus casei ATCC 393, Lactobacillus acidophilus ve Lactiplantibacillus plantarum türlerinin bu etkileri güçlü şekilde ortaya koyabildiği çeşitli çalışmalarda rapor edilmiştir. Bununla birlikte, söz konusu mekanizmaların çoğunun in vitro düzeyde test edilmiş olması, in vivo fizyolojik koşullarda etkinliklerinin sınırlı kalabileceğini düşündürmektedir.
Bu derlemede, probiyotiklerin kolesterol metabolizmasına olan etkileri detaylı bir şekilde incelenmiş, ilgili mekanizmalar literatür bulguları doğrultusunda analiz edilmiştir. Elde edilen bulgular, probiyotiklerin suşlara özgü değişkenlik gösterebilecek şekilde kolesterol düşürücü etki gösterebildiğini ortaya koymakta; ancak bu etkilerin klinik olarak doğrulanabilmesi için daha fazla kontrollü ve uzun süreli çalışmalara ihtiyaç olduğunu göstermektedir.

Etik Beyan

Araştırma nitelik açısından etik onaya tabi değildir.

Destekleyen Kurum

-

Teşekkür

-

Kaynakça

  • Al-Muzafar, HM., and Amin, KA. (2017). Probiotic mixture improves fatty liver disease by virtue of its action on lipid profiles, leptin, and inflammatory biomarkers. BMC Complement Altern Med, 17, 43-49. https://doi.org/10.1186/s12906-016-1540-z
  • Al-Sheraji, SH., Amin, I., Azlan, A., Manap, MY., and Hassan, FA. (2015). Effects of Bifidobacterium longum BB536 on lipid profile and histopathological changes in hypercholesterolaemic rats. Benef Microbes, 6(5), 661-668. https://doi.org/10.3920/BM2014.0032
  • Anandharaj, M., Sivasankari, B., and Rani, RP. (2020). Corrigendum to “effects of probiotics, prebiotics, and synbiotics on hypercholesterolemia: a review”. Chi J Biol, 2020, 8236703. https://doi.org/10.1155/2020/8236703
  • Begley, M., Hill, C., and Gahan, CGM. (2006). Bile Salt Hydrolase Activity in Probiotics. Appl Environ Microbiol, 72, 1729-1738. https://doi.org/10.1128/AEM.72.3.1729-1738.2006
  • Bhat, B., and Bajaj, BK. (2020). Multifarious cholesterol lowering potential of lactic acid bacteria equipped with desired probiotic functional attributes. 3 Biotech, 10(5), 1-16. https://doi.org/10.1007/s13205-020- 02183-8
  • Hara, H., Haga, S., Aoyama, Y., and Kiriyama, S. (1999). Short-chain fatty acids suppress cholesterol synthesis in rat liver and intestine. J Nutr, 129(5), 942-948. https://doi.org/10.1093/jn/129.5.942
  • Heller, KJ. (2001). Probiotic bacteria in fermented foods: product characteristics and starter organisms. Am J Clin Nutr, 73, 374-379. https://doi.org/10.1093/ajcn/73.2.374s
  • Hernández-Gómez, JG., López-Bonilla, A., Trejo-Tapia, G., Ávila-Reyes, SV., Jiménez-Aparicio, AR., and Hernández-Sánchez, H. (2018). In Vitro Bile Salt Hydrolase (BSH) Activity Screening of Different Probiotic Microorganisms. Foods, 10(3), 674-682. https://doi.org/10.3390/foods10030674
  • Jones, ML., Chen, H., Ouyang, W., Metz, T., and Prakash, S. (2004). Microencapsulated genetically engineered Lactiplantibacillus plantarum 80 (pCBH1) for bile acid deconjugation and its implication in lowering cholesterol. J Biomed Biotechnol, 2004(1), 61-69. https://doi.org/10.1155/S1110724304307011
  • Juste, C., and Gérard, P. (2021). Cholesterol-to- Coprostanol Conversion by the Gut Microbiota: What We Know, Suspect, and Ignore. Microorganisms, 9(9), 1881. https://doi.org/10.3390/microorganisms9091881
  • Keleszade, E., Kolida, S., and Costabile, A. (2022). The cholesterol lowering efficacy of Lactiplantibacillus plantarum ECGC 13110402 in hypercholesterolemic adults: a double-blind, randomized, placebo controlled, pilot human intervention study. J Funct Foods, 89: 104939. https://doi.org/10.1016/j.jff.2022.104939
  • Kimoto, H., Ohmomo, S., and Okamoto, T. (2002). Cholesterol removal from media by lactococci. J Dairy Sci, 85(12), 3182-3188. https://doi.org/10.3168/jds.S0022-0302(02)74406-8
  • Klaver, FAM., and Meer, RVD. (1993). The assumed assimilation of cholesterol by lactobacilli and Bifidobacterium bifidum is due to their bile saltdeconjugating activity. Appl Environ Microbiol, 59(4), 1120-1124. https://doi.org/10.1128/aem.59.4.1120- 1124.1993
  • Li, Y., Chen, M., Ma, Y., Yang, Y., Cheng, Y., Ma, H., Ren, D., and Chen, P. (2022). Regulation of viable/inactivated/lysed probiotic Lactiplantibacillus plantarum H6 on intestinal microbiota and metabolites in hypercholesterolemic mice. NPJ Sci Food, 6(1), 50-59. https://doi.org/10.1038/s41538- 022-00167-x
  • Lin, MY., and Chen, TW. (2000). Reduction of cholesterol by Lactobacillus acidophilus in culture broth. J Food Drug Anal, 8(2), 97-102. https://doi.org/10.38212/2224-6614.2840
  • Lye, HS., Rahmat-Ali, GR., and Liong, MT. (2010a). Mechanisms of cholesterol removal by lactobacilli under conditions that mimic the human gastrointestinal tract. Int Dairy J, 20(3), 169-175. https://doi.org/10.1016/j.idairyj.2009.10.003
  • Lye, HS., Rusul, G., and Liong, MT. (2010b). Removal of cholesterol by lactobacilli via incorporation and conversion to coprostanol. J Dairy Sci, 93, 1383-1392. https://doi.org/10.3168/jds.2009-2574
  • Markowiak-Kopeć, P., and Śliżewska, K. (2020). The Effect of Probiotics on the Production of Short-Chain Fatty Acids by Human Intestinal Microbiome. Nutrients, 12(4), 1107-1111. https://doi.org/10.3390/nu12041107
  • Ooi, LG., and Liong, MT. (2010). Cholesterol-Lowering Effects of Probiotics and Prebiotics: A Review of in Vivo and in Vitro Findings. Int J Mol Sci, 11(6), 2499-2522. https://doi.org/10.3390/ijms11062499
  • Önür, ND., and Beyler, AR. (2001). Safra asitleri metabolizması. J Ankara Univ Fac Med, 54(1), 65-76. https://doi.org/10.1501/Tipfak_0000000295
  • Pereira, DIA., and Gibson, GR. (2002). Cholesterol Assimilation by Lactic Acid Bacteria and Bifidobacteria Isolated from the Human Gut. Appl Environ Microbiol, 68, 4689-4693. https://doi.org/10.1128/AEM.68.9.4689-4693.2002
  • Reis, SA., Conceição, LL., Rosa, DD., Siqueira, NP., and Peluzio, MCG. (2017). Mechanisms responsible for the hypocholesterolaemic effect of regular consumption of probiotics. Nutr Res Rev, 30(1), 36-49. https://doi.org/10.1017/S0954422416000226
  • Sharma, S., Kurpad, AV., and Puri, S. (2016). Potential of probiotics in hypercholesterolemia: A meta-analysis. Indian J Public Health, 60(4), 280-286. https://doi.org/10.4103/0019-557X.195859
  • Shobharani, P., and Halami, PM. (2016). In vitro evaluation of the cholesterol-reducing ability of a potential probiotic Bacillus spp. Ann Microbiol, 66, 643-651. https://doi.org/10.1007/s13213-015-1146-6
  • Tomaro-Duchesneau, C., Jones, M. L., Shah, D., Jain, P., Saha, S., and Prakash, S. (2014). Cholesterol assimilation by Lactobacillus probiotic bacteria: an in vitro investigation. BioMed Research International, 2014, 380316. https://doi.org/10.1155/2014/380316
  • Tsai, CC., Lin, PP., Hsieh, YM., Zhang, ZY., Wu, HC., and Huang, CC. (2014). Cholesterol-lowering potentials of lactic acid bacteria based on bile-salt hydrolase activity and effect of potent strains on cholesterol metabolism in vitro and in vivo. Sci World J, 2014, 690752. https://doi.org/10.1155/2014/690752
  • Wang, CS., Li, WB., Wang, HY., Ma, YM., Zhao, XH., Yang, H., Qian, JM., and Li, JN. (2018). VSL#3 can prevent ulcerative colitis-associated carcinogenesis in mice. Worl J Gastroenterol, 24(37), 4254-4262.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Halk Sağlığı (Diğer)
Bölüm Makaleler
Yazarlar

Mehmet Çavdar 0000-0003-3254-0952

Mahir Arslan 0000-0003-3441-0967

Meliha Çavdar 0000-0001-5122-7860

Yayımlanma Tarihi 30 Eylül 2025
Gönderilme Tarihi 8 Eylül 2025
Kabul Tarihi 25 Eylül 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 3

Kaynak Göster

APA Çavdar, M., Arslan, M., & Çavdar, M. (2025). Effects Of Probiotics On Cholesterol Metabolism: Biochemical Mechanisms And Clinical Potential. Turkish Journal of Science and Health, 6(3), 242-248. https://doi.org/10.51972/tfsd.1780302