BibTex RIS Kaynak Göster

Makrofungusların besin değeri ve biyolojik etkileri

Yıl 2011, Cilt: 68 Sayı: 4, 223 - 240, 01.12.2011

Öz

Makrofunguslar; klorofil içermeyen, Fungi aleminde bulunan Basidiomycetes ve Ascomycetes sınıflarında yer alan canlılardır. Ülkemizde doğal olarak yetişen ve kültürü yapılan makrofunguslar gıda olarak tüketilmektedirler. köylülerinin başlıca geçim kaynağını oluşturmakta ve ülkemize döviz girdisi sağlamaktadır. Makrofungusların yapısında su, protein, yağ ve karbonhidrat gibi bileşenler bulunmaktadır. Fruktifikasyon organları %80-95 oranında su içermektedir. En yüksek protein ve yağ içeriğine sahip olanlar Agaricus türleridir. Boletus edulis türü ise en yüksek oranda karbonhidrat içermektedir. Makrofungusların geneline bakıldığında %40’ın üzerinde karbonhidrat ve %20-40 arasında değişen oranda protein içerdikleri, buna rağmen yağ içeriklerinin %8’lerin altında kaldığı tespit edilmiştir. Makrofungusların içerdikleri aminoasitler arasında en yüksek orana sahip olanlar glütamin, asparajin ve metiyonindir. Makrofunguslarda doymamış yağ asidi oranı doymuş yağ asidi oranına göre yüksek miktarda olup linoleik, oleik ve palmitik asit en yüksek oranda içerdikleri yağ asitleridir. İnsan metabolizması için gerekli olan tiamin, riboflavin ve niasin gibi vitaminler de bileşimlerinde bulunmaktadır. Aynı zamanda makrofunguslar antioksidan etkiye sahip flavonoit, askorbik asit, β-karoten ve likopen yapısındaki maddeleri de içermektedirler. Makrofunguslardan izole edilen etkili maddeler arasında β-glukanlar, ergon, ganoderik asit vb. bulunmaktadır. Besin değerlerinin yanı sıra makrofunguslar antimikrobiyal, antioksidan, antikanserojen ve immünostimülan gibi biyolojik etkilere sahiptirler. Makrofungusların geniş bir biyolojik aktivite yelpazesine sahip oldukları gerçeği göz önünde bulundurularak günümüzde kullanılan ilaçlara alternatif olabilmeleri için yabani türlerinin kültürde üretilmesi yanı sıra aktif bileşiklerinin izolasyon ve standardizasyon çalışmalarına yoğunlaşılması gerekmektedir

Kaynakça

  • Stern KR. Bidlack JE. Jansky SH. Kingdom Fungi. In: Stern KR, ed. Introductory plant biology. 11th ed. Newyork: McGraw-Hill Companies, Inc, 2008: 70.
  • Rost TL, Barbour MG, Stocking CR, Murphy TM. Kingdom Fungi. In: Adams P, Alexander S, Arbogast M, Hopperstead K, Harkrader S, eds. Plant Biology. 2nd ed. Canada: Thomson Brooks/ Cole, 2006: 336-60.
  • Weier TE, Stocking CR, Barbour MG. The higher fungi. In: Robbins WW, ed. Botany an introduction to plant biology. 4th ed. New York: John Wiley and sons, Inc, 1970: 499-537. www.tuik.gov.tr (2011).
  • Jiskani MM. Energy potential of mushrooms. The DAWN Econ Bus Rev, 2001; 15-21.
  • Pekşen A, Kibar B, Yakupoğlu G. Yenilebilir bazı Lactarius türlerinin morfolojik özelliklerinin, protein ve mineral içeriklerinin belirlenmesi. Omü Zir. Fak. Derg, 2007; 22(3): 301-5.
  • Barros L, Baptista P, Correia DM, Casal S, Oliveira B, Ferreira ICFR. Fatty acid and sugar compositions, and nutritional value of five wild edible mushrooms from Northeast Portugal. Food Chem, 2007; 105: 140-5.
  • Pushpa H, Puruskothama KB. Nutritional analysis of wild and cultivated edible medicinal mushrooms. World J Dairy Food Sci, 2010; 5(2): 4.
  • Garcha HS, Khanna PK, Garcha GLS. Nutritional importance of mushrooms. In: Chang T, Buswell JA, Chiu SW, eds. Mushroom Biology and Mushroom Products. The Chinese University Press, Hong Kong, 1993: 227-36.
  • Saiqa S, Haq NB, Muhammad AH, Muhammad AA, Rehman A. Studies on chemical composition and nutritive evaluation of wild edible mushrooms. Iran J Chem Chem Eng, 2008; 27(3): 151-4.
  • Barros L, Cruz T, Baptista P, Estevinho LM, Ferreira ICFR. Wild and commercial mushrooms as source of nutrients and nutraceuticals. Food Chem Toxicol, 2008; 46: 2742-7.
  • Konuk M, Afyon A, Yağız D. Chemical composition of some naturally growing and edible mushrooms. Pak J Bot, 2006; 38(3): 799-804.
  • Paraskevi KO, Dimitrios P, Wolf-Dietrich K, Kyriakos AR. Nutritional value and metal content of wild edible mushrooms collected from West Macedonia and Epirus, Greece. Food Chem, 2009; : 1575-80.
  • Demirbas A. Metal ion uptake by mushrooms from natural and artificially enriched soils. Food Chem, ; 78: 89-93. Çağlarırmak N, Unal K, Otles S. Nutritional value of edible wild mushrooms collected from the Black Sea Region of Turkey. Micol Apl Int, 2002; (1): 1-5.
  • Barros L, Venturini BA, Baptista P, Estevinho LM, Ferreira ICFR. Chemical composition and biological properties of Portuguese wild mushrooms: A comprehensive study. J Agric Food Chem, 2008; 56: 3856-62.
  • Murugkar DA, Subbulakshmi G. Nutritional value of edible wild mushrooms collected from the Khasi Hills of Meghalaya. Food Chem, 2005; 89: 603.
  • Mau JL, Lin HC, Chen CC. Non-volatile components of several medicinal mushrooms. Food Res Int, ; 34: 521-6. Tseng YH, Lee YL, Li RC, Mau JL. Non-volatile flavour components of Ganoderma tsugae. Food Chem, 2005; 90: 409-15.
  • Mdachi SJM, Nkunya MHH, Nyigo VA, Urasa IT. Aminoacid composition of some Tanzanian wild mushrooms. Food Chem, 2004; 86: 179-82.
  • Kim MY, Chung M, Lee SJ, Ahn JK, Kim EH, Kim MJ, et al. Comparison of free aminoacid, carbohydrates concentrations in Korean edible and medicinal mushrooms. Food Chem, 2009; : 386-93.
  • Zhao YY, Shen X, Chao X, Ho CC, Cheng XL, Zhang Y, et al. Ergosta-4,6,8(14),22-tetraen-3-one induces G2/M cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells, Biochim Biophys Acta, 2011; 1810: 384-90.
  • Kim YS, Jeon JH, Im J, Kang SS, Choi JN, Ju HR, et al. Induction of intercellular adhesion molecule-1 by water-soluble components of Hericium erinaceum in human monocytes. J Ethnopharmacol, 2011;133: 874-80.
  • Su CH, Sun CS, Juan SW, Hu CH, Ke WT, Sheu MT. Fungal mycelia as the source of chitin and polysaccharides and their applications as skin substitutes. Biomaterials, 1997; 16: 1169-74.
  • Carbonero ER, Gracher AHP, Smiderle FR, Rosado FR, Sassaki GL, Gorin PAJ, et al. A β-glucan from the fruit bodies of edible mushrooms Pleurotus eryngii and Pleurotus ostreatoroseus. Carbohyd Polym, 2006; 66: 252-7.
  • Forland DT, Johnson E, Tryggestad AMA, Lyberg T, Hetland G. An extract based on the medicinal mushroom Agaricus blazei Murill stimulates monocyte-derived dendritic cells to cytokine and chemokine production in vitro. Cytokine, 2010; : 245-50.
  • Rheea SJ, Chob SY, Kimb KM, Chaa DS, Park HJ. A comparative study of analytical methods for alkali-soluble β-glucan in medicinal mushroom, Chaga (Inonotus obliquus). LWT, 2008; 41: 545-9.
  • Rasmy GE, Botros WA, Kabeil SS, Daba AS. Preparation of glucan from Lentinula edodes edible mushroom and elucidation of its medicinal value. Aust J Basic Appl Sci, 2010; 4(11): 26.
  • Tang YJ, Zhong JJ. Modeling the kinetics of cell growth and ganoderic acid production in liquid static cultures of the medicinal mushroom Ganoderma lucidum. Biochem Eng J, 2004; 21: 259-64.
  • Kim JH, Lee1 DH, Choi SY, Park JS, Lee JS. Effects of Lycii fructus and edible mushroom, Pholiota adiposa, on the quality and angiotensin I-converting enzyme inhibitory activity of Korean traditional rice wine. Food Biotechnol, 2006; 20: 183-91.
  • Kim JA, Tay D, Blanco EC. NF-κB Inhibitory activity of compounds isolated from Cantharellus cibarius. Phytother Res, 2008; 22: 1104-6.
  • Weng Y, Xiang L, Matsuura A, Zhang Y, Huang Q, Qi J.Ganodermasides A and B, two novel anti-aging ergosterols from spores of a medicinal mushroom Ganoderma lucidum on yeast via UTH1 gene. Bioorg Med Chem, 2010; 18: 999-1002.
  • Fujita R, Liu J, Shimizu K, Konishi F, Noda K, Kumamoto S, et al. Anti-androgenic activities of Ganoderma lucidum. J Ethnopharmacol, 2005; : 107-12.
  • Chen SC, Lu MK, Cheng JJ, Wang DL. Antiangiogenic activities of polysaccharides isolated from medicinal fungi. FEMS Microbiol Lett, 2005; 249: 54.
  • Sheena N, Ajith TA, Mathew AT, Janardhanan KK. Antibacterial activity of three macrofungi, Ganoderma lucidum, Navesporus floccosa and Phellinus rimosus occurring in South India. Pharm Biol, 2003; 41(8): 564-7.
  • Gbolagade J, Kigigha L, Ohimain E. Antagonistic effect of extracts of some Nigerian higher fungi against selected pathogenic microorganisms. American- Eurasian J Agric Environ Sci, 2007; 2(4): 364-8.
  • Ngai PHK, Zhao Z, Ng TB. Agrocybin, an antifungal peptide from the edible mushroom Agrocybe cylindracea. Peptides, 2005; 26: 191-6.
  • Wang H, Ng TB. Ganodermin, an antifungal protein from fruiting bodies of the medicinal mushroom Ganoderma lucidum. Peptides, 2006; 27: 27-30.
  • Bellinia MF, Giacominia NL, Eirab AF, Ribeiroc LR, Mantovani MS. Anticlastogenic effect of aqueous extracts of Agaricus blazei on CHO-k1 cells, studying different developmental phases of the mushroom. Toxicol in vitro, 2003; 17: 465-9.
  • Pohleven J, Obermajer N, Sabotic J, Anzlovar S, Sepcić K, Kos J, et al. Purification, characterization and cloning of a ricin B-like lectin from mushroom Clitocybe nebularis with antiproliferative activity against human leukemic T cells. Biochim Biophys Acta, 2009; 1790: 173-81.
  • Jeong SC, Jeong YT, Yang BK, Islam R, Koyyalamudia SR, Pang G, et al. White button mushroom (Agaricus bisporus) lowers blood glucose and cholesterol levels in diabetic and hypercholesterolemic rats. Nutr Res, 2010; 30: 49-56.
  • Liu HK, Tsai TH, Chang TT, Chou CJ, Lin LC. Lanostane-triterpenoids from the fungus Phellinus gilvus. Phytochem, 2009; 70: 558-63.
  • Cho EJ, Hwang HJ, Kim SW, Oh JY, Baek YM, Choi JW, et al. Hypoglycemic effects of exopolysaccharides cultures of two different mushrooms Tremella fuciformis and Phellinus baumii in ob/ob mice. Appl Microbiol Biotechnol, 2007; 75: 1257-65.
  • Hwang HJ, Kim SW, Lim JM, Joo JH, Kim HO, Kim HM, et al. Hypoglycemic effect of crude exopolysaccharides produced by a medicinal mushroom Phellinus baumii in streptozotocin- induced diabetic rats. Life Sci, 2005; 76: 3069-80.
  • Chen G, Luo YC, Li BP, Li B, Guo Y, Li Y, et al. Effect of polysaccharide from Auricularia auricula on blood lipid metabolism and lipoprotein lipase activity of ICR mice fed a cholesterol-enriched diet. J Food Sci, 2008; 73(6): 103-8.
  • Lin JY, Chen ML, Chiang BL, Lin BF. Ganoderma tsugae supplementation alleviates bronchoalveolar inflammation in an airway sensitization and challenge mouse model. Int Immunopharmacol, 2006; 6: 241-51.
  • Park YM, Kim IT, Park HJ, Choi JW, Park KY, Lee JD, et al. Anti-inflammatory and anti-nociceptive effects of the methanol extract of Fomes fomentarius. Biol Pharm Bull, 2004; 27(10): 1588-93.
  • Dore CMPG, Azevedo TCG, Souza MCR, Rego LA, Dantas JCM, Silva FRF, et al. Antiinflammatory, antioxidant and cytotoxic actions of β-glucan-rich extract from Geastrum saccatum mushroom. Int Immunopharmacol, 2007; 7: 1160-9.
  • Diyabalanage T, Mulabagal V, Mills G, DeWitt D, Nair MG. Health-beneficial qualities of the edible mushroom, Agrocybe aegerita. Food Chem, 2008; : 97-102.
  • Lu YY, Ao ZH, Lu ZM, Xu HY, Zhang XM, Dou WF, et al. Analgesic and anti inflammatory effects of the dry matter of culture broth of Termitomyces albuminosus and its extracts. J Ethnopharmacol, ; 120: 432-6.
  • Smiderle FR, Olsen LM, Carbonero ER, Baggio CH, Freitas CS, Marcon R, et al. Anti-inflammatory and analgesic properties in a rodentmodel of a (1 >3),(1 >6)-linked β-glucan isolated from Pleurotus pulmonarius. Eur J Pharmacol, 2008; : 86-91.
  • Ng TB, Chan WY. Polysaccharopeptide from the mushroom Coriolus versicolor possesses analgesic activity but does not produce adverse effects on female reproductive or embryonic development in mice. Gen Pharmac, 1997; 29(2): 269-73.
  • Barros L, Calhelha RC, Vaz JA, Ferreira ICFR, Baptista P, Estevinho LM. Antimicrobial activity and bioactive compounds of Portuguese wild edible mushrooms methanolic extracts. Eur Food Res Technol, 2007; 225: 151-6.
  • Barros L, Baptista P, Estevinho LM, Ferreira ICFR. Effect of fruiting body maturity stage on chemical composition and antimicrobial activity of Lactarius sp. mushrooms. J Agric Food Chem, ; 55: 8766-71.
  • Dulger B, Yilmaz F, Gucin F. Antimicrobial activity of some Lactarius species. Pharm Biol, 2002; (4): 304-6.
  • Dulger B. Antimicrobial activity of ten Lycoperdaceae. Fitoterapia, 2005; 76: 352-4.
  • Dulger B, Ergul CC, Gucin F. Antimicrobial activity of the macrofungus Lepista nuda. Fitoterapia, ; 73: 695-7. Dulger B. Antimicrobial activity of the macrofungus Pholiota adiposa. Fitoterapia, 2004; : 395-7.
  • Gao Y, Tang W, Gao H, Chan E, Lan J, Li X, et al. Antimicrobial activity of the medicinal mushroom Ganoderma. Food Rev Int, 2005; 21: 211-29.
  • Rivas CS, Rosado AG, Polonia I, Blanch GJ, Marin FR, Wichers HJ. Microbiological effects of olive mill waste addition to substrates for Pleurotus pulmonarius cultivation. Int Biodeter Biodegr, ; 57: 37-44.
  • Kalyoncu F, Oskay M, Sağlam H, Erdoğan TF, Tamer AU. Antimicrobial and antioxidant activities of mycelia of 10 wild mushroom species. J Med Food, 2010; 13(2): 415-9.
  • Dulger B, Arslan Ü. Coriolus versicolor (L. ex Fr.) Quel. makrofungusunun antimikrobiyal aktivitesi. Turk J Biol, 1999; 23: 385-92.
  • Barros L, Baptista P, Estevinho LM, Ferreira ICFR. Bioactive properties of the medicinal mushroom Leucopaxillus giganteus mycelium obtained in the presence of different nitrogen sources. Food Chem, 2007; 105: 179-86.
  • Turkoglu A, Duru ME, Mercan N, Kivrak I, Gezer K. Antioxidant and antimicrobial activities of Laetiporus sulphureus (Bull.) Murrill. Food Chem, ; 101: 267-73.
  • Orhan I, Üstün O. Determination of total phenol content, antioxidant activity and acetylcholinesterase inhibition in selected mushrooms from Turkey. J Food Compos Anal, , doi:10.1016/j.jfca.2010.11.005.
  • Ferreira ICFR, Baptista P, Boas MV, Barros L. Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: Individual cap and stipe activity. Food Chem, 2007; 100: 1511-6.
  • Chye FY, Wong JY, Lee JS. Nutritional quality and antioxidant activity of selected edible wild mushrooms. Food Sci Tech Int, 2008; 14(4): 375-84.
  • Ribeiro B, Lopes R, Andrade PB, Seabra RM, Gonçalves RF, Baptista P, et al. Comparative study of phytochemicals and antioxidant potential of wild edible mushroom caps and stipes. Food Chem, 2008; 110(1): 47-56.
  • Jayakumar T, Ramesh E, Geraldine P. Antioxidant activity of the oyster mushroom, Pleurotus ostreatus, on CCl4-induced liver injury in rats. Food Chem Toxicol, 2006; 44: 1989-96.
  • Lakshmi B, Tilak JC, Adhikari S, Devasagayam TPA, Janardhanan KK. Evaluation of antioxidant activity of selected Indian mushrooms. Pharm Biol, 2004; 42(3): 179-85.
  • Lee IK, Yun BS. Hispidin analogs from the mushroom Inonotus xeranticus and their free radical scavenging activity. Bioorg Med Chem Lett, 2006; 16: 2376-9.
  • Choi Y, Lee SM, Chun J, Lee HB, Lee J. Influence of heat treatment on the antioxidant activities and polyphenolic compounds of Shiitake (Lentinus edodes) mushroom. Food Chem, 2006; 99: 381-7.
  • Anguiano ACR, Santoyo S, Reglero G, Rivas CS. Radical scavenging activities, endogenous oxidative enzymes and total phenols in edible mushrooms commonly consumed in Europe. J Sci Food Agric, 2007; 87: 2272-8.
  • Mau JL, Lin HC, Song SF. Antioxidant properties of several specialty mushrooms. Food Res Int, 2002; : 519-26.
  • Bao HND, Shinomiya Y, Ikeda H, Ohshima T. Preventing discoloration and lipid oxidation in dark muscle of yellowtail by feding an extract prepared from mushroom (Flammulina velutipes) cultured medium. Aquaculture, 2009; 295: 9.
  • Elmastas M, Isildak O, Turkekul I, Temur N. Determination of antioxidant activity and antioxidant compounds in wild edible mushrooms. J Food Compos Anal, 2007; 20: 337-45.
  • Lee IK, Kim YS, Jang YW, Jung JY, Yun BS. New antioxidant polyphenols from the medicinal mushroom Inonotus obliquus. Bioorg Med Chem Lett, 2007; 17: 6678-81.
  • Lee IK, Jung JY, Seok SJ, Kim WG, Yun BS. Free radical scavengers from the medicinal mushroom Inonotus xeranticus and their proposed biogenesis. Bioorg Med Chem Lett, 2006; 16: 5621-4.
  • Yang JH, Lin HC, Mau JL. Antioxidant properties of several commercial mushrooms. Food Chem, ; 77: 229-35. G
  • ursoy N, Sarikurkcu C, Tepe B, Solak MH. Evaluation of antioxidant activities of 3 edible mushrooms: Ramaria flava (Schaef.: Fr.) Quél., Rhizopogon roseolus (Corda) T.M. Fries., and Russula delica. Fr Food Sci Biotechnol, 2010; (3): 691-6.
  • Cheung LM, Cheung PCK. Mushroom extracts with antioxidant activity against lipid peroxidation. Food Chem, 2005; 89: 403-9.
  • Lo KM, Cheung PCK. Antioxidant activity of extracts from the fruiting bodies of Agrocybe aegerita var. alba. Food Chem, 2005; 89: 533-9.
  • Cuia Y, Kima DS, Park KC. Antioxidant effect of Inonotus obliquus. J Ethnopharmacol, 2005; 96: 85.
  • Sarikurkcu C, Tepe B, Semiz DK, Solak MH. Evaluation of metal concentration and antioxidant activity of three edible mushrooms from Mugla, Turkey. Food Chem Toxicol, 2010; 48: 1230-3.
  • Bae JS, Jang KH, Yim H, Jin HK. Polysaccharides isolated from Phellinus gilvus inhibit melanoma growth in mice. Cancer Lett, 2005; 218: 43-52.
  • Kaneno R, Fontanari LM, Santos SA, Di Stasi LC, Rodrigues Filho E, Eira AF. Effects of extracts from Brazilian sun-mushroom (Agaricus blazei) on the NK activity and lymphoproliferative responsiveness of Ehrlich tumor-bearing mice. Food Chem Toxicol, 2004; 42: 909-6.
  • Ajith TA, Janardhanan KK. Cytotoxic and antitumor activities of a polypore macrofungus, Phellinus rimosus (Berk) Pilat. J Ethnopharmacol, ; 84: 157-62.
  • Choi YH, Huh MK, Ryu CH, Choi BT, Jeong YK. Induction of apoptotic cell death by mycelium extracts of Phellinus linteus in human neuroblastoma cells. Int J Mol Med, 2004; 14: 32.
  • Bae JS, Jang KH, Yim H, Park SC, Jin HK. Inhibitory effects of polysaccharides isolated from Phellinus gilvus on benzo(a)pyrene-induced forestomach carcinogenesis in mice. World J Gastroenterol, ; 11(4): 577-9.
  • Ngai PHK, Ng TB. A mushroom (Ganoderma capense) lectin with spectacular thermostability, potent mitogenic activity on splenocytes, and antiproliferative activity toward tumor cells. Biochem Biophys Res Commun, 2004; 314: 93.
  • Stanley G, Harvey K, Slivova V, Jiang J, Sliva D. Ganoderma lucidum suppresses angiogenesis through the inhibition of secretion of VEGF and TGF-b1 from prostate cancer cells. Biochem Biophys Res Commun, 2005; 330: 46-52.
  • Yu ZH, LiHua Y, Qian Y, Yan L. Effect of Lentinus edodes polysaccharide on oxidative stress, immunity activity and oral ulceration of rats stimulated by phenol. Carbohydr Polym, 2009; 75: 115-8.
  • Wang J, Wang HX, Ng TB. A peptide with HIV-1 reverse transcriptase inhibitory activity from the medicinal mushroom Russula paludosa. Peptides, ; 28: 560-5.
  • Synytsya A, Mickova K, Synytsya A, Jablonsky I, Spevacek J, Erban V, et al. Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: Structure and potential prebiotic activity. Carbohydr Polym, ; 76: 548-6.
  • Sheu F, Chien PJ, Chien AL, Chen YF, Chin KL. Isolation and characterization of an immunomodulatory protein (APP) from the Jew’s ear mushroom Auricularia polytricha. Food Chem, 2004; 87: 593-600.
  • Israilides C, Kletsas D, Arapoglou D, Philippoussis A, Pratsinis H, Ebringerov A, et al. In vitro cytostatic and immunomodulatory properties of the medicinal mushroom Lentinula edodes. Phytomedicine, 2008; 15: 512-9.
  • Kwon AH, Qiu Z, Hashimoto M, Yamamoto K, Kimura T. Effects of medicinal mushroom (Sparassis crispa) on wound healing in streptozotocin-induced diabetic rats. Am J Surg, ; 197: 503-9.
  • Batterbury M, Tebbs CA, Rhodes JM, Grierson I. Agaricus bisporus (edible mushroom lectin) inhibits ocular fibroblast proliferation and collagen lattice contraction. Exp Eye Res, 2002; (3): 361-70.
  • Sepcic K, Berne S, Potrich C, Turk T, Macek P, Menestrina G. Interaction of ostreolysin, a cytolytic protein from the edible mushroom Pleurotus ostreatus, with lipid membranes and modulation by lysophospholipids. Eur J Biochem, ; 270: 1199-210.
  • Samchai S, Seephonkai P, Sangdee A, Puntumchai A, Klinhom U. Antioxidant, cytotoxic and antimalarial activities from crude exctracts of mushroom Phellinus linteus. J Biol Sci, 2009; (7): 778-83.
  • Jin W, Zjawiony JK. 5-Alkylresorcinols from Merulius incarnatus. J Nat Prod, 2006; 69: 6.
  • Adams M, Christen M, Plitzko I, Zimmermann S, Brun R, Kaiser M, et al. Antiplasmodial lanostanes from the Ganoderma lucidum mushroom. J Nat Prod, 2010; 73: 897-900.
  • Endriga MA, Mojica ERE, Mecra FE, Lacsamana MS, Deocaris CC. Evaluation of some lectins as anti-protozoal agents. J Med Sci, 2005; 5(1): 4.
  • Nitha B, Janardhanan KK. Aqueous-ethanolic extract of morel mushroom mycelium Morchella esculenta, protects cisplatin and gentamicin induced nephrotoxicity in mice. Food Chem Toxicol, 2008; 46: 3193-9.

Nutritional value and biological effects of macrofungi

Yıl 2011, Cilt: 68 Sayı: 4, 223 - 240, 01.12.2011

Öz

Macrofungi lacking chlorophyll, belong to the Basidiomycetes and Ascomycetes classes. Naturally grown and cultured macrofungi are consumed as a food source also in our country. Wild macrofungi are a major source of living for forest loggers and it is exported to other countries. Macrofungi contain water up to 95% , proteins, lipids, and carbohydrates. c. Agaricus species have the highest protein and lipid content of all examined fungi species. However, Boletus edulis have the highest carbonhydrate content. Overall, it has been demonstrated that macrofungi contain more than 40% carbonhydrate, between 20% and 40% protein, but less than 8% lipid. Glutamine, asparagine and methionine are the most abundant aminoacids in macrofungi. The unsaturated fatty acid ratio is higher than the saturated fatty acid ratio in macrofungi. Linoleic, oleic and palmitic acids are the unsaturated fatty acids present in the highest concentrations. Macrofungi are also rich in essential vitamins for human metabolisms, including thiamine, riboflavin and niacin Macrofungi contain antioxidants such as flavonoid, ascorbic acid, β-carotene and lycopene. Other active substances obtained from macrofungi include β-glucans, ergon and ganoderic acid. In addition to those nutritional benefits, it has been shown that macrofungi have also some biological activities such as antimicrobial, antioxidant, anticancer and immunostimulation. antikanserojen ve immünostimülan gibi biyolojik etkilere sahiptirler. Makrofungusların geniş bir biyolojik aktivite yelpazesine sahip oldukları gerçeği göz önünde bulundurularak günümüzde kullanılan ilaçlara alternatif olabilmeleri için yabani türlerinin kültürde üretilmesi yanı sıra aktif bileşiklerinin izolasyon ve standardizasyon çalışmalarına yoğunlaşılması gerekmektedir

Kaynakça

  • Stern KR. Bidlack JE. Jansky SH. Kingdom Fungi. In: Stern KR, ed. Introductory plant biology. 11th ed. Newyork: McGraw-Hill Companies, Inc, 2008: 70.
  • Rost TL, Barbour MG, Stocking CR, Murphy TM. Kingdom Fungi. In: Adams P, Alexander S, Arbogast M, Hopperstead K, Harkrader S, eds. Plant Biology. 2nd ed. Canada: Thomson Brooks/ Cole, 2006: 336-60.
  • Weier TE, Stocking CR, Barbour MG. The higher fungi. In: Robbins WW, ed. Botany an introduction to plant biology. 4th ed. New York: John Wiley and sons, Inc, 1970: 499-537. www.tuik.gov.tr (2011).
  • Jiskani MM. Energy potential of mushrooms. The DAWN Econ Bus Rev, 2001; 15-21.
  • Pekşen A, Kibar B, Yakupoğlu G. Yenilebilir bazı Lactarius türlerinin morfolojik özelliklerinin, protein ve mineral içeriklerinin belirlenmesi. Omü Zir. Fak. Derg, 2007; 22(3): 301-5.
  • Barros L, Baptista P, Correia DM, Casal S, Oliveira B, Ferreira ICFR. Fatty acid and sugar compositions, and nutritional value of five wild edible mushrooms from Northeast Portugal. Food Chem, 2007; 105: 140-5.
  • Pushpa H, Puruskothama KB. Nutritional analysis of wild and cultivated edible medicinal mushrooms. World J Dairy Food Sci, 2010; 5(2): 4.
  • Garcha HS, Khanna PK, Garcha GLS. Nutritional importance of mushrooms. In: Chang T, Buswell JA, Chiu SW, eds. Mushroom Biology and Mushroom Products. The Chinese University Press, Hong Kong, 1993: 227-36.
  • Saiqa S, Haq NB, Muhammad AH, Muhammad AA, Rehman A. Studies on chemical composition and nutritive evaluation of wild edible mushrooms. Iran J Chem Chem Eng, 2008; 27(3): 151-4.
  • Barros L, Cruz T, Baptista P, Estevinho LM, Ferreira ICFR. Wild and commercial mushrooms as source of nutrients and nutraceuticals. Food Chem Toxicol, 2008; 46: 2742-7.
  • Konuk M, Afyon A, Yağız D. Chemical composition of some naturally growing and edible mushrooms. Pak J Bot, 2006; 38(3): 799-804.
  • Paraskevi KO, Dimitrios P, Wolf-Dietrich K, Kyriakos AR. Nutritional value and metal content of wild edible mushrooms collected from West Macedonia and Epirus, Greece. Food Chem, 2009; : 1575-80.
  • Demirbas A. Metal ion uptake by mushrooms from natural and artificially enriched soils. Food Chem, ; 78: 89-93. Çağlarırmak N, Unal K, Otles S. Nutritional value of edible wild mushrooms collected from the Black Sea Region of Turkey. Micol Apl Int, 2002; (1): 1-5.
  • Barros L, Venturini BA, Baptista P, Estevinho LM, Ferreira ICFR. Chemical composition and biological properties of Portuguese wild mushrooms: A comprehensive study. J Agric Food Chem, 2008; 56: 3856-62.
  • Murugkar DA, Subbulakshmi G. Nutritional value of edible wild mushrooms collected from the Khasi Hills of Meghalaya. Food Chem, 2005; 89: 603.
  • Mau JL, Lin HC, Chen CC. Non-volatile components of several medicinal mushrooms. Food Res Int, ; 34: 521-6. Tseng YH, Lee YL, Li RC, Mau JL. Non-volatile flavour components of Ganoderma tsugae. Food Chem, 2005; 90: 409-15.
  • Mdachi SJM, Nkunya MHH, Nyigo VA, Urasa IT. Aminoacid composition of some Tanzanian wild mushrooms. Food Chem, 2004; 86: 179-82.
  • Kim MY, Chung M, Lee SJ, Ahn JK, Kim EH, Kim MJ, et al. Comparison of free aminoacid, carbohydrates concentrations in Korean edible and medicinal mushrooms. Food Chem, 2009; : 386-93.
  • Zhao YY, Shen X, Chao X, Ho CC, Cheng XL, Zhang Y, et al. Ergosta-4,6,8(14),22-tetraen-3-one induces G2/M cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells, Biochim Biophys Acta, 2011; 1810: 384-90.
  • Kim YS, Jeon JH, Im J, Kang SS, Choi JN, Ju HR, et al. Induction of intercellular adhesion molecule-1 by water-soluble components of Hericium erinaceum in human monocytes. J Ethnopharmacol, 2011;133: 874-80.
  • Su CH, Sun CS, Juan SW, Hu CH, Ke WT, Sheu MT. Fungal mycelia as the source of chitin and polysaccharides and their applications as skin substitutes. Biomaterials, 1997; 16: 1169-74.
  • Carbonero ER, Gracher AHP, Smiderle FR, Rosado FR, Sassaki GL, Gorin PAJ, et al. A β-glucan from the fruit bodies of edible mushrooms Pleurotus eryngii and Pleurotus ostreatoroseus. Carbohyd Polym, 2006; 66: 252-7.
  • Forland DT, Johnson E, Tryggestad AMA, Lyberg T, Hetland G. An extract based on the medicinal mushroom Agaricus blazei Murill stimulates monocyte-derived dendritic cells to cytokine and chemokine production in vitro. Cytokine, 2010; : 245-50.
  • Rheea SJ, Chob SY, Kimb KM, Chaa DS, Park HJ. A comparative study of analytical methods for alkali-soluble β-glucan in medicinal mushroom, Chaga (Inonotus obliquus). LWT, 2008; 41: 545-9.
  • Rasmy GE, Botros WA, Kabeil SS, Daba AS. Preparation of glucan from Lentinula edodes edible mushroom and elucidation of its medicinal value. Aust J Basic Appl Sci, 2010; 4(11): 26.
  • Tang YJ, Zhong JJ. Modeling the kinetics of cell growth and ganoderic acid production in liquid static cultures of the medicinal mushroom Ganoderma lucidum. Biochem Eng J, 2004; 21: 259-64.
  • Kim JH, Lee1 DH, Choi SY, Park JS, Lee JS. Effects of Lycii fructus and edible mushroom, Pholiota adiposa, on the quality and angiotensin I-converting enzyme inhibitory activity of Korean traditional rice wine. Food Biotechnol, 2006; 20: 183-91.
  • Kim JA, Tay D, Blanco EC. NF-κB Inhibitory activity of compounds isolated from Cantharellus cibarius. Phytother Res, 2008; 22: 1104-6.
  • Weng Y, Xiang L, Matsuura A, Zhang Y, Huang Q, Qi J.Ganodermasides A and B, two novel anti-aging ergosterols from spores of a medicinal mushroom Ganoderma lucidum on yeast via UTH1 gene. Bioorg Med Chem, 2010; 18: 999-1002.
  • Fujita R, Liu J, Shimizu K, Konishi F, Noda K, Kumamoto S, et al. Anti-androgenic activities of Ganoderma lucidum. J Ethnopharmacol, 2005; : 107-12.
  • Chen SC, Lu MK, Cheng JJ, Wang DL. Antiangiogenic activities of polysaccharides isolated from medicinal fungi. FEMS Microbiol Lett, 2005; 249: 54.
  • Sheena N, Ajith TA, Mathew AT, Janardhanan KK. Antibacterial activity of three macrofungi, Ganoderma lucidum, Navesporus floccosa and Phellinus rimosus occurring in South India. Pharm Biol, 2003; 41(8): 564-7.
  • Gbolagade J, Kigigha L, Ohimain E. Antagonistic effect of extracts of some Nigerian higher fungi against selected pathogenic microorganisms. American- Eurasian J Agric Environ Sci, 2007; 2(4): 364-8.
  • Ngai PHK, Zhao Z, Ng TB. Agrocybin, an antifungal peptide from the edible mushroom Agrocybe cylindracea. Peptides, 2005; 26: 191-6.
  • Wang H, Ng TB. Ganodermin, an antifungal protein from fruiting bodies of the medicinal mushroom Ganoderma lucidum. Peptides, 2006; 27: 27-30.
  • Bellinia MF, Giacominia NL, Eirab AF, Ribeiroc LR, Mantovani MS. Anticlastogenic effect of aqueous extracts of Agaricus blazei on CHO-k1 cells, studying different developmental phases of the mushroom. Toxicol in vitro, 2003; 17: 465-9.
  • Pohleven J, Obermajer N, Sabotic J, Anzlovar S, Sepcić K, Kos J, et al. Purification, characterization and cloning of a ricin B-like lectin from mushroom Clitocybe nebularis with antiproliferative activity against human leukemic T cells. Biochim Biophys Acta, 2009; 1790: 173-81.
  • Jeong SC, Jeong YT, Yang BK, Islam R, Koyyalamudia SR, Pang G, et al. White button mushroom (Agaricus bisporus) lowers blood glucose and cholesterol levels in diabetic and hypercholesterolemic rats. Nutr Res, 2010; 30: 49-56.
  • Liu HK, Tsai TH, Chang TT, Chou CJ, Lin LC. Lanostane-triterpenoids from the fungus Phellinus gilvus. Phytochem, 2009; 70: 558-63.
  • Cho EJ, Hwang HJ, Kim SW, Oh JY, Baek YM, Choi JW, et al. Hypoglycemic effects of exopolysaccharides cultures of two different mushrooms Tremella fuciformis and Phellinus baumii in ob/ob mice. Appl Microbiol Biotechnol, 2007; 75: 1257-65.
  • Hwang HJ, Kim SW, Lim JM, Joo JH, Kim HO, Kim HM, et al. Hypoglycemic effect of crude exopolysaccharides produced by a medicinal mushroom Phellinus baumii in streptozotocin- induced diabetic rats. Life Sci, 2005; 76: 3069-80.
  • Chen G, Luo YC, Li BP, Li B, Guo Y, Li Y, et al. Effect of polysaccharide from Auricularia auricula on blood lipid metabolism and lipoprotein lipase activity of ICR mice fed a cholesterol-enriched diet. J Food Sci, 2008; 73(6): 103-8.
  • Lin JY, Chen ML, Chiang BL, Lin BF. Ganoderma tsugae supplementation alleviates bronchoalveolar inflammation in an airway sensitization and challenge mouse model. Int Immunopharmacol, 2006; 6: 241-51.
  • Park YM, Kim IT, Park HJ, Choi JW, Park KY, Lee JD, et al. Anti-inflammatory and anti-nociceptive effects of the methanol extract of Fomes fomentarius. Biol Pharm Bull, 2004; 27(10): 1588-93.
  • Dore CMPG, Azevedo TCG, Souza MCR, Rego LA, Dantas JCM, Silva FRF, et al. Antiinflammatory, antioxidant and cytotoxic actions of β-glucan-rich extract from Geastrum saccatum mushroom. Int Immunopharmacol, 2007; 7: 1160-9.
  • Diyabalanage T, Mulabagal V, Mills G, DeWitt D, Nair MG. Health-beneficial qualities of the edible mushroom, Agrocybe aegerita. Food Chem, 2008; : 97-102.
  • Lu YY, Ao ZH, Lu ZM, Xu HY, Zhang XM, Dou WF, et al. Analgesic and anti inflammatory effects of the dry matter of culture broth of Termitomyces albuminosus and its extracts. J Ethnopharmacol, ; 120: 432-6.
  • Smiderle FR, Olsen LM, Carbonero ER, Baggio CH, Freitas CS, Marcon R, et al. Anti-inflammatory and analgesic properties in a rodentmodel of a (1 >3),(1 >6)-linked β-glucan isolated from Pleurotus pulmonarius. Eur J Pharmacol, 2008; : 86-91.
  • Ng TB, Chan WY. Polysaccharopeptide from the mushroom Coriolus versicolor possesses analgesic activity but does not produce adverse effects on female reproductive or embryonic development in mice. Gen Pharmac, 1997; 29(2): 269-73.
  • Barros L, Calhelha RC, Vaz JA, Ferreira ICFR, Baptista P, Estevinho LM. Antimicrobial activity and bioactive compounds of Portuguese wild edible mushrooms methanolic extracts. Eur Food Res Technol, 2007; 225: 151-6.
  • Barros L, Baptista P, Estevinho LM, Ferreira ICFR. Effect of fruiting body maturity stage on chemical composition and antimicrobial activity of Lactarius sp. mushrooms. J Agric Food Chem, ; 55: 8766-71.
  • Dulger B, Yilmaz F, Gucin F. Antimicrobial activity of some Lactarius species. Pharm Biol, 2002; (4): 304-6.
  • Dulger B. Antimicrobial activity of ten Lycoperdaceae. Fitoterapia, 2005; 76: 352-4.
  • Dulger B, Ergul CC, Gucin F. Antimicrobial activity of the macrofungus Lepista nuda. Fitoterapia, ; 73: 695-7. Dulger B. Antimicrobial activity of the macrofungus Pholiota adiposa. Fitoterapia, 2004; : 395-7.
  • Gao Y, Tang W, Gao H, Chan E, Lan J, Li X, et al. Antimicrobial activity of the medicinal mushroom Ganoderma. Food Rev Int, 2005; 21: 211-29.
  • Rivas CS, Rosado AG, Polonia I, Blanch GJ, Marin FR, Wichers HJ. Microbiological effects of olive mill waste addition to substrates for Pleurotus pulmonarius cultivation. Int Biodeter Biodegr, ; 57: 37-44.
  • Kalyoncu F, Oskay M, Sağlam H, Erdoğan TF, Tamer AU. Antimicrobial and antioxidant activities of mycelia of 10 wild mushroom species. J Med Food, 2010; 13(2): 415-9.
  • Dulger B, Arslan Ü. Coriolus versicolor (L. ex Fr.) Quel. makrofungusunun antimikrobiyal aktivitesi. Turk J Biol, 1999; 23: 385-92.
  • Barros L, Baptista P, Estevinho LM, Ferreira ICFR. Bioactive properties of the medicinal mushroom Leucopaxillus giganteus mycelium obtained in the presence of different nitrogen sources. Food Chem, 2007; 105: 179-86.
  • Turkoglu A, Duru ME, Mercan N, Kivrak I, Gezer K. Antioxidant and antimicrobial activities of Laetiporus sulphureus (Bull.) Murrill. Food Chem, ; 101: 267-73.
  • Orhan I, Üstün O. Determination of total phenol content, antioxidant activity and acetylcholinesterase inhibition in selected mushrooms from Turkey. J Food Compos Anal, , doi:10.1016/j.jfca.2010.11.005.
  • Ferreira ICFR, Baptista P, Boas MV, Barros L. Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: Individual cap and stipe activity. Food Chem, 2007; 100: 1511-6.
  • Chye FY, Wong JY, Lee JS. Nutritional quality and antioxidant activity of selected edible wild mushrooms. Food Sci Tech Int, 2008; 14(4): 375-84.
  • Ribeiro B, Lopes R, Andrade PB, Seabra RM, Gonçalves RF, Baptista P, et al. Comparative study of phytochemicals and antioxidant potential of wild edible mushroom caps and stipes. Food Chem, 2008; 110(1): 47-56.
  • Jayakumar T, Ramesh E, Geraldine P. Antioxidant activity of the oyster mushroom, Pleurotus ostreatus, on CCl4-induced liver injury in rats. Food Chem Toxicol, 2006; 44: 1989-96.
  • Lakshmi B, Tilak JC, Adhikari S, Devasagayam TPA, Janardhanan KK. Evaluation of antioxidant activity of selected Indian mushrooms. Pharm Biol, 2004; 42(3): 179-85.
  • Lee IK, Yun BS. Hispidin analogs from the mushroom Inonotus xeranticus and their free radical scavenging activity. Bioorg Med Chem Lett, 2006; 16: 2376-9.
  • Choi Y, Lee SM, Chun J, Lee HB, Lee J. Influence of heat treatment on the antioxidant activities and polyphenolic compounds of Shiitake (Lentinus edodes) mushroom. Food Chem, 2006; 99: 381-7.
  • Anguiano ACR, Santoyo S, Reglero G, Rivas CS. Radical scavenging activities, endogenous oxidative enzymes and total phenols in edible mushrooms commonly consumed in Europe. J Sci Food Agric, 2007; 87: 2272-8.
  • Mau JL, Lin HC, Song SF. Antioxidant properties of several specialty mushrooms. Food Res Int, 2002; : 519-26.
  • Bao HND, Shinomiya Y, Ikeda H, Ohshima T. Preventing discoloration and lipid oxidation in dark muscle of yellowtail by feding an extract prepared from mushroom (Flammulina velutipes) cultured medium. Aquaculture, 2009; 295: 9.
  • Elmastas M, Isildak O, Turkekul I, Temur N. Determination of antioxidant activity and antioxidant compounds in wild edible mushrooms. J Food Compos Anal, 2007; 20: 337-45.
  • Lee IK, Kim YS, Jang YW, Jung JY, Yun BS. New antioxidant polyphenols from the medicinal mushroom Inonotus obliquus. Bioorg Med Chem Lett, 2007; 17: 6678-81.
  • Lee IK, Jung JY, Seok SJ, Kim WG, Yun BS. Free radical scavengers from the medicinal mushroom Inonotus xeranticus and their proposed biogenesis. Bioorg Med Chem Lett, 2006; 16: 5621-4.
  • Yang JH, Lin HC, Mau JL. Antioxidant properties of several commercial mushrooms. Food Chem, ; 77: 229-35. G
  • ursoy N, Sarikurkcu C, Tepe B, Solak MH. Evaluation of antioxidant activities of 3 edible mushrooms: Ramaria flava (Schaef.: Fr.) Quél., Rhizopogon roseolus (Corda) T.M. Fries., and Russula delica. Fr Food Sci Biotechnol, 2010; (3): 691-6.
  • Cheung LM, Cheung PCK. Mushroom extracts with antioxidant activity against lipid peroxidation. Food Chem, 2005; 89: 403-9.
  • Lo KM, Cheung PCK. Antioxidant activity of extracts from the fruiting bodies of Agrocybe aegerita var. alba. Food Chem, 2005; 89: 533-9.
  • Cuia Y, Kima DS, Park KC. Antioxidant effect of Inonotus obliquus. J Ethnopharmacol, 2005; 96: 85.
  • Sarikurkcu C, Tepe B, Semiz DK, Solak MH. Evaluation of metal concentration and antioxidant activity of three edible mushrooms from Mugla, Turkey. Food Chem Toxicol, 2010; 48: 1230-3.
  • Bae JS, Jang KH, Yim H, Jin HK. Polysaccharides isolated from Phellinus gilvus inhibit melanoma growth in mice. Cancer Lett, 2005; 218: 43-52.
  • Kaneno R, Fontanari LM, Santos SA, Di Stasi LC, Rodrigues Filho E, Eira AF. Effects of extracts from Brazilian sun-mushroom (Agaricus blazei) on the NK activity and lymphoproliferative responsiveness of Ehrlich tumor-bearing mice. Food Chem Toxicol, 2004; 42: 909-6.
  • Ajith TA, Janardhanan KK. Cytotoxic and antitumor activities of a polypore macrofungus, Phellinus rimosus (Berk) Pilat. J Ethnopharmacol, ; 84: 157-62.
  • Choi YH, Huh MK, Ryu CH, Choi BT, Jeong YK. Induction of apoptotic cell death by mycelium extracts of Phellinus linteus in human neuroblastoma cells. Int J Mol Med, 2004; 14: 32.
  • Bae JS, Jang KH, Yim H, Park SC, Jin HK. Inhibitory effects of polysaccharides isolated from Phellinus gilvus on benzo(a)pyrene-induced forestomach carcinogenesis in mice. World J Gastroenterol, ; 11(4): 577-9.
  • Ngai PHK, Ng TB. A mushroom (Ganoderma capense) lectin with spectacular thermostability, potent mitogenic activity on splenocytes, and antiproliferative activity toward tumor cells. Biochem Biophys Res Commun, 2004; 314: 93.
  • Stanley G, Harvey K, Slivova V, Jiang J, Sliva D. Ganoderma lucidum suppresses angiogenesis through the inhibition of secretion of VEGF and TGF-b1 from prostate cancer cells. Biochem Biophys Res Commun, 2005; 330: 46-52.
  • Yu ZH, LiHua Y, Qian Y, Yan L. Effect of Lentinus edodes polysaccharide on oxidative stress, immunity activity and oral ulceration of rats stimulated by phenol. Carbohydr Polym, 2009; 75: 115-8.
  • Wang J, Wang HX, Ng TB. A peptide with HIV-1 reverse transcriptase inhibitory activity from the medicinal mushroom Russula paludosa. Peptides, ; 28: 560-5.
  • Synytsya A, Mickova K, Synytsya A, Jablonsky I, Spevacek J, Erban V, et al. Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: Structure and potential prebiotic activity. Carbohydr Polym, ; 76: 548-6.
  • Sheu F, Chien PJ, Chien AL, Chen YF, Chin KL. Isolation and characterization of an immunomodulatory protein (APP) from the Jew’s ear mushroom Auricularia polytricha. Food Chem, 2004; 87: 593-600.
  • Israilides C, Kletsas D, Arapoglou D, Philippoussis A, Pratsinis H, Ebringerov A, et al. In vitro cytostatic and immunomodulatory properties of the medicinal mushroom Lentinula edodes. Phytomedicine, 2008; 15: 512-9.
  • Kwon AH, Qiu Z, Hashimoto M, Yamamoto K, Kimura T. Effects of medicinal mushroom (Sparassis crispa) on wound healing in streptozotocin-induced diabetic rats. Am J Surg, ; 197: 503-9.
  • Batterbury M, Tebbs CA, Rhodes JM, Grierson I. Agaricus bisporus (edible mushroom lectin) inhibits ocular fibroblast proliferation and collagen lattice contraction. Exp Eye Res, 2002; (3): 361-70.
  • Sepcic K, Berne S, Potrich C, Turk T, Macek P, Menestrina G. Interaction of ostreolysin, a cytolytic protein from the edible mushroom Pleurotus ostreatus, with lipid membranes and modulation by lysophospholipids. Eur J Biochem, ; 270: 1199-210.
  • Samchai S, Seephonkai P, Sangdee A, Puntumchai A, Klinhom U. Antioxidant, cytotoxic and antimalarial activities from crude exctracts of mushroom Phellinus linteus. J Biol Sci, 2009; (7): 778-83.
  • Jin W, Zjawiony JK. 5-Alkylresorcinols from Merulius incarnatus. J Nat Prod, 2006; 69: 6.
  • Adams M, Christen M, Plitzko I, Zimmermann S, Brun R, Kaiser M, et al. Antiplasmodial lanostanes from the Ganoderma lucidum mushroom. J Nat Prod, 2010; 73: 897-900.
  • Endriga MA, Mojica ERE, Mecra FE, Lacsamana MS, Deocaris CC. Evaluation of some lectins as anti-protozoal agents. J Med Sci, 2005; 5(1): 4.
  • Nitha B, Janardhanan KK. Aqueous-ethanolic extract of morel mushroom mycelium Morchella esculenta, protects cisplatin and gentamicin induced nephrotoxicity in mice. Food Chem Toxicol, 2008; 46: 3193-9.
Toplam 100 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Osman Üstün Bu kişi benim

Yayımlanma Tarihi 1 Aralık 2011
Yayımlandığı Sayı Yıl 2011 Cilt: 68 Sayı: 4

Kaynak Göster

APA Üstün, O. (2011). Makrofungusların besin değeri ve biyolojik etkileri. Türk Hijyen Ve Deneysel Biyoloji Dergisi, 68(4), 223-240.
AMA Üstün O. Makrofungusların besin değeri ve biyolojik etkileri. Turk Hij Den Biyol Derg. Aralık 2011;68(4):223-240.
Chicago Üstün, Osman. “Makrofungusların Besin değeri Ve Biyolojik Etkileri”. Türk Hijyen Ve Deneysel Biyoloji Dergisi 68, sy. 4 (Aralık 2011): 223-40.
EndNote Üstün O (01 Aralık 2011) Makrofungusların besin değeri ve biyolojik etkileri. Türk Hijyen ve Deneysel Biyoloji Dergisi 68 4 223–240.
IEEE O. Üstün, “Makrofungusların besin değeri ve biyolojik etkileri”, Turk Hij Den Biyol Derg, c. 68, sy. 4, ss. 223–240, 2011.
ISNAD Üstün, Osman. “Makrofungusların Besin değeri Ve Biyolojik Etkileri”. Türk Hijyen ve Deneysel Biyoloji Dergisi 68/4 (Aralık 2011), 223-240.
JAMA Üstün O. Makrofungusların besin değeri ve biyolojik etkileri. Turk Hij Den Biyol Derg. 2011;68:223–240.
MLA Üstün, Osman. “Makrofungusların Besin değeri Ve Biyolojik Etkileri”. Türk Hijyen Ve Deneysel Biyoloji Dergisi, c. 68, sy. 4, 2011, ss. 223-40.
Vancouver Üstün O. Makrofungusların besin değeri ve biyolojik etkileri. Turk Hij Den Biyol Derg. 2011;68(4):223-40.