BibTex RIS Kaynak Göster

Biyosorpsiyon, Adsorpsiyon, Fitoremediasyon Yöntemleri ve Uygulamaları

Yıl 2012, Cilt: 69 Sayı: 4, 235 - 253, 01.12.2012

Öz

Çevre kirliliği günümüzde önemli bir sorun teşkil etmektedir. Çevre kirleticilerine maruz kalmış alanlarda kullanılan remediasyon tekniği genellikle yüksek maliyetli olmaktadır. Endüstriyel atıklardan metallerin uzaklaştırılması için fiziksel ve kimyasal yöntemlerin yerine biyolojik moleküllerin kullanımı, alternatif ve oldukça etkili yöntemdir. Metal gideriminde biyolojik moleküllerin kullanıldığı uygulamalar arasında biyosorpsiyon, adsorbsiyon ve fitoremediasyon yöntemleri yer almaktadır. Biyosorpsiyon, sulu ortamlardan metal iyonlarının biyokütle tarafından alınmasıdır. Biyosorbent yüzeyinde tutulacak çözünmüş maddelerin biyokütle etrafını saran çözücü sıvı film içerisinden geçmesi gerekmektedir. Biyosorpsiyon şartlarının gerçekleşebilmesi için bazı optimal koşulların oluşması gerekmektedir. Biyosorpsiyon yöntemi metal iyonu türü, biyokütle türü ve miktarı, konsantrasyon, sıcaklık, çözelti pH’sı gibi fizikokimyasal faktörlerden etkilenmektedir. Adsorpsiyon, moleküllerin temas ettikleri yüzeydeki çekme kuvvetlerine göre o yüzeyle birleşmesidir. Fitoremediasyon, biyolojik materyallerden biri olan bitki kullanılarak yapılan çevreyi ıslah etme teknolojisidir. Günümüzde fitoremediasyon teknolojisi yoluyla bitki materyali kullanılarak metal ile kirlenmiş alanlardaki organik ve inorganik maddeler temizlenebilmektedir. Fitoremediasyon tekniğinin en önemli avantajları arasında yerinde arıtım sağlaması ve bu teknikte ekstra enerjiye gereksinim olmamasıdır. Ayrıca fitoremediasyon tekniği doğal kaynaklara zarar vermez ve kamuoyu tarafından yüksek kabul görür. Bu avantajların yanında fitoremediasyon tekniği su, toprak ve sedimentte sadece sığ bölgelerde arıtıma olanak verir. Fitoremediasyon tekniğinin bir diğer dezavantajı ise çok ağır düzeylerde kirlenmiş alanlarda bitkilerin kısa sürede etkinliğini gösterememesidir. Bu nedenle fitoremediasyon tekniği ancak düşük düzeylerde kirlenmiş alanlarda kullanılabilir. Bitki kullanılarak topraklardan alınan metal alma işleminde amaç, toprak tarafından tutulmuş halde bulunan metallerin daha kontrol edilebilir ve taşınabilir forma dönüştürülmesidir. Böylelikle, biyolojik materyaller bakteri, mantar, liken ve bitki kullanılarak maliyeti düşük ve yapılabilmesi kolay olan fitoremediasyon yöntemleri sayesinde metal kirliliğinin giderilmesi sağlanmış olacaktır.

Kaynakça

  • 1. Özdemir Hİ. Genel Anorganik ve Teknik Kimya. İstanbul: Matbaa Teknisyenleri Basımevi, 1981.
  • 2. Anonymous. http://www.food-info.net/tr/metal/ intro.htm
  • 3. Nies DH. Microbial heavy-metal resistance. Appl Microbiol Biotechnol, 1991; 51: 730-50.
  • 4. Ehrlich HL. Microbes and metals. Appl Microbiol Biotechnol, 1997; 48: 687-92.
  • 5. Lester JN, Perry R, Dadd AH. The influence of heavy metals in a mixed population of sewage origin in the chemostat. Water Res, 1979; 13: 1055-63.
  • 6. Braam F, Klapwijk A. Effect of copper on nitrification in activated sludge. Water Res, 1981; 5: 1093-8.
  • 7. Waara KO. Effects of copper, cadmium, lead and zinc on nitrate reduction in a synthetic water medium and lake water from Northern Sweeden. Water Res, 1992; 26: 355-64.
  • 8. Ajmal M, Ahmad A, Nomani AA. Microbial uptake of cadmium and its effects on the biochemical oxygen demand. Water Res, 1982; 16: 1611-4.
  • 9. Ajmal M, Ahmad A, Nomani AA. Influence of toxic metals on the repression of carbonaceous oxygen demand. Water Res, 1983; 17: 799-802.
  • 10. Madoni P, Davoli D, Gorbi G, Vescoli L. Toxic effects of heavy metals on the activated sludge. Protozoan community. Water Res, 1996; 30: 135-41.
  • 11. Dilek FB, Yetis U. Effects of heavy metals on activated sludge process. Water Sci Technol, 1992; 26: 801-13.
  • 12. Imai A, Gloyna EF. Effects of pH and oxidation state of chromium on the behaviour of chromium on activated sludge process. Water Res, 1990; 24: 1143-50.
  • 13. Surittanonta S, Sherrad JH. Activated sludge nickel toxicity studies. J. Water Pollut Control Fed, 1981; 53: 1314-22.
  • 14. Bigersson B, Sterner O, Zimerson, E. Chemie und gesundheit, Eine Verst 2nd liche einführung in die toxikologie. VCH Verlagsgeselschaft, 1988.
  • 15. Duffus JH, Worth HGJ. Fundamental toxicology for chemists. UK: Royal Society of Chemistry Information Services, 1996.
  • 16. Kahvecioglu Ö, Kartal G, Güven A, Timur S. Metallerin Çevresel Etkileri-I. Metalurji, 2003; 136: 47-53.
  • 17. Horsfall MJ, Spiff AI. Effects of temperature on the sorption of Pb+2 and Cd+2 from aqueous solution by Caladium bicolor (Wild Cocoyam) biomass. Electron J Biotechn, 2005; 8: 143–50.
  • 18. Bailey SE, OLin TJ, Bricka RM, Adrian DD. A review of potentially low-cost sorbents for heavy metals. Water Res, 1999; 33: 2469-79.
  • 19. Ghaedi M, Asadpour E, Vafaie A. Sensitized spectrophotometric determination of Cr (III) ion for speciation of chromium ion in surfacrant media using Alpha-Benzoin Oxime. spectrochim. Acta, 2006; 63: 182-88.
  • 20. Liang Y, Zhao ZH, Li QM, Cui FL, Liu GG. Study on proconcentration of trace copper using microcrystalline triphenyl-methane loaded with Malachite Gren Chin J Chem, 2007; 25: 521-26.
  • 21. İleri R. Çevre Biyoteknolojisi. 1. Baskı. Adapazarı: Değişim Yayınları, 2000: 501-22.
  • 22. Hussein H, Ibrahim SF, Kandeel K, Moawad H. Biosorption of heavy metals from wastewater using Pseudomonas sp. Electron J Biotechn, 2004; 7: 38-46.
  • 23. Liu H, Chen B, Lana Y, Chenga Y. Biosorption of Zn(II) and Cu(II) by the indigenous thiobacillus thiooxidans. Chem Engineering J, 2004; 97: 195–201.
  • 24. Vieira RHSF, Volesky B. Biosorption: a solution to pollution. Inter Microbiol, 2000; 3: 17-24.
  • 25. Çubukçu HE. Krom(VI), Bakır(II), Demir(II) İyonlarının Tek ve Çok Bileşenli Metal Sistemlerinde R. arrhizus’la Biyosorpsiyonunun Sürekli Karıştırmalı Kaplarda İncelenmesi. Yüksek Lisans Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, 1998.
  • 26. Aydoğan MN. Phanerochaete chrysosporium Biyoması ile Sulardan Çinko (II)nun Biyosorpsiyonu. Yüksek Lisans Tezi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, 1999.
  • 27. Ucun H. Sarı çam (Pinus sylvestris) Kozalağı Biyoması Kullanılarak Atıksulardaki Ağır Metallerin Biyosorpsiyonu. Yüksek Lisans Tezi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, 2001.
  • 28. Uluözlü OD, Sarı A, Tuzen M, Soylak M. Biosorption of Pb(II) and Cr(III) from aqueous solution by lichen (Parmelina tiliaceae) biomass. Bioresource Technol, 2008; 99: 2972-80.
  • 29. Ekmekyapar F, Arslan A, Bayhan YK, Cakici A. Biosorption of copper(II) by non living lichen biomass of Cladonia rangiformis Hoffm J Hazard Mat, 2006; 137: 293-8.
  • 30. Sarı A, Tuzen M, Uluözlü ÖD, Soylak M. Biosorption of Pb(II) and Ni(II) from aqueous solution by lichen (Cladonia furcata) biomass. Biochem Eng J, 2007; 37: 151-8.
  • 31. Bingöl A, Aslan A, Cakici A. Biosorption of chromate anions from aqueous solution by a cationic surfactant-modified lichen (Cladonia rangiformis (L.)). J Hazard Mat, 2009; 161: 747-52.
  • 32. Yalçın E, Çavuşoğlu K, Kınalıoğlu K. Biosorption of Cu2+ and Zn2+ by raw and autoclaved Rocella phycopsis. J Environ Sci, 2010; 22(3): 367-73.
  • 33. Güner H, Aysel V, Sukatar A. Tohumsuz Bitkiler Sistematiği II (Mantarlar ve Likenler). Bornovaİzmir: Ege Üniversitesi Basımevi, 1992; 138(5): 139-42.
  • 34. Tay T, Candan M, Erdem M, Çimen Y, Türk H. Biosorption of cadmium ions from aqueous solution onto non-living lichen Ramalina fraxinea Biomass Clean, 2009a; 37(3): 249-55.
  • 35. Ateş A, Yıldız A, Yıldız N, Calımlı A. Heavy metal removal from aqueous solution by Pseudevernia furfuracea (L.). Zopf. Annali di Chimica, 2007; 97: 385-93.
  • 36. İlier R, Mavituna F. Biosorption of copper from aqueous solutions by immobilised Rhizopus arrhizus. In: 1.st International Symposium on Enviromental Pollution, June, 1: 74-79, İzmirTürkiye. 1991.
  • 37. Volesky B. Sorption and Biosorption. St. Lambert, Quebec: BV Sorbex, Inc, 2004; 103-28.
  • 38. Volesky B. Sorption and Biosorption. Montreal, Kanada: BV Sorbex, Inc, 2003; 316.
  • 39. Benefield LD, Judkins JR JF, Weand BL. Process chemistry for water and wastewater treatment. New Jersey: Englewood Cliffs, 1982; 433-5.
  • 40. Ahmad AL, Bhatia S, Ibrahim N, Sumathi S. Adsorption of residual oil from palm oil mill effluent using rubber powder. Braz J Chem Eng, 2005; 22 (3): 371-9.
  • 41. Weber JR. Physicochemical processes for water quality control. Wiley- Interscience, 1972; 640.
  • 42. Mungasavalli DP, Viraraghavan T, Jin YC. Biosorption of chromium from aqueous solutions by pretreated Aspergillus niger: Batch and Column studies. Colloid Surface A: Physicochem Eng Asp, 2007; 301: 214-23.
  • 43. Deng L, Su Y, Su H, Wang X, Zhu X. Sorption and desorption of lead (II) from wastewater by Green Algae Cladophora fascicularis. J Hazard Mat, 2007; 143: 220–25.
  • 44. Kuyucak N, Volesky B. Accumulation of cobalt by marine algae. Biotechnol Bioeng, 1989; 33 (7): 809-14.
  • 45. Yu LJ, Shukla SS, Dorris KL, Shukla A, Margrave JL. Adsorption of chromium from aqueous solutions by maple sawdust. J Hazard Mat, 2003; 100: 53-63.
  • 46. Macaskie LE, Dean ACR. Microbial metabolism desolubilization and deposition of heavy metals: Metal uptake by immobilized cells and application to the detoxification of liquid wastes. Biological Waste Treatment, Alan R. Liss Inc, 1989; 159-201.
  • 47. Matheickal JT, Q Yu. Biosorption of lead (II) from aqueous solutions by Phellinus badius. Miner. Eng, 1997; 10: 947-57.
  • 48. Rulkens WH, Tichy R, Grotenhuis JTC. Remediation of polluted soil and sediment: Perspectives and Failures. Water Sci. Technol, 1998; 37: 27–35.
  • 49. Mcintyre T. Phytoremediation of heavy metals from soils. Advan Biochem Eng/Biotech, 2003; 78: 97–123.
  • 50. Padmavathiamma PK, Loretta YL. Phytoremediation technology: Hyper-accumulation metals in plants. Water Air Soil Pollut, 2007; 184: 105-26.
  • 51. Baker AJM, Revees RD, Hajar ASM. Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl. (Brassicaceae). New Phytol, 1994; 127: 61-8.
  • 52. Evangelou MWH, Ebel M, Schaeffer A. Chelate assisted phytoextraction of heavy metals from soil: Effect, mechanism, toxicity and fate of chelating agents. Chemosphere, 2007; 68: 989-1003.
  • 53. Meers E, Ruttens A, Hopgood MJ, Samson D, Tack FM. Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere, 2005; 58: 1011-22.
  • 54. Blaylock MJ, Huang JW. Phytoextraction of metals. In: Raskin I, Ensley BD. eds. Phytoremediation of Toxic Metals: Using Plants to Clean-up the Environment. New York: Wiley, 2000: 53-70.
  • 55. Memon AR, Aktopraklıgil D, Özdemir A, Vertii A. Heavy Metal Accumulation and Detoxification Mechanisms in Plants. Tübitak MAM, Institute for Genetic Engineering and Biotechnology, KocaeliTurkey. 2000.
  • 56. Dushenkov V, Kapulnik Y. Phytofiltration of metals. In: Raskin I, Ensley BD. eds. Phytoremediation of Toxic Metals - Using plants to clean-up the environment. New York: Wiley, 2000: 89-106.
  • 57. Raskin I, Ensley DE. Phytoremediation of toxic metals: Using plants to clean up the environment. New York: Wiley, 2000: 352.
  • 58. Lee M, Yang M. Rhizofiltration using sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) to remediate uranium contaminated groundwater. J Hazard Mat, 2010; 173: 589-96.
  • 59. Dushenkov V, Kumar PBAN, Motto H, Raskin I. Rhizofiltration: The use of plants to remove heavy metals from aqueous streams. Environ Sci Technol, 1995; 29: 1239-45.
  • 60. Bert V, Girondelot B, Quatannens V, Laboudigue A. A phytostabilisation of a metal polluted dredged sediment deposit—Mesocosm experiment and field trial. In: Uhlmann O, Annokkée GJ, Arendt F. eds. Proceedings of the 9th International FZK/TNO Conference on soil–water systems, remediation concepts and technologies, Bordeux, 2005: 1544-50.
  • 61. Berti WR, Cunningham SD. 2000. Phytostabilization of metals. In: Raskin I, Ensley BD. eds. Phytoremediation of toxic metals: Using plants to clean-up the environment. New York: Wiley, 2000: 71-88.
  • 62. Rizzi L, Petruzzelli G, Poggio G, Vigna Guidi G. Soil physical changes and plant availability of Zn and Pb in a treatability test of phytostabilization. Chemosphere, 2004; 57: 1039-46.
  • 63. EPA. Environmental Protection Agency, Introduction of Phytoremediation. epa/600/R-99/107, Cincinati, Ohio, U.S.A. 2000: 72.
  • 64. Ghosh M, Singh SP. A review on phytoremediation of heavy metals and utilization of its by products. Appl. Ecol Environ Res, 2005; 3: 1-18.
  • 65. Söğüt Z, Zaimoğlu Z, Erdoğan RK, Doğan S. Su kalitesinin arttırılmasında bitki kullanımı (yeşil ıslah-Phytoremediation). Adana: Çukurova Üniversitesi, 2004.
  • 66. Gabor TS, North AK, Ross, LCM, Murkin HR, Anderson JS, Turner MA. Beyond The Pipe: The Importance of Wetlands and Upland Conservation Practises in Watershed Management: Function and Values for Water Quality and Quantity. Ducks Unlimited Canada, 2001: 52.
  • 67. www.cevrehekim.org (2006).
  • 68. Martens SN, R.S. Boyd. The ecological significance of nickel hyperaccumulation: A plant chemical defense. Oecologia, 1994; 98: 379–84.
  • 69. Pierzynski GM, Schnoor JL, Banks MK, Tracy JC, Licht LA, Erickson LE. Vegetative remediation at superfund sites. Mining and its environ Impact (Royal Soc. Chem. Issues in Environ Sci Technol, 1), 1994: 49-69.
  • 70. Pierzynski GM, Schwab AP. Reducing heavy metal availability to soybeans grown on a metal contaminated soil. In: Erickson LE, Grant SC, McDonalds JP. eds. Proceedings of the Conference on Hazardous Waste Research, June 1-2, Boulder, CO. Engineering Extension, Kansas State University, Manhattan, KS. 1992: 543-53.
  • 71. Benaissa H, Elouchdi MA. Biosorption of copper(II) from synthetic aqueous solutions by drying bed activated sludge. J Hazard Mat, 2011; 194: 69-78.
  • 72. Krowiak AW, Szafran RG, Modelski S. Biosorption of heavy metals from aqueous solutions onto peanut shells as a low-cost biosorbent. Desalination, 2011; 265(1-3): 126-34.
  • 73. Kumar R, Bhatia D, Singh R, Rani S, Bishnoi R. Sorption of heavy metals from electroplating effluent using immobilized biomass Trichoderma viride in a continuous packed-bed column. Int. Biodet. Biodeg, 2011; 65(8): 1133-9.
  • 74. Ekmekyapar F, Aslan A, Bayhan YK, Çakıcı A. Biosorption of Pb(II) by non living lichen biomass of Cladonia rangiformis Hoffm. Int J Environ Res, 2010; 6(2): 417-24.
  • 75. Öztürk S. Bazı liken türleri ile (Flavoparmelia caperata (L.) Hale ve Platismatia glauca (L.)W.L. Culb.&C.F.Culb) Cr+6'nın biyosorpsiyonu. 2010: 78.
  • 76. Arslan A, Taylan S, Yüksel O. 2007. Endüstriyel atıksulardan ağır metallerin zirai atıklarla adsorpsiyonu. 7. Ulusal Çevre Mühendisliği Kongresi Yaşam Çevre Teknolojisi. Ekim, İzmir. 2007.
  • 77. Huang C, Huang CP. Application of Aspergillus oryze and Rhizopus oryzae for Cu(II) removal. Water Res, 1996; 30(9): 1985-90.
  • 78. Oymak İ, Sekman E, Top S, Yazıcı R, Bilgili MS, Demir A, Varank g. Kurşunun Zeolite Adsorpsiyonunun İzoterm ve Kinetik Analizi. IV. Sınıf Yüksek Lisans Öğrencisi, Yıldız Teknik Üniversitesi, 2008.
  • 79. Aksu Z, Yener J. Atıksulardaki Fenol ve Klorofenollerin Aktif Karbon ve Kurutulmuş Aktif Çamur Adsorpsiyonu. J Eng Environ Sci, 1997; 23: 93-104.
  • 80. Alyüz B, Çetin Ş, Ayberk S. Organik kirleticilerin arıtımında fitoremediasyon yönteminin uygulanabilirliği. Çevre sorunları sempozyumu. Mayıs, Kocaeli. 2008.
  • 81. Lazaro DJ, Kidd PS, Martinez CM. A phytogeochemical study of the Tras-Os-Montes region Ne Portugal: possible species for plant-based soil remediation technologies. Sci Total Environ, 2006; 354: 265-77.
  • 82. Madejon P, Murillo JM, Maranon T, Cabrera F, Soriano MA. Trace element and nutrient accumulation in sunflower plants two years after the Aznolcollar Mine Spill. Sci Total Environ, 2003; 307: 239-57.
  • 83. Manios T, Stentiford EI, Millner PA. Removal of heavy metals from a metaliferous water solution by Typha Latifolia L. plants and sewage sludge compost. Chemosphere, 2003a; 53(5): 487-94.
  • 84. Manios T, Stentiford EI, Millner PA. The effect of heavy metals accumulation on the Chlorophyll concentration of Typha Latifoli L. plants, growing in a subsrate containing sewage sludge compost and watered with metaliferus water. Ecol Eng, 2003b; 20(1): 65-74.
  • 85. Sharma NC, Daniel LS, Shivendra VS. Phytoextraction of excess soil phorpous environmental pollution (Article in Press) 2006: 1-8.
  • 86. Smith CS, Adams MS, Gustafson TD. The Importance of belowground mineral element stores in Cattails (Typha Latifolia L.). Aqua Bot, 2003; 30(4): 28343-52.
  • 87. http://www.tarimsal.com/fitoremediasyon/ fitoremediasyon.htm
  • 88. Vanlı Ö. Pb, Cd ve B elementlerinin topraklardan şelat destekli fitoremediasyon yöntemiyle giderilmesi. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, 2007.

Biosorption, adsorption, phytoremediation methods and applications

Yıl 2012, Cilt: 69 Sayı: 4, 235 - 253, 01.12.2012

Öz

Environmental pollution poses a significant problem in the world. Remediation techniques used in areas exposed to metal pollution has a high cost. The use of biological molecules rather than physical and chemical methods for the removal of metals from industrial waste is an alternative and very effective method. Applications of biological molecules for the removal of metals include biosorption, adsorption and phytoremediation methods. Biosorption, is the uptake of metal ions from aqueous environments by the biomass. Dissolved substances on the surface of biosorbent biomass should pass through the film of its surrounding liquid solvent. Biosorption condition is required to some optimal conditions for process. Biosorption method is affected by physicochemical factors such as the metal ion type, amount and type of biomass, concentration, temperature and pH of the solution. Adsorption is unite with surface that molecules to the surface come into contact by pulling forces. Phytoremediation is an environmental of reclamation technology by using plants biological materials. Today, organic and inorganic sustances in the polluted areas that contaminated with metals could be cleaned by using plant biological materials through the phytoremediation technology. The most important advantages of phytoremediation technique is that it provides appropriate/custom treatment in the same areas and this tecnique does not require extra energy. In addition, phytoremediation technique does not damage natural resources and it is highly accepted by the general public. Addition to these advantages, phytoremediation technique allows only the purification water, soil and sediment in shallow areas. Another disadvantage of phytoremediation tecnique does not show the effectiveness of plants in too heavy levels contaminated areas as soon as possible. For this reason, phytoremediation technique can only be used in the areas with low levels of contamination. Thus, the biological materials bacteria, fungi, lichens and plants will be achieved through these methods, which can be made a cost-effective and easy, for removal of metal pollution. By these methods, which are cost effective and easily manipulated, because of the usage of the biological materials, the removal of metal pollution becomes possible.

Kaynakça

  • 1. Özdemir Hİ. Genel Anorganik ve Teknik Kimya. İstanbul: Matbaa Teknisyenleri Basımevi, 1981.
  • 2. Anonymous. http://www.food-info.net/tr/metal/ intro.htm
  • 3. Nies DH. Microbial heavy-metal resistance. Appl Microbiol Biotechnol, 1991; 51: 730-50.
  • 4. Ehrlich HL. Microbes and metals. Appl Microbiol Biotechnol, 1997; 48: 687-92.
  • 5. Lester JN, Perry R, Dadd AH. The influence of heavy metals in a mixed population of sewage origin in the chemostat. Water Res, 1979; 13: 1055-63.
  • 6. Braam F, Klapwijk A. Effect of copper on nitrification in activated sludge. Water Res, 1981; 5: 1093-8.
  • 7. Waara KO. Effects of copper, cadmium, lead and zinc on nitrate reduction in a synthetic water medium and lake water from Northern Sweeden. Water Res, 1992; 26: 355-64.
  • 8. Ajmal M, Ahmad A, Nomani AA. Microbial uptake of cadmium and its effects on the biochemical oxygen demand. Water Res, 1982; 16: 1611-4.
  • 9. Ajmal M, Ahmad A, Nomani AA. Influence of toxic metals on the repression of carbonaceous oxygen demand. Water Res, 1983; 17: 799-802.
  • 10. Madoni P, Davoli D, Gorbi G, Vescoli L. Toxic effects of heavy metals on the activated sludge. Protozoan community. Water Res, 1996; 30: 135-41.
  • 11. Dilek FB, Yetis U. Effects of heavy metals on activated sludge process. Water Sci Technol, 1992; 26: 801-13.
  • 12. Imai A, Gloyna EF. Effects of pH and oxidation state of chromium on the behaviour of chromium on activated sludge process. Water Res, 1990; 24: 1143-50.
  • 13. Surittanonta S, Sherrad JH. Activated sludge nickel toxicity studies. J. Water Pollut Control Fed, 1981; 53: 1314-22.
  • 14. Bigersson B, Sterner O, Zimerson, E. Chemie und gesundheit, Eine Verst 2nd liche einführung in die toxikologie. VCH Verlagsgeselschaft, 1988.
  • 15. Duffus JH, Worth HGJ. Fundamental toxicology for chemists. UK: Royal Society of Chemistry Information Services, 1996.
  • 16. Kahvecioglu Ö, Kartal G, Güven A, Timur S. Metallerin Çevresel Etkileri-I. Metalurji, 2003; 136: 47-53.
  • 17. Horsfall MJ, Spiff AI. Effects of temperature on the sorption of Pb+2 and Cd+2 from aqueous solution by Caladium bicolor (Wild Cocoyam) biomass. Electron J Biotechn, 2005; 8: 143–50.
  • 18. Bailey SE, OLin TJ, Bricka RM, Adrian DD. A review of potentially low-cost sorbents for heavy metals. Water Res, 1999; 33: 2469-79.
  • 19. Ghaedi M, Asadpour E, Vafaie A. Sensitized spectrophotometric determination of Cr (III) ion for speciation of chromium ion in surfacrant media using Alpha-Benzoin Oxime. spectrochim. Acta, 2006; 63: 182-88.
  • 20. Liang Y, Zhao ZH, Li QM, Cui FL, Liu GG. Study on proconcentration of trace copper using microcrystalline triphenyl-methane loaded with Malachite Gren Chin J Chem, 2007; 25: 521-26.
  • 21. İleri R. Çevre Biyoteknolojisi. 1. Baskı. Adapazarı: Değişim Yayınları, 2000: 501-22.
  • 22. Hussein H, Ibrahim SF, Kandeel K, Moawad H. Biosorption of heavy metals from wastewater using Pseudomonas sp. Electron J Biotechn, 2004; 7: 38-46.
  • 23. Liu H, Chen B, Lana Y, Chenga Y. Biosorption of Zn(II) and Cu(II) by the indigenous thiobacillus thiooxidans. Chem Engineering J, 2004; 97: 195–201.
  • 24. Vieira RHSF, Volesky B. Biosorption: a solution to pollution. Inter Microbiol, 2000; 3: 17-24.
  • 25. Çubukçu HE. Krom(VI), Bakır(II), Demir(II) İyonlarının Tek ve Çok Bileşenli Metal Sistemlerinde R. arrhizus’la Biyosorpsiyonunun Sürekli Karıştırmalı Kaplarda İncelenmesi. Yüksek Lisans Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, 1998.
  • 26. Aydoğan MN. Phanerochaete chrysosporium Biyoması ile Sulardan Çinko (II)nun Biyosorpsiyonu. Yüksek Lisans Tezi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, 1999.
  • 27. Ucun H. Sarı çam (Pinus sylvestris) Kozalağı Biyoması Kullanılarak Atıksulardaki Ağır Metallerin Biyosorpsiyonu. Yüksek Lisans Tezi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, 2001.
  • 28. Uluözlü OD, Sarı A, Tuzen M, Soylak M. Biosorption of Pb(II) and Cr(III) from aqueous solution by lichen (Parmelina tiliaceae) biomass. Bioresource Technol, 2008; 99: 2972-80.
  • 29. Ekmekyapar F, Arslan A, Bayhan YK, Cakici A. Biosorption of copper(II) by non living lichen biomass of Cladonia rangiformis Hoffm J Hazard Mat, 2006; 137: 293-8.
  • 30. Sarı A, Tuzen M, Uluözlü ÖD, Soylak M. Biosorption of Pb(II) and Ni(II) from aqueous solution by lichen (Cladonia furcata) biomass. Biochem Eng J, 2007; 37: 151-8.
  • 31. Bingöl A, Aslan A, Cakici A. Biosorption of chromate anions from aqueous solution by a cationic surfactant-modified lichen (Cladonia rangiformis (L.)). J Hazard Mat, 2009; 161: 747-52.
  • 32. Yalçın E, Çavuşoğlu K, Kınalıoğlu K. Biosorption of Cu2+ and Zn2+ by raw and autoclaved Rocella phycopsis. J Environ Sci, 2010; 22(3): 367-73.
  • 33. Güner H, Aysel V, Sukatar A. Tohumsuz Bitkiler Sistematiği II (Mantarlar ve Likenler). Bornovaİzmir: Ege Üniversitesi Basımevi, 1992; 138(5): 139-42.
  • 34. Tay T, Candan M, Erdem M, Çimen Y, Türk H. Biosorption of cadmium ions from aqueous solution onto non-living lichen Ramalina fraxinea Biomass Clean, 2009a; 37(3): 249-55.
  • 35. Ateş A, Yıldız A, Yıldız N, Calımlı A. Heavy metal removal from aqueous solution by Pseudevernia furfuracea (L.). Zopf. Annali di Chimica, 2007; 97: 385-93.
  • 36. İlier R, Mavituna F. Biosorption of copper from aqueous solutions by immobilised Rhizopus arrhizus. In: 1.st International Symposium on Enviromental Pollution, June, 1: 74-79, İzmirTürkiye. 1991.
  • 37. Volesky B. Sorption and Biosorption. St. Lambert, Quebec: BV Sorbex, Inc, 2004; 103-28.
  • 38. Volesky B. Sorption and Biosorption. Montreal, Kanada: BV Sorbex, Inc, 2003; 316.
  • 39. Benefield LD, Judkins JR JF, Weand BL. Process chemistry for water and wastewater treatment. New Jersey: Englewood Cliffs, 1982; 433-5.
  • 40. Ahmad AL, Bhatia S, Ibrahim N, Sumathi S. Adsorption of residual oil from palm oil mill effluent using rubber powder. Braz J Chem Eng, 2005; 22 (3): 371-9.
  • 41. Weber JR. Physicochemical processes for water quality control. Wiley- Interscience, 1972; 640.
  • 42. Mungasavalli DP, Viraraghavan T, Jin YC. Biosorption of chromium from aqueous solutions by pretreated Aspergillus niger: Batch and Column studies. Colloid Surface A: Physicochem Eng Asp, 2007; 301: 214-23.
  • 43. Deng L, Su Y, Su H, Wang X, Zhu X. Sorption and desorption of lead (II) from wastewater by Green Algae Cladophora fascicularis. J Hazard Mat, 2007; 143: 220–25.
  • 44. Kuyucak N, Volesky B. Accumulation of cobalt by marine algae. Biotechnol Bioeng, 1989; 33 (7): 809-14.
  • 45. Yu LJ, Shukla SS, Dorris KL, Shukla A, Margrave JL. Adsorption of chromium from aqueous solutions by maple sawdust. J Hazard Mat, 2003; 100: 53-63.
  • 46. Macaskie LE, Dean ACR. Microbial metabolism desolubilization and deposition of heavy metals: Metal uptake by immobilized cells and application to the detoxification of liquid wastes. Biological Waste Treatment, Alan R. Liss Inc, 1989; 159-201.
  • 47. Matheickal JT, Q Yu. Biosorption of lead (II) from aqueous solutions by Phellinus badius. Miner. Eng, 1997; 10: 947-57.
  • 48. Rulkens WH, Tichy R, Grotenhuis JTC. Remediation of polluted soil and sediment: Perspectives and Failures. Water Sci. Technol, 1998; 37: 27–35.
  • 49. Mcintyre T. Phytoremediation of heavy metals from soils. Advan Biochem Eng/Biotech, 2003; 78: 97–123.
  • 50. Padmavathiamma PK, Loretta YL. Phytoremediation technology: Hyper-accumulation metals in plants. Water Air Soil Pollut, 2007; 184: 105-26.
  • 51. Baker AJM, Revees RD, Hajar ASM. Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl. (Brassicaceae). New Phytol, 1994; 127: 61-8.
  • 52. Evangelou MWH, Ebel M, Schaeffer A. Chelate assisted phytoextraction of heavy metals from soil: Effect, mechanism, toxicity and fate of chelating agents. Chemosphere, 2007; 68: 989-1003.
  • 53. Meers E, Ruttens A, Hopgood MJ, Samson D, Tack FM. Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere, 2005; 58: 1011-22.
  • 54. Blaylock MJ, Huang JW. Phytoextraction of metals. In: Raskin I, Ensley BD. eds. Phytoremediation of Toxic Metals: Using Plants to Clean-up the Environment. New York: Wiley, 2000: 53-70.
  • 55. Memon AR, Aktopraklıgil D, Özdemir A, Vertii A. Heavy Metal Accumulation and Detoxification Mechanisms in Plants. Tübitak MAM, Institute for Genetic Engineering and Biotechnology, KocaeliTurkey. 2000.
  • 56. Dushenkov V, Kapulnik Y. Phytofiltration of metals. In: Raskin I, Ensley BD. eds. Phytoremediation of Toxic Metals - Using plants to clean-up the environment. New York: Wiley, 2000: 89-106.
  • 57. Raskin I, Ensley DE. Phytoremediation of toxic metals: Using plants to clean up the environment. New York: Wiley, 2000: 352.
  • 58. Lee M, Yang M. Rhizofiltration using sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) to remediate uranium contaminated groundwater. J Hazard Mat, 2010; 173: 589-96.
  • 59. Dushenkov V, Kumar PBAN, Motto H, Raskin I. Rhizofiltration: The use of plants to remove heavy metals from aqueous streams. Environ Sci Technol, 1995; 29: 1239-45.
  • 60. Bert V, Girondelot B, Quatannens V, Laboudigue A. A phytostabilisation of a metal polluted dredged sediment deposit—Mesocosm experiment and field trial. In: Uhlmann O, Annokkée GJ, Arendt F. eds. Proceedings of the 9th International FZK/TNO Conference on soil–water systems, remediation concepts and technologies, Bordeux, 2005: 1544-50.
  • 61. Berti WR, Cunningham SD. 2000. Phytostabilization of metals. In: Raskin I, Ensley BD. eds. Phytoremediation of toxic metals: Using plants to clean-up the environment. New York: Wiley, 2000: 71-88.
  • 62. Rizzi L, Petruzzelli G, Poggio G, Vigna Guidi G. Soil physical changes and plant availability of Zn and Pb in a treatability test of phytostabilization. Chemosphere, 2004; 57: 1039-46.
  • 63. EPA. Environmental Protection Agency, Introduction of Phytoremediation. epa/600/R-99/107, Cincinati, Ohio, U.S.A. 2000: 72.
  • 64. Ghosh M, Singh SP. A review on phytoremediation of heavy metals and utilization of its by products. Appl. Ecol Environ Res, 2005; 3: 1-18.
  • 65. Söğüt Z, Zaimoğlu Z, Erdoğan RK, Doğan S. Su kalitesinin arttırılmasında bitki kullanımı (yeşil ıslah-Phytoremediation). Adana: Çukurova Üniversitesi, 2004.
  • 66. Gabor TS, North AK, Ross, LCM, Murkin HR, Anderson JS, Turner MA. Beyond The Pipe: The Importance of Wetlands and Upland Conservation Practises in Watershed Management: Function and Values for Water Quality and Quantity. Ducks Unlimited Canada, 2001: 52.
  • 67. www.cevrehekim.org (2006).
  • 68. Martens SN, R.S. Boyd. The ecological significance of nickel hyperaccumulation: A plant chemical defense. Oecologia, 1994; 98: 379–84.
  • 69. Pierzynski GM, Schnoor JL, Banks MK, Tracy JC, Licht LA, Erickson LE. Vegetative remediation at superfund sites. Mining and its environ Impact (Royal Soc. Chem. Issues in Environ Sci Technol, 1), 1994: 49-69.
  • 70. Pierzynski GM, Schwab AP. Reducing heavy metal availability to soybeans grown on a metal contaminated soil. In: Erickson LE, Grant SC, McDonalds JP. eds. Proceedings of the Conference on Hazardous Waste Research, June 1-2, Boulder, CO. Engineering Extension, Kansas State University, Manhattan, KS. 1992: 543-53.
  • 71. Benaissa H, Elouchdi MA. Biosorption of copper(II) from synthetic aqueous solutions by drying bed activated sludge. J Hazard Mat, 2011; 194: 69-78.
  • 72. Krowiak AW, Szafran RG, Modelski S. Biosorption of heavy metals from aqueous solutions onto peanut shells as a low-cost biosorbent. Desalination, 2011; 265(1-3): 126-34.
  • 73. Kumar R, Bhatia D, Singh R, Rani S, Bishnoi R. Sorption of heavy metals from electroplating effluent using immobilized biomass Trichoderma viride in a continuous packed-bed column. Int. Biodet. Biodeg, 2011; 65(8): 1133-9.
  • 74. Ekmekyapar F, Aslan A, Bayhan YK, Çakıcı A. Biosorption of Pb(II) by non living lichen biomass of Cladonia rangiformis Hoffm. Int J Environ Res, 2010; 6(2): 417-24.
  • 75. Öztürk S. Bazı liken türleri ile (Flavoparmelia caperata (L.) Hale ve Platismatia glauca (L.)W.L. Culb.&C.F.Culb) Cr+6'nın biyosorpsiyonu. 2010: 78.
  • 76. Arslan A, Taylan S, Yüksel O. 2007. Endüstriyel atıksulardan ağır metallerin zirai atıklarla adsorpsiyonu. 7. Ulusal Çevre Mühendisliği Kongresi Yaşam Çevre Teknolojisi. Ekim, İzmir. 2007.
  • 77. Huang C, Huang CP. Application of Aspergillus oryze and Rhizopus oryzae for Cu(II) removal. Water Res, 1996; 30(9): 1985-90.
  • 78. Oymak İ, Sekman E, Top S, Yazıcı R, Bilgili MS, Demir A, Varank g. Kurşunun Zeolite Adsorpsiyonunun İzoterm ve Kinetik Analizi. IV. Sınıf Yüksek Lisans Öğrencisi, Yıldız Teknik Üniversitesi, 2008.
  • 79. Aksu Z, Yener J. Atıksulardaki Fenol ve Klorofenollerin Aktif Karbon ve Kurutulmuş Aktif Çamur Adsorpsiyonu. J Eng Environ Sci, 1997; 23: 93-104.
  • 80. Alyüz B, Çetin Ş, Ayberk S. Organik kirleticilerin arıtımında fitoremediasyon yönteminin uygulanabilirliği. Çevre sorunları sempozyumu. Mayıs, Kocaeli. 2008.
  • 81. Lazaro DJ, Kidd PS, Martinez CM. A phytogeochemical study of the Tras-Os-Montes region Ne Portugal: possible species for plant-based soil remediation technologies. Sci Total Environ, 2006; 354: 265-77.
  • 82. Madejon P, Murillo JM, Maranon T, Cabrera F, Soriano MA. Trace element and nutrient accumulation in sunflower plants two years after the Aznolcollar Mine Spill. Sci Total Environ, 2003; 307: 239-57.
  • 83. Manios T, Stentiford EI, Millner PA. Removal of heavy metals from a metaliferous water solution by Typha Latifolia L. plants and sewage sludge compost. Chemosphere, 2003a; 53(5): 487-94.
  • 84. Manios T, Stentiford EI, Millner PA. The effect of heavy metals accumulation on the Chlorophyll concentration of Typha Latifoli L. plants, growing in a subsrate containing sewage sludge compost and watered with metaliferus water. Ecol Eng, 2003b; 20(1): 65-74.
  • 85. Sharma NC, Daniel LS, Shivendra VS. Phytoextraction of excess soil phorpous environmental pollution (Article in Press) 2006: 1-8.
  • 86. Smith CS, Adams MS, Gustafson TD. The Importance of belowground mineral element stores in Cattails (Typha Latifolia L.). Aqua Bot, 2003; 30(4): 28343-52.
  • 87. http://www.tarimsal.com/fitoremediasyon/ fitoremediasyon.htm
  • 88. Vanlı Ö. Pb, Cd ve B elementlerinin topraklardan şelat destekli fitoremediasyon yöntemiyle giderilmesi. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, 2007.
Toplam 88 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Rasim Hamutoğlu Bu kişi benim

Adnan Berk Dinçsoy Bu kişi benim

Demet Cansaran-duman Bu kişi benim

Sümer Aras Bu kişi benim

Yayımlanma Tarihi 1 Aralık 2012
Yayımlandığı Sayı Yıl 2012 Cilt: 69 Sayı: 4

Kaynak Göster

APA Hamutoğlu, R., Dinçsoy, A. B., Cansaran-duman, D., Aras, S. (2012). Biyosorpsiyon, Adsorpsiyon, Fitoremediasyon Yöntemleri ve Uygulamaları. Türk Hijyen Ve Deneysel Biyoloji Dergisi, 69(4), 235-253.
AMA Hamutoğlu R, Dinçsoy AB, Cansaran-duman D, Aras S. Biyosorpsiyon, Adsorpsiyon, Fitoremediasyon Yöntemleri ve Uygulamaları. Turk Hij Den Biyol Derg. Aralık 2012;69(4):235-253.
Chicago Hamutoğlu, Rasim, Adnan Berk Dinçsoy, Demet Cansaran-duman, ve Sümer Aras. “Biyosorpsiyon, Adsorpsiyon, Fitoremediasyon Yöntemleri Ve Uygulamaları”. Türk Hijyen Ve Deneysel Biyoloji Dergisi 69, sy. 4 (Aralık 2012): 235-53.
EndNote Hamutoğlu R, Dinçsoy AB, Cansaran-duman D, Aras S (01 Aralık 2012) Biyosorpsiyon, Adsorpsiyon, Fitoremediasyon Yöntemleri ve Uygulamaları. Türk Hijyen ve Deneysel Biyoloji Dergisi 69 4 235–253.
IEEE R. Hamutoğlu, A. B. Dinçsoy, D. Cansaran-duman, ve S. Aras, “Biyosorpsiyon, Adsorpsiyon, Fitoremediasyon Yöntemleri ve Uygulamaları”, Turk Hij Den Biyol Derg, c. 69, sy. 4, ss. 235–253, 2012.
ISNAD Hamutoğlu, Rasim vd. “Biyosorpsiyon, Adsorpsiyon, Fitoremediasyon Yöntemleri Ve Uygulamaları”. Türk Hijyen ve Deneysel Biyoloji Dergisi 69/4 (Aralık 2012), 235-253.
JAMA Hamutoğlu R, Dinçsoy AB, Cansaran-duman D, Aras S. Biyosorpsiyon, Adsorpsiyon, Fitoremediasyon Yöntemleri ve Uygulamaları. Turk Hij Den Biyol Derg. 2012;69:235–253.
MLA Hamutoğlu, Rasim vd. “Biyosorpsiyon, Adsorpsiyon, Fitoremediasyon Yöntemleri Ve Uygulamaları”. Türk Hijyen Ve Deneysel Biyoloji Dergisi, c. 69, sy. 4, 2012, ss. 235-53.
Vancouver Hamutoğlu R, Dinçsoy AB, Cansaran-duman D, Aras S. Biyosorpsiyon, Adsorpsiyon, Fitoremediasyon Yöntemleri ve Uygulamaları. Turk Hij Den Biyol Derg. 2012;69(4):235-53.