BibTex RIS Kaynak Göster

Bitkilerin Stres Koşullarına Verdiği Moleküler Cevaplar

Yıl 2012, Cilt: 69 Sayı: 2, 97 - 110, 01.06.2012

Öz

Bitkiler sesil doğaları gereği yaşam döngüleri boyunca büyüme ve gelişmelerini olumsuz yönde etkileyecek birçok stres faktörü ile karşılaşırlar. Biyotik ve abiyotik kökenli olabilen bu stres faktörleri bitkilerde fizyolojik ve biyokimyasal zararlar oluşturarak, ürün nicelik ve niteliğini olumsuz yönde etkileyebilir. Bitkiler bu olumsuz etkileri azaltmak veya engellemek amacıyla moleküler savunma mekanizmalarına sahiptirler. Bu cevap mekanizmaları makromoleküllerin ve iyonların homeostasisi, koruyucu moleküllerin sentezi, reaktif oksijen türlerinin ROS oluşumu ve detoksifikasyon olmak üzere üç grupta toplanabilir. Makromoleküllerin ve iyonların homeostazisi bitkilerin dehidrasyona karşı olan temel cevap mekanizmalarından birisidir. Ayrıca, homeostazi; su iletimi ve iyon dengesinin kontrolünde rol oynayan aquaporinlerin ve iyon taşıma sistemlerin aktivasyonu ve inaktivasyonunu kapsar. Bitkilerde strese karşı verilen cevaplardan bir diğeri düşük moleküler ağırlıklı, çözünen maddeler veya ozmolitler, ısı şoku Heatshock ve LEA proteinleri geç embriyogenez bağımlı gibi koruyucu moleküllerin sentezine dayanmaktadır. Bu moleküller hücre içerisinde ozmotik ayarlayıcı ve ozmoprotektan olarak görev alırlar. Stres koşulları altında ROS sentezi ve detoksifikasyonundan sorumlu enzimatik ve enzimatik olmayan antioksidanların oluşumu strese karşı verilen moleküler cevaplardan sonuncusudur. Günümüzde en popüler çalışma sahalarından biri haline gelmiş olan biyoteknolojide, bitkilerin stres koşullarına karşı adaptasyonu ve dirençliliğinin arttırılması öncelikle bitkilerde stres etkilerinin net anlaşılmasına bağlıdır. Bu açıdan stres molekülerine ilişkin kaynak ve çalışmaların arttırılması faydalı olacaktır

Kaynakça

  • 1. Levitt J. Responses of plants to environmental Stresses. New York, London: Academic Press, 1972: 697.
  • 2. Lichtenhaler HK. Vegetation stress: An introduction to the stress concept in plants. J Plant Physiol, 1996; 148: 4-14.
  • 3. Boyer JS. Plant productivity and environment. Science, 1982; 218: 443-8.
  • 4. Velthuizen H, Huddleston B, Fischer G, Salvatore M, Ataman E, Nachtergaele FO, et al. Mapping biophysical factors that ınfluence agricultural production and rural vulnerability. Environment and Natural Resources Series No. 11, Rome: FAO, 2007.
  • 5. Madhova Rao KV, Raghavendra AS, Janardhan Reddy K. Physiology and Molecular Biology of Stress Tolerance in Plants. Netherlands: Springer, 2005: 345.
  • 6. Dubey RS. Handbook of Plant and Crop Stress. New York: Marcel Dekker, 1994; 227.
  • 7. Kadıoğlu A. Bitki fizyolojisi. Trabzon: Lokman Yayın, 2004; 453.
  • 8. Boscaiu M, Lull C, Lidon A, Bautista I, Donat P, Mayoral O, et al. Plant responses to abiotic stress in their natural habitats. Bulletin UASVM, Horticulture, 2008; 65 (1): 53-8.
  • 9. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol, 2000; 51: 463-99.
  • 10. Munns R. Comparative physiology of salt and water stress. Plant Cell Environ, 2002; 25: 239-50.
  • 11. Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 2003; 218: 1-14.
  • 12. Vinocur B, Altman A. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotech, 2005; 16: 123-32.
  • 13. Zhu JK. Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol, 2000; 124: 941-8.
  • 14. Smirnoff N, Cumbes QJ. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry, 1989; 28: 1057–60.
  • 15. Henle KJ, Jethmalani SM, Nagle WA. Stres proteins and glycoproteins. Int Mol Med, 1999; (1): 25-32.
  • 16. Chiba S, Yokota SI, Yonekuva K, Tanaka S, Furuyama H, Kubota H, et al. Auto antibodies against HSP70 family proteins were detected in the cerebro spinal fluid from patients with multiplsclerosis. J Neurol Sci, 2006; 241(1-2): 39-43.
  • 17. Singh NK, Handa AK, Hasegawa PM, Bressan RA. Proteins associated with adaptation of cultured tobacco cells to NaCI. Plant Physiol, 1985; 79: 126-37.
  • 18. Husaini AM, Abdin MZ. Overexpression of tobacco osmotin gene leads to salt stress tolerance in strawberry (Fragaria X ananassa Duch.) plants. Indian J Biotechnol, 2008; 7: 465-71.
  • 19. Holmberg N, Bülow L. Improving stress tolerance in plants by gene transfer. Trends Plant Sci, 1998; 3(2): 61-6.
  • 20. Sairam RK, Tyagi A. Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci, 2004; 86: 407–21.
  • 21. Van Breusegem F, Dat JF. Reactive oxygen species in plant cell death. Plant Physiol, 2006; 141: 384-90.
  • 22. Van Camp W, Van Montagu M, Inze D. H2 O2 and NO: Redox signals in disease resistance. Trends Plant Sci, 1998; 3: 330-4.
  • 23. Flora SJ. Role of free radicals and antioxidants in health and disease. Cell Mol Biol, 2007; 53: 1-2.
  • 24. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 2nd ed. Oxford: Clarendon Press, 1998: 188-96.
  • 25. Stadtman ER, Barlett BS. Free Radical-Mediated Modification of Proteins. In: Wallace KB, ed. Free Radical Toxicology. CRC Press Boca Raton, 1997: 71-87.
  • 26. Mehlar AH. Arch Biochem Biophys, 1951; 33: 65–77.
  • 27. Harbinson J, Hedley CL. Changes in P-700 oxidation during the early stages of the induction of photosynthesis. Plant Physiol, 1993; 103: 649–60.
  • 28. Asada K, Kiso K, Yoshikawa K. Univalent reduction of molecular oxygen by spinach chloroplasts on illumination. J Biol Chem, 1974; 249 (7): 2175–81.
  • 29. Haber F, Weiss J. The catalytic decomposition of hydrogen peroxide by ion salts. Proc R Soc, 1934; 147(A): 332-51.
  • 30. Fenton HJH. Oxidation of tartaric acid in presence of iron. J Chem Soc Trans, 1894; 65: 899–911.
  • 31. Smirnoff N. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol, 1993; 125: 27-58.
  • 32. McKersie BD, Leshem Y. Stress and stress coping in cultivated plants. Netherlands: Kluwer Academic Publishers, 1994.
  • 33. Bray EA. Plant responses to water deficit. Trends Plant Sci, 1997; 2: 48-54.
  • 34. Farrant JM. A comparison of mechanisms of desiccation tolerance among three angiosperm resurrection plant species. Plant Ecol, 2000; 151: 29-39.
  • 35. Stuhlfauth T, Scheuermann R, Fock HP. Light energy dissipation under water stress conditions. Plant Physiol, 1990; 92: 1053-61.
  • 36. Sgherry CLM, Pinzino C, Navari-Izzo F. Sunflower seedlings subjected to increasing water stress by water deficit: changes in O2 -production related to the composition of thylakoid membranes. Physiol Plant, 1996; 96: 446-52.
  • 37. Hodges DM, DeLong JM, Forney CF, Prange RK. Improving the thiobarbituric acid-reactivesubstances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 1999; 207: 604–11.
  • 38. Krupa Z, Baszynski T. Acyl lipid composition of thylakoid membranes of cadmium–treated tomato plants. Acta Physiol Plantarum, 1989; 11: 111-6.
  • 39. Quariti O, Boussama N, Zarrouk M, Cherif A, Ghorbal MH. Cadmium- and copperinduced changes in tomato membrane lipids. Phytochemistry, 1997; 45: 1343-50.
  • 40. Ben Ammar W, Nouairi I, Tray B, Zarrouk M, Jemal F, Ghorbal MH. Effets du cadmium sur l’accumulation ionique et les teneurs en lipides dans les feuilles de tomate (Lycopersicon esculentum). J Soc Biol, 2005; 199: 157-63.
  • 41. Malik D, Sbeoran IS, Singh R. Carbon metabolism of cadmium treated wheat seedlings. Plant Physiol Bioch, 1992; 30(2): 223–9.
  • 42. Vassilev A. Cadmium-induced changes in chloroplast lipids and photosystem activities in barley plants. Biol Plantarum, 2004; 48: 153-6.
  • 43. Gaur A, Grupa SK. Lipid components of mustard seeds (Brassica juncea L.) as influenced by cadmium levels. Plant Foods Hum Nutr, 1994; 46: 93-102.
  • 44. Nouairi I, Ben Ammar W, Ben Youssef N, Ben Miled Daoud D, Habib Ghorbal M, et al. Comparative study of cadmium effects on membrane lipid composition of Brassica juncea and Brassica napus leaves. Plant Sci, 2006; 170: 511-9.
  • 45. Halliwell B, Gutteridge MC. Free Radical and Other Reactive Species and Disease. 3rd ed. Oxford: Oxford University Press, 1999: 639-46.
  • 46. Moller IM, Jensen PE, Hansson A. Oxidative modifications to cellular components in plants. Annu Rev Plant Biol, 2007; 58: 459-81.
  • 47. DeFedericis HC, Patrzyc HB, Rajecki MJ, Budzinski EE, Lijima H, Dawidzik JB, et al. Singlet oxygeninduced DNA damage. Radiat Res, 2006; 165(4): 445-51.
  • 48. Imlay JA. Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem, 2008; 77: 755-76.
  • 49. Varnova E, Van Brcusegem F, Dat J, Belles-Bolx E, Inze D. The role of reactive oxygen species in signal transduction. In: Scheel D, Wasternack C. eds. Oxford University Press, 2002: 41–73.
  • 50. Dat J, Vandenbeele S, Vranova E, Van Montagu M, Inze D, Van Breusegm F. Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci, 2000; 57: 779–95.
  • 51. Arora A, Sairam RK, Srivastava GC. Oxidative stress and antioxidative systems in plants. Curr Sci, 2002; 82: 1227–38.
  • 52. Smirnoff N. Ascorbate, Tocopherol and Carotenoids: Metabolism, Pathway Engineering and Functions. In: Smirnoff N, ed. Antioxidants and Reactive Oxygen Species in Plants. Oxford: Blackwell Publishing Ltd, 2005: 53-86.
  • 53. Athar HR, Khan A, Ashraf M. Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Env Exp Bot, 2008; 63: 224-31.
  • 54. Foyer CH, Souriau N, Perret S, Lelandais M, Kunert KJ, Pruvost C, et al. Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol, 1995; 109: 1047-57.
  • 55. Aono M, Kubo A, Saji H, Tanaka K, Kondo N. Enhanced tolerance to photooxidative stress of transgenic Nicotiana tabacum with high chlorolastic glutathione reductase activity. Plant Cell Physiol, 1993; 34: 129-35.
  • 56. Demirevska-Kepova K, Simova-Stoilova L, Stoyanova ZP, Feller U. Cadmium stress in barley: growth, leaf pigment, and protein composition and detoxification of reactive oxygen species. J Plant Nutr, 2006; 29: 451-68.
  • 57. Yang Y, Han C, Liu Q, Lin B, Wang J. Effect of drought and low light on growth and enzymatic antioxidant system of Picea asperata seedlings. Acta Physiol Plant, 2008; 30: 433-40.
  • 58. Skorzynska-Polit E, Drazkiewicz M, Krupa Z. The activity of the antioxidative system in cadmiumtreated Arabidopsis thaliana. Biol Plant, 2003; 47: 71-8.
  • 59. Zhang FQ, Shi WY, Jin ZX, Shen ZG. Response of antioxidative enzymes in cucumber chloroplast to cadmium toxicity. J Plant Nutr, 2003; 26: 1779-88.
  • 60. Romero-Puertas MC, Corpas FJ, RodrıguezSerrano M, Gomez M, del Rıo LA, Sandalio LM. Differential expression and regulation of antioxidative enzymes by cadmium in pea plants. J Plant Physiol, 2007; 164: 1346-57.
  • 61. Schutzendubel A, Nikolova P, Rudolf C, Polle A. Cadmium and H2 O2 induced oxidative stress in Populas canescens roots. Plant Physiol Biochem, 2002; 40: 577-84.
  • 62. Hollander-Czytko H, Grabowski J, Sandorf I, Weckermann K, Weiler EW. Tocopherol content and activities of tyrosine aminotransferase and cystine lyase in Arabidopsis under stress conditions. J Plant Physiol, 2005; 162: 767-70.
  • 63. Kamal-Eldin A, Appelqvist LA. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids, 1996; 31: 671-701.
  • 64. Wu G, Wei ZK, Shao HB. The mutual responses of higher plants to environment: Physiological and microbiological aspects. Biointerfaces, 2007; 59:113-9.
  • 65. Shao HB, Chu LY, Wu G, Zhang JH, Lu Z, Hu YC. Changes of some antioxidative physiological indices under soil water deficits among 10 wheat (Triticum aestivum L.) genotypes at tillering stage. Colloid Surf B: Bio interfaces, 2007; 54(2): 143-9.
  • 66. Trebst A, Depka B, Holländer-Czytko H. A specific role for tocopherol and of chemical singlet oxygen quenchers in the maintenance of photosystem II structure and function in Chlamydomonas reinhardtii. FEBS Lett, 2002; 516: 156-60.
  • 67. Bergmüller E, Porfirova S, Dörmann P. Characterization of an Arabidopsis mutant deficient in g-tocopherolmethyltransferase. Plant Mol Biol, 2003; 52: 1181-90.
  • 68. Sieferman-Harms D. The light harvesting function of carotenoids in photosynthetic membrane. Plant Physiol, 1987; 69: 561-8.
  • 69. Collins A. Carotenoids and genomic stability. Mutat Res. 2001; 475: 1-28.
  • 70. Foyer CH, Harbinson J. Oxygen metabolism and the Regulation of photosynthetic electron transport. In: Foyer CH, Mullineaux P, eds. Causes of Photooxidative Stresses and Amelioration of Defense Systems in Plants. Boca Raton, FL. CRC Press, 1994: 1-42.
  • 71. Peñuelas J, Munné-Bosch S. Isoprenoids: An evolutionary pool for photoprotection, Trends Plant Sci, 2005; 10: 166-9.
  • 72. Loreto F, Pinelli P, Manes F, Kollist H. Impact of ozone on monoterpene emissions and evidence for an isoprene-like antioxidant action of monoterpenes emitted by Quercus ilex leaves. Tree Physiol, 2004; 24: 361-7.
  • 73. Mittler R, Zilinskas BA. Molecular cloning and characterization of a gene encoding pea cytosolic ascorbate peroxidase. J Biol Chem, 1992; 267: 21802-7.
  • 74. Jimenez A, Hernandez JA, Pastori G, del Rio LA, Sevilla F. Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiol, 1998; 118: 1327-35.
  • 75. Rausch T, Wachter A. Sulfur metabolism: A versatile platform for launching defence operations. Trends Plant Sci, 2005; 10: 503-9.
  • 76. Khan NA, Singh S. Abiotic Stress and Plant Responses. New Delhi, IK International, 2008.
  • 77. Temple MD, Perrone GG, Dawes IW. Complex cellular responses to reactive oxygen species. Trends Cell Biol, 2005; 15: 319-26.
  • 78. Rodriguez-Serrano M, Romero-Puertas MC, Pazmino DM, Testillano PS, Risueno MC, del Rio LA, et al. Cellular response of pea plants to cadmium toxicity: Cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol, 2009; 150: 229-43.
  • 79. Kariola T, Brader G, Li J, Palva ET. Chlorophyllase 1, a damage control enzyme, affects the balance between defense pathways in plants. The Plant Cell, 2005; 17: 282-94.
  • 80. Tewari RK, Kumar P, Sharma PN. Antioxidant responses to enhanced generation of superoxide anion radical and hydrogen peroxide in the copper-stressed mulberry plants. Planta, 2006; 223: 1145-53.
  • 81. Quan LJ, Zhang B, Shi WW, Li HY. Hydrogen peroxide in plants: A versatile molecule of the reactive oxygen species network. J Integrat Plant Biol, 2008; 50: 2-18.
  • 82. Peng CL, Ou ZY, Liu N, Lin GZ. Response to high temperature in flag leaves of super high-yielding rice Pei’ai 64S/E32 and Liangyoupeijiu. Rice Sci, 2005; 12: 179-86.
  • 83. Noctor G, Foyer CH. A re-evaluation of the ATP: NADPH budget during C3 photosynthesis. A contribution from nitrate assimilation and its associated respiratory activity. J Exp Bot, 1998; 49: 1895-908.
  • 84. Beauchamp C, Fridovich I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal Biochem, 1971; 44: 276-87.
  • 85. Fridovich I. Biological effect of superoxide radical. Arch Biochem Biophys, 1986; 247: 1-11.
  • 86. Scandalios JG. Oxygen stress and superoxide dismutase. Plant Physiol, 1993; 101: 7-12.
  • 87. Edreva A. Stres physiology, definition and concepts of stres. Classification of stress factors, approaches applied in stress research. Bitkilerde Stres Fizyolojisinin Moleküler Temelleri Sempozyumu. İzmir-EBİLTEM, Bornova. 22-26 Haziran 1998.
  • 88. Kukreja S, Nandval AS, Kumar N, Sharma SK, Sharma SK, Unvi V, et al. Plant water status, H2 O2 scavenging enzymes, ethylene evolution and membrane integrity of Cicer arietinum roots as affected by salinity. Biol Plant, 2005; 49: 305-8.
  • 89. Harinasut P, Poonsopa D, Roengmongkol K, Charoensataporn R. Salinity effects on antioxidant enzymes in mulberry cultivar. Sci Asia, 2003; 29: 109-13.
  • 90. Gapinska M, Sklodowska M, Gabara B. Effect of short- and long-term salinity on the activities of antioxidative enzymes and lipid peroxidation in tomato roots. Acta Physiol Plant, 2008; 30: 11-8.
  • 91. Attia H, Karray N, Lachaa M. Light interacts with salt stress in regulating superoxide dismutase gene expression in Arabidopsis. Plant Sci, 2009; 177: 161–7.
  • 92. Soydam Aydin S, Aras S. Relationships among lipid peroxidation, enzyme activity and gene expression profiles of superoxide dismutase (SOD) in Lycopersicum esculentum L. exposed to cold stress, 2012 (unpublished manuscript).
  • 93. Arvind P, Prasad MNV. Zinc alleviates cadmiuminduced oxidative stress in Ceratophyllum demersum L: A free-floating freshwater macrophyte. Plant Physiol Biochem, 2003; 41: 391-7.
  • 94. Mobin M, Khan NA. Photosynthetic activity, pigment composition and anti-oxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J Plant Physiol, 2007; 164: 601-10.
  • 95. Khan NA, Samiullah T, Singh S, Nazar R. Activities of antioxidative enzymes, sulphur assimilation, photosynthetic activity and growth of wheat (triticum aestivum) cultivars differing in yield potential under cadmium stress. Journal of Agronomy and Crop Science, 2007; 193: 435–44.
  • 96. Singh S, Khan NA, Nazar R, Anjum NA. Photosynthetic traits and activities of antioxidant enzymes in blackgram (Vigna mungo L. Hepper) under cadmium stress, Am J Plant Physiol, 2008; 3: 25-32.
  • 97. Hsu YT, Kao CH. Heat shock-mediated H2 O2 accumulation and protection against Cd toxicity in rice seedlings. Plant Soil, 2007; 300: 137-47.
  • 98. Zlatev ZS, Lidon FC, Ramalho JC, Yordanov IT. Comparison of resistance to drought of three bean cultivars. Biol Plant, 2006; 50: 389-94.
  • 99. Polidoros NA, Scandalios JG. Role of hydrogen peroxide and different classes of antioxidants in the regulation of catalase and glutathione S-transferase gene expression in maize (Zea mays L.). Physiol Plant, 1999; 106: 112-20.
  • 100. Azevedo RA, Alas RM, Smith RJ, Lea PA. Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in leaves and roots of wild-type and catalasedeficient mutant of barley. Physiol Plant, 1998; 104: 280-92.
  • 101. Azpilicueta CE, Benavides MP, Tomaro ML, Gallego SM. Mechanism of CATA3 induction by cadmium in sunflower leaves. Plant Physiol Biochem, 2007; 45: 589-95.
  • 102. Frugoli JA, Zhong HH, Nuccio ML, McCourt P, McPeek MA, et al. Catalase is encoded by a multigene family in Arabidopsis thaliana (L.). Plant Physiol, 1996; 112: 327-36.
  • 103. Polle A, Chakrabarti K, Chakrabarti S, Seifert F, Schramel P, Rennenberg H. Antioxidants and manganese deficiency in needles of Norway spruce (Picea abies L.) Trees. Plant Physiol, 1992; 99: 1084-9.
  • 104. Matsumura T, Tabayashi N, Kamagata Y, Souma C, Saruyama H. Wheat catalase expressed in transgenic rice can improve tolerance against low temperature stress. Physiol Plant, 2002; 116(3): 317-37.
  • 105. Mittova V, Tal M, Volokita M, Guy M. Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant Cell Environ, 2003; 26: 845–56.
  • 106. Henriques FS. Gas exchange, chlorophyll a fluorescence kinetics and lipid peroxidation of pecan leaves with varying manganese concentrations. Plant Sci, 2003; 165: 239-44.
  • 107. Millar AH, Mittova V, Kiddle G, Heazlewood JL, Bartoli CG, Theodoulou FL, et al. Control of ascorbate synthesis by respiration and its implication for stress responses. Plant Physiol, 2003; 133: 443-7.
  • 108. Leon AM, Palma JM, Corpas FJ, Gomez M, RomeroPuertas MC, Chatterjee D, et al. Antioxidant enzymes in cultivars of pepper plants with different sensitivity to cadmium. Plant Physiol Biochem, 2002; 40: 813-20.
  • 109. Dixit V, Pandey V, Shyam R. Differential oxidative responses to cadmium in roots and leaves of pea (Pisum sativum L cv. Azad). J Exp Bot, 2001; 52: 1101-9.
  • 110. Leisinger U, Rüfenacht K, Fischer B, Pesaro M, Spengler A, Zehnder AJB, et al. The glutathione peroxidase homologous gene from Chlamydomonas reinhardtii is transcriptionally up-regulated by singlet oxygen. Plant Mol Biol, 2001; 46: 395-408.
  • 111. Koornneef M, Peeters AJM. Molecular responses to cold, drought, heat and salt stress in higher plants. In: Shinozaki K, Yamaguchi-Shinozaki K, eds. Genetic approaches to abiotic stress responses. Austin, TX. Landes Company, 1999: 1–10.
  • 112. Panjabi-Sabharwal V, Karan R, Khan T, Pareek A. Abiotic stress responses: complexities in gene expression. In: Sopory SK, Bohnert HJ, Govindjee, eds. Abiotic Stress Adaptation in Plants: Physiological, Molecular and Genomic Foundation. Springer-Verlag, 2010: 177–98.
  • 113. Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, et al. Gene expression profiles during the initial phase of salt stress in rice. Plant Cell, 2001; 13(4): 889-905.
  • 114. Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, et al. Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol, 2003; 133(4): 1755-67.
  • 115. Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Ann Rev Plant Biol, 2006; 57: 781-803.
  • 116. Rabello AR, Guimarães CM, Rangel PHN, Silva FR, Seixas D, Souza E, et al. Identification of droughtresponsive genes in roots of upland rice (Oryza sativa L). BMC Genomics, 2008; 9: 485.
  • 117. Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995; 270: 467–70.

Molecular Responses of Plants to Stress Conditions

Yıl 2012, Cilt: 69 Sayı: 2, 97 - 110, 01.06.2012

Öz

Plants encounter many stress factors which affect their growth and development throughout their lifecycles because of their sessile nature. These stress conditions which can be originated by biotic and abiotic factors can adversely affect the quantity and quality of the product with leading to physiological and biochemical damage to crops. Plants have molecular response mechanisms for protecting and reducing negative effects of stress factors and these mechanisms can be divided in three groups, including homeostasis of ions and macromolecules, synthesis of protective molecules and formation and detoxification of reactive oxygen species ROS . Homeostasis of macromolecules and ions is one of the response mechanisms of plants against dehydration and contains activation and inactivation of aquaporins and ion transport systems which play a role for controlling of water transmission and ion balance. The other stress response of plants is based on synthesis protective molecules such as low molecular weighted soluble substances or osmolites, heat shock HSP and LEA late embroyogenesis abundont proteins proteins. These molecules are participate in cell as an osmotic regulator and osmoprotectan. The last molecular responses of plants is the generation of enzymatic and non-enzymatic antioxidants which are responsible for synthesis and detoxificaiton of ROS under stress condition. Today, in biotechnology which has become one of the most popular research area, improving koşullarına karşı adaptasyonu ve dirençliliğinin arttırılması öncelikle bitkilerde stres etkilerinin net anlaşılmasına bağlıdır. Bu açıdan stres molekülerine ilişkin kaynak ve çalışmaların arttırılması faydalı olacaktır

Kaynakça

  • 1. Levitt J. Responses of plants to environmental Stresses. New York, London: Academic Press, 1972: 697.
  • 2. Lichtenhaler HK. Vegetation stress: An introduction to the stress concept in plants. J Plant Physiol, 1996; 148: 4-14.
  • 3. Boyer JS. Plant productivity and environment. Science, 1982; 218: 443-8.
  • 4. Velthuizen H, Huddleston B, Fischer G, Salvatore M, Ataman E, Nachtergaele FO, et al. Mapping biophysical factors that ınfluence agricultural production and rural vulnerability. Environment and Natural Resources Series No. 11, Rome: FAO, 2007.
  • 5. Madhova Rao KV, Raghavendra AS, Janardhan Reddy K. Physiology and Molecular Biology of Stress Tolerance in Plants. Netherlands: Springer, 2005: 345.
  • 6. Dubey RS. Handbook of Plant and Crop Stress. New York: Marcel Dekker, 1994; 227.
  • 7. Kadıoğlu A. Bitki fizyolojisi. Trabzon: Lokman Yayın, 2004; 453.
  • 8. Boscaiu M, Lull C, Lidon A, Bautista I, Donat P, Mayoral O, et al. Plant responses to abiotic stress in their natural habitats. Bulletin UASVM, Horticulture, 2008; 65 (1): 53-8.
  • 9. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol, 2000; 51: 463-99.
  • 10. Munns R. Comparative physiology of salt and water stress. Plant Cell Environ, 2002; 25: 239-50.
  • 11. Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 2003; 218: 1-14.
  • 12. Vinocur B, Altman A. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotech, 2005; 16: 123-32.
  • 13. Zhu JK. Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol, 2000; 124: 941-8.
  • 14. Smirnoff N, Cumbes QJ. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry, 1989; 28: 1057–60.
  • 15. Henle KJ, Jethmalani SM, Nagle WA. Stres proteins and glycoproteins. Int Mol Med, 1999; (1): 25-32.
  • 16. Chiba S, Yokota SI, Yonekuva K, Tanaka S, Furuyama H, Kubota H, et al. Auto antibodies against HSP70 family proteins were detected in the cerebro spinal fluid from patients with multiplsclerosis. J Neurol Sci, 2006; 241(1-2): 39-43.
  • 17. Singh NK, Handa AK, Hasegawa PM, Bressan RA. Proteins associated with adaptation of cultured tobacco cells to NaCI. Plant Physiol, 1985; 79: 126-37.
  • 18. Husaini AM, Abdin MZ. Overexpression of tobacco osmotin gene leads to salt stress tolerance in strawberry (Fragaria X ananassa Duch.) plants. Indian J Biotechnol, 2008; 7: 465-71.
  • 19. Holmberg N, Bülow L. Improving stress tolerance in plants by gene transfer. Trends Plant Sci, 1998; 3(2): 61-6.
  • 20. Sairam RK, Tyagi A. Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci, 2004; 86: 407–21.
  • 21. Van Breusegem F, Dat JF. Reactive oxygen species in plant cell death. Plant Physiol, 2006; 141: 384-90.
  • 22. Van Camp W, Van Montagu M, Inze D. H2 O2 and NO: Redox signals in disease resistance. Trends Plant Sci, 1998; 3: 330-4.
  • 23. Flora SJ. Role of free radicals and antioxidants in health and disease. Cell Mol Biol, 2007; 53: 1-2.
  • 24. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 2nd ed. Oxford: Clarendon Press, 1998: 188-96.
  • 25. Stadtman ER, Barlett BS. Free Radical-Mediated Modification of Proteins. In: Wallace KB, ed. Free Radical Toxicology. CRC Press Boca Raton, 1997: 71-87.
  • 26. Mehlar AH. Arch Biochem Biophys, 1951; 33: 65–77.
  • 27. Harbinson J, Hedley CL. Changes in P-700 oxidation during the early stages of the induction of photosynthesis. Plant Physiol, 1993; 103: 649–60.
  • 28. Asada K, Kiso K, Yoshikawa K. Univalent reduction of molecular oxygen by spinach chloroplasts on illumination. J Biol Chem, 1974; 249 (7): 2175–81.
  • 29. Haber F, Weiss J. The catalytic decomposition of hydrogen peroxide by ion salts. Proc R Soc, 1934; 147(A): 332-51.
  • 30. Fenton HJH. Oxidation of tartaric acid in presence of iron. J Chem Soc Trans, 1894; 65: 899–911.
  • 31. Smirnoff N. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol, 1993; 125: 27-58.
  • 32. McKersie BD, Leshem Y. Stress and stress coping in cultivated plants. Netherlands: Kluwer Academic Publishers, 1994.
  • 33. Bray EA. Plant responses to water deficit. Trends Plant Sci, 1997; 2: 48-54.
  • 34. Farrant JM. A comparison of mechanisms of desiccation tolerance among three angiosperm resurrection plant species. Plant Ecol, 2000; 151: 29-39.
  • 35. Stuhlfauth T, Scheuermann R, Fock HP. Light energy dissipation under water stress conditions. Plant Physiol, 1990; 92: 1053-61.
  • 36. Sgherry CLM, Pinzino C, Navari-Izzo F. Sunflower seedlings subjected to increasing water stress by water deficit: changes in O2 -production related to the composition of thylakoid membranes. Physiol Plant, 1996; 96: 446-52.
  • 37. Hodges DM, DeLong JM, Forney CF, Prange RK. Improving the thiobarbituric acid-reactivesubstances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 1999; 207: 604–11.
  • 38. Krupa Z, Baszynski T. Acyl lipid composition of thylakoid membranes of cadmium–treated tomato plants. Acta Physiol Plantarum, 1989; 11: 111-6.
  • 39. Quariti O, Boussama N, Zarrouk M, Cherif A, Ghorbal MH. Cadmium- and copperinduced changes in tomato membrane lipids. Phytochemistry, 1997; 45: 1343-50.
  • 40. Ben Ammar W, Nouairi I, Tray B, Zarrouk M, Jemal F, Ghorbal MH. Effets du cadmium sur l’accumulation ionique et les teneurs en lipides dans les feuilles de tomate (Lycopersicon esculentum). J Soc Biol, 2005; 199: 157-63.
  • 41. Malik D, Sbeoran IS, Singh R. Carbon metabolism of cadmium treated wheat seedlings. Plant Physiol Bioch, 1992; 30(2): 223–9.
  • 42. Vassilev A. Cadmium-induced changes in chloroplast lipids and photosystem activities in barley plants. Biol Plantarum, 2004; 48: 153-6.
  • 43. Gaur A, Grupa SK. Lipid components of mustard seeds (Brassica juncea L.) as influenced by cadmium levels. Plant Foods Hum Nutr, 1994; 46: 93-102.
  • 44. Nouairi I, Ben Ammar W, Ben Youssef N, Ben Miled Daoud D, Habib Ghorbal M, et al. Comparative study of cadmium effects on membrane lipid composition of Brassica juncea and Brassica napus leaves. Plant Sci, 2006; 170: 511-9.
  • 45. Halliwell B, Gutteridge MC. Free Radical and Other Reactive Species and Disease. 3rd ed. Oxford: Oxford University Press, 1999: 639-46.
  • 46. Moller IM, Jensen PE, Hansson A. Oxidative modifications to cellular components in plants. Annu Rev Plant Biol, 2007; 58: 459-81.
  • 47. DeFedericis HC, Patrzyc HB, Rajecki MJ, Budzinski EE, Lijima H, Dawidzik JB, et al. Singlet oxygeninduced DNA damage. Radiat Res, 2006; 165(4): 445-51.
  • 48. Imlay JA. Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem, 2008; 77: 755-76.
  • 49. Varnova E, Van Brcusegem F, Dat J, Belles-Bolx E, Inze D. The role of reactive oxygen species in signal transduction. In: Scheel D, Wasternack C. eds. Oxford University Press, 2002: 41–73.
  • 50. Dat J, Vandenbeele S, Vranova E, Van Montagu M, Inze D, Van Breusegm F. Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci, 2000; 57: 779–95.
  • 51. Arora A, Sairam RK, Srivastava GC. Oxidative stress and antioxidative systems in plants. Curr Sci, 2002; 82: 1227–38.
  • 52. Smirnoff N. Ascorbate, Tocopherol and Carotenoids: Metabolism, Pathway Engineering and Functions. In: Smirnoff N, ed. Antioxidants and Reactive Oxygen Species in Plants. Oxford: Blackwell Publishing Ltd, 2005: 53-86.
  • 53. Athar HR, Khan A, Ashraf M. Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Env Exp Bot, 2008; 63: 224-31.
  • 54. Foyer CH, Souriau N, Perret S, Lelandais M, Kunert KJ, Pruvost C, et al. Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol, 1995; 109: 1047-57.
  • 55. Aono M, Kubo A, Saji H, Tanaka K, Kondo N. Enhanced tolerance to photooxidative stress of transgenic Nicotiana tabacum with high chlorolastic glutathione reductase activity. Plant Cell Physiol, 1993; 34: 129-35.
  • 56. Demirevska-Kepova K, Simova-Stoilova L, Stoyanova ZP, Feller U. Cadmium stress in barley: growth, leaf pigment, and protein composition and detoxification of reactive oxygen species. J Plant Nutr, 2006; 29: 451-68.
  • 57. Yang Y, Han C, Liu Q, Lin B, Wang J. Effect of drought and low light on growth and enzymatic antioxidant system of Picea asperata seedlings. Acta Physiol Plant, 2008; 30: 433-40.
  • 58. Skorzynska-Polit E, Drazkiewicz M, Krupa Z. The activity of the antioxidative system in cadmiumtreated Arabidopsis thaliana. Biol Plant, 2003; 47: 71-8.
  • 59. Zhang FQ, Shi WY, Jin ZX, Shen ZG. Response of antioxidative enzymes in cucumber chloroplast to cadmium toxicity. J Plant Nutr, 2003; 26: 1779-88.
  • 60. Romero-Puertas MC, Corpas FJ, RodrıguezSerrano M, Gomez M, del Rıo LA, Sandalio LM. Differential expression and regulation of antioxidative enzymes by cadmium in pea plants. J Plant Physiol, 2007; 164: 1346-57.
  • 61. Schutzendubel A, Nikolova P, Rudolf C, Polle A. Cadmium and H2 O2 induced oxidative stress in Populas canescens roots. Plant Physiol Biochem, 2002; 40: 577-84.
  • 62. Hollander-Czytko H, Grabowski J, Sandorf I, Weckermann K, Weiler EW. Tocopherol content and activities of tyrosine aminotransferase and cystine lyase in Arabidopsis under stress conditions. J Plant Physiol, 2005; 162: 767-70.
  • 63. Kamal-Eldin A, Appelqvist LA. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids, 1996; 31: 671-701.
  • 64. Wu G, Wei ZK, Shao HB. The mutual responses of higher plants to environment: Physiological and microbiological aspects. Biointerfaces, 2007; 59:113-9.
  • 65. Shao HB, Chu LY, Wu G, Zhang JH, Lu Z, Hu YC. Changes of some antioxidative physiological indices under soil water deficits among 10 wheat (Triticum aestivum L.) genotypes at tillering stage. Colloid Surf B: Bio interfaces, 2007; 54(2): 143-9.
  • 66. Trebst A, Depka B, Holländer-Czytko H. A specific role for tocopherol and of chemical singlet oxygen quenchers in the maintenance of photosystem II structure and function in Chlamydomonas reinhardtii. FEBS Lett, 2002; 516: 156-60.
  • 67. Bergmüller E, Porfirova S, Dörmann P. Characterization of an Arabidopsis mutant deficient in g-tocopherolmethyltransferase. Plant Mol Biol, 2003; 52: 1181-90.
  • 68. Sieferman-Harms D. The light harvesting function of carotenoids in photosynthetic membrane. Plant Physiol, 1987; 69: 561-8.
  • 69. Collins A. Carotenoids and genomic stability. Mutat Res. 2001; 475: 1-28.
  • 70. Foyer CH, Harbinson J. Oxygen metabolism and the Regulation of photosynthetic electron transport. In: Foyer CH, Mullineaux P, eds. Causes of Photooxidative Stresses and Amelioration of Defense Systems in Plants. Boca Raton, FL. CRC Press, 1994: 1-42.
  • 71. Peñuelas J, Munné-Bosch S. Isoprenoids: An evolutionary pool for photoprotection, Trends Plant Sci, 2005; 10: 166-9.
  • 72. Loreto F, Pinelli P, Manes F, Kollist H. Impact of ozone on monoterpene emissions and evidence for an isoprene-like antioxidant action of monoterpenes emitted by Quercus ilex leaves. Tree Physiol, 2004; 24: 361-7.
  • 73. Mittler R, Zilinskas BA. Molecular cloning and characterization of a gene encoding pea cytosolic ascorbate peroxidase. J Biol Chem, 1992; 267: 21802-7.
  • 74. Jimenez A, Hernandez JA, Pastori G, del Rio LA, Sevilla F. Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiol, 1998; 118: 1327-35.
  • 75. Rausch T, Wachter A. Sulfur metabolism: A versatile platform for launching defence operations. Trends Plant Sci, 2005; 10: 503-9.
  • 76. Khan NA, Singh S. Abiotic Stress and Plant Responses. New Delhi, IK International, 2008.
  • 77. Temple MD, Perrone GG, Dawes IW. Complex cellular responses to reactive oxygen species. Trends Cell Biol, 2005; 15: 319-26.
  • 78. Rodriguez-Serrano M, Romero-Puertas MC, Pazmino DM, Testillano PS, Risueno MC, del Rio LA, et al. Cellular response of pea plants to cadmium toxicity: Cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol, 2009; 150: 229-43.
  • 79. Kariola T, Brader G, Li J, Palva ET. Chlorophyllase 1, a damage control enzyme, affects the balance between defense pathways in plants. The Plant Cell, 2005; 17: 282-94.
  • 80. Tewari RK, Kumar P, Sharma PN. Antioxidant responses to enhanced generation of superoxide anion radical and hydrogen peroxide in the copper-stressed mulberry plants. Planta, 2006; 223: 1145-53.
  • 81. Quan LJ, Zhang B, Shi WW, Li HY. Hydrogen peroxide in plants: A versatile molecule of the reactive oxygen species network. J Integrat Plant Biol, 2008; 50: 2-18.
  • 82. Peng CL, Ou ZY, Liu N, Lin GZ. Response to high temperature in flag leaves of super high-yielding rice Pei’ai 64S/E32 and Liangyoupeijiu. Rice Sci, 2005; 12: 179-86.
  • 83. Noctor G, Foyer CH. A re-evaluation of the ATP: NADPH budget during C3 photosynthesis. A contribution from nitrate assimilation and its associated respiratory activity. J Exp Bot, 1998; 49: 1895-908.
  • 84. Beauchamp C, Fridovich I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal Biochem, 1971; 44: 276-87.
  • 85. Fridovich I. Biological effect of superoxide radical. Arch Biochem Biophys, 1986; 247: 1-11.
  • 86. Scandalios JG. Oxygen stress and superoxide dismutase. Plant Physiol, 1993; 101: 7-12.
  • 87. Edreva A. Stres physiology, definition and concepts of stres. Classification of stress factors, approaches applied in stress research. Bitkilerde Stres Fizyolojisinin Moleküler Temelleri Sempozyumu. İzmir-EBİLTEM, Bornova. 22-26 Haziran 1998.
  • 88. Kukreja S, Nandval AS, Kumar N, Sharma SK, Sharma SK, Unvi V, et al. Plant water status, H2 O2 scavenging enzymes, ethylene evolution and membrane integrity of Cicer arietinum roots as affected by salinity. Biol Plant, 2005; 49: 305-8.
  • 89. Harinasut P, Poonsopa D, Roengmongkol K, Charoensataporn R. Salinity effects on antioxidant enzymes in mulberry cultivar. Sci Asia, 2003; 29: 109-13.
  • 90. Gapinska M, Sklodowska M, Gabara B. Effect of short- and long-term salinity on the activities of antioxidative enzymes and lipid peroxidation in tomato roots. Acta Physiol Plant, 2008; 30: 11-8.
  • 91. Attia H, Karray N, Lachaa M. Light interacts with salt stress in regulating superoxide dismutase gene expression in Arabidopsis. Plant Sci, 2009; 177: 161–7.
  • 92. Soydam Aydin S, Aras S. Relationships among lipid peroxidation, enzyme activity and gene expression profiles of superoxide dismutase (SOD) in Lycopersicum esculentum L. exposed to cold stress, 2012 (unpublished manuscript).
  • 93. Arvind P, Prasad MNV. Zinc alleviates cadmiuminduced oxidative stress in Ceratophyllum demersum L: A free-floating freshwater macrophyte. Plant Physiol Biochem, 2003; 41: 391-7.
  • 94. Mobin M, Khan NA. Photosynthetic activity, pigment composition and anti-oxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J Plant Physiol, 2007; 164: 601-10.
  • 95. Khan NA, Samiullah T, Singh S, Nazar R. Activities of antioxidative enzymes, sulphur assimilation, photosynthetic activity and growth of wheat (triticum aestivum) cultivars differing in yield potential under cadmium stress. Journal of Agronomy and Crop Science, 2007; 193: 435–44.
  • 96. Singh S, Khan NA, Nazar R, Anjum NA. Photosynthetic traits and activities of antioxidant enzymes in blackgram (Vigna mungo L. Hepper) under cadmium stress, Am J Plant Physiol, 2008; 3: 25-32.
  • 97. Hsu YT, Kao CH. Heat shock-mediated H2 O2 accumulation and protection against Cd toxicity in rice seedlings. Plant Soil, 2007; 300: 137-47.
  • 98. Zlatev ZS, Lidon FC, Ramalho JC, Yordanov IT. Comparison of resistance to drought of three bean cultivars. Biol Plant, 2006; 50: 389-94.
  • 99. Polidoros NA, Scandalios JG. Role of hydrogen peroxide and different classes of antioxidants in the regulation of catalase and glutathione S-transferase gene expression in maize (Zea mays L.). Physiol Plant, 1999; 106: 112-20.
  • 100. Azevedo RA, Alas RM, Smith RJ, Lea PA. Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in leaves and roots of wild-type and catalasedeficient mutant of barley. Physiol Plant, 1998; 104: 280-92.
  • 101. Azpilicueta CE, Benavides MP, Tomaro ML, Gallego SM. Mechanism of CATA3 induction by cadmium in sunflower leaves. Plant Physiol Biochem, 2007; 45: 589-95.
  • 102. Frugoli JA, Zhong HH, Nuccio ML, McCourt P, McPeek MA, et al. Catalase is encoded by a multigene family in Arabidopsis thaliana (L.). Plant Physiol, 1996; 112: 327-36.
  • 103. Polle A, Chakrabarti K, Chakrabarti S, Seifert F, Schramel P, Rennenberg H. Antioxidants and manganese deficiency in needles of Norway spruce (Picea abies L.) Trees. Plant Physiol, 1992; 99: 1084-9.
  • 104. Matsumura T, Tabayashi N, Kamagata Y, Souma C, Saruyama H. Wheat catalase expressed in transgenic rice can improve tolerance against low temperature stress. Physiol Plant, 2002; 116(3): 317-37.
  • 105. Mittova V, Tal M, Volokita M, Guy M. Up-regulation of the leaf mitochondrial and peroxisomal antioxidative systems in response to salt-induced oxidative stress in the wild salt-tolerant tomato species Lycopersicon pennellii. Plant Cell Environ, 2003; 26: 845–56.
  • 106. Henriques FS. Gas exchange, chlorophyll a fluorescence kinetics and lipid peroxidation of pecan leaves with varying manganese concentrations. Plant Sci, 2003; 165: 239-44.
  • 107. Millar AH, Mittova V, Kiddle G, Heazlewood JL, Bartoli CG, Theodoulou FL, et al. Control of ascorbate synthesis by respiration and its implication for stress responses. Plant Physiol, 2003; 133: 443-7.
  • 108. Leon AM, Palma JM, Corpas FJ, Gomez M, RomeroPuertas MC, Chatterjee D, et al. Antioxidant enzymes in cultivars of pepper plants with different sensitivity to cadmium. Plant Physiol Biochem, 2002; 40: 813-20.
  • 109. Dixit V, Pandey V, Shyam R. Differential oxidative responses to cadmium in roots and leaves of pea (Pisum sativum L cv. Azad). J Exp Bot, 2001; 52: 1101-9.
  • 110. Leisinger U, Rüfenacht K, Fischer B, Pesaro M, Spengler A, Zehnder AJB, et al. The glutathione peroxidase homologous gene from Chlamydomonas reinhardtii is transcriptionally up-regulated by singlet oxygen. Plant Mol Biol, 2001; 46: 395-408.
  • 111. Koornneef M, Peeters AJM. Molecular responses to cold, drought, heat and salt stress in higher plants. In: Shinozaki K, Yamaguchi-Shinozaki K, eds. Genetic approaches to abiotic stress responses. Austin, TX. Landes Company, 1999: 1–10.
  • 112. Panjabi-Sabharwal V, Karan R, Khan T, Pareek A. Abiotic stress responses: complexities in gene expression. In: Sopory SK, Bohnert HJ, Govindjee, eds. Abiotic Stress Adaptation in Plants: Physiological, Molecular and Genomic Foundation. Springer-Verlag, 2010: 177–98.
  • 113. Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, et al. Gene expression profiles during the initial phase of salt stress in rice. Plant Cell, 2001; 13(4): 889-905.
  • 114. Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, et al. Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol, 2003; 133(4): 1755-67.
  • 115. Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Ann Rev Plant Biol, 2006; 57: 781-803.
  • 116. Rabello AR, Guimarães CM, Rangel PHN, Silva FR, Seixas D, Souza E, et al. Identification of droughtresponsive genes in roots of upland rice (Oryza sativa L). BMC Genomics, 2008; 9: 485.
  • 117. Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995; 270: 467–70.
Toplam 117 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Derleme
Yazarlar

İlker Büyük Bu kişi benim

Semra Soydam Aydın Bu kişi benim

Sümer Aras Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2012
Yayımlandığı Sayı Yıl 2012 Cilt: 69 Sayı: 2

Kaynak Göster

APA Büyük, İ., Aydın, S. S., & Aras, S. (2012). Bitkilerin Stres Koşullarına Verdiği Moleküler Cevaplar. Türk Hijyen Ve Deneysel Biyoloji Dergisi, 69(2), 97-110.
AMA Büyük İ, Aydın SS, Aras S. Bitkilerin Stres Koşullarına Verdiği Moleküler Cevaplar. Turk Hij Den Biyol Derg. Haziran 2012;69(2):97-110.
Chicago Büyük, İlker, Semra Soydam Aydın, ve Sümer Aras. “Bitkilerin Stres Koşullarına Verdiği Moleküler Cevaplar”. Türk Hijyen Ve Deneysel Biyoloji Dergisi 69, sy. 2 (Haziran 2012): 97-110.
EndNote Büyük İ, Aydın SS, Aras S (01 Haziran 2012) Bitkilerin Stres Koşullarına Verdiği Moleküler Cevaplar. Türk Hijyen ve Deneysel Biyoloji Dergisi 69 2 97–110.
IEEE İ. Büyük, S. S. Aydın, ve S. Aras, “Bitkilerin Stres Koşullarına Verdiği Moleküler Cevaplar”, Turk Hij Den Biyol Derg, c. 69, sy. 2, ss. 97–110, 2012.
ISNAD Büyük, İlker vd. “Bitkilerin Stres Koşullarına Verdiği Moleküler Cevaplar”. Türk Hijyen ve Deneysel Biyoloji Dergisi 69/2 (Haziran 2012), 97-110.
JAMA Büyük İ, Aydın SS, Aras S. Bitkilerin Stres Koşullarına Verdiği Moleküler Cevaplar. Turk Hij Den Biyol Derg. 2012;69:97–110.
MLA Büyük, İlker vd. “Bitkilerin Stres Koşullarına Verdiği Moleküler Cevaplar”. Türk Hijyen Ve Deneysel Biyoloji Dergisi, c. 69, sy. 2, 2012, ss. 97-110.
Vancouver Büyük İ, Aydın SS, Aras S. Bitkilerin Stres Koşullarına Verdiği Moleküler Cevaplar. Turk Hij Den Biyol Derg. 2012;69(2):97-110.