BibTex RIS Kaynak Göster

Chlorella vulgaris’in biyoflokülantlarla sıvı ortamlardan ayrılması

Yıl 2014, Cilt: 71 Sayı: 4, 187 - 200, 01.12.2014

Öz

Amaç: Büyük ölçekte üretilen Chlorella vulgaris’in sıvı ortamlardan ayrılması güç ve pahalı bir işlemdir. Bu çalışmada, çeşitli örneklerden izole edilen bakterilerin biyoflokülant aktivitesinin belirlenmesi, biyoflokülantın saflaştırılması ve biyoflokülant kullanılarak C. vulgaris’in besiyerinden ayrılması amaçlanmıştır. Yöntem: Farklı illerden toplanan toprak ve atık su örneklerinden elde edilen izolatların morfolojik özellikleri ve Gram tepkimesi incelenmiştir. Daha sonra izolatların küme oluşturma aktivitesi spektrofotometrik ölçümler ile belirlenerek en yüksek aktiviteye sahip olan beş suşun 16S rRNA dizi analizi ile moleküler tanısı yapılmıştır. Bacillus amyloliquefaciens AS21a’nın küme oluşturma aktivitesinin yüksek ve kararlı olduğu belirlenmiştir. Bu nedenle biyoflokülantın üretimi ve saflaştırılması işlemlerine bu suşla devam edilmiştir. Saflaştırılan biyoflokülantın yapısal özelliklerinin belirlenmesi amacıyla protein tayini, karbonhidrat tayini ve Fourier Dönüşümlü Infrared Spektrofotometre FTIR analizi yapılmıştır. Elde edilen biyoflokülant ham ekstraktının ve saflaştırılmış biyoflokülantın C. vulgaris’i çökeltme etkinliği belirlenmiştir.Bulgular: Toprak ve atık su örneklerinden 109 adet suş izole edilmiştir. Beş suş, %40 ve üzeri yüksek küme oluşturma aktivitesine sahiptir. En yüksek aktiviteye sahip olan izolat ise atık sudan izole edilen B. amyloliquefaciens AS21a suşu olarak tanımlanmıştır. B. amyloliquefaciens AS21a suşundan elde edilen ham ekstrakt, pH’sı 8,0 olan saf kaolin süspansiyonunda %90 düzeyinde küme oluşturma aktivitesi göstermiştir. Analizler, biyoflokülantın %86,44 protein ve %13,56 karbonhidrat içeren bir biyopolimer olduğunu göstermiştir. Biyoflokülantla C. vulgaris’in çökeltme etkinliğinin belirlendiği denemede %51,13 düzeyinde başarı elde edilmiştir. Sonuç: Atık suyun biyoflokülant üreten bakterilerin elde edilmesi için iyi bir kaynak olabileceği sonucuna varılmıştır. Biyoflokülant üretimi ve saflaştırılması açısından optimum koşulların sağlanmasıyla aktivitenin arttırılabileceği düşünülmektedir. Ayrıca, pH ve kaolin saflığı gibi faktörlerin küme oluşturma etkenliğini etkilediği görülmüştür. Bu nedenle sıcaklık, biyoflokülant miktarı, çalkalama süresi vb. diğer etkenlerin küme oluşturma üzerindeki etkisi incelenmelidir. FTIR analizi, karbonhidrat ve protein tayinleri sonucunda biyoflokülant bileşiminde karbonhidrat içeriğinin daha fazla olduğu belirlenmiştir. Bu nedenle daha önce yapılan çalışmalar ışığında biyoflokülantın büyük molekül ağırlığına sahip olduğu ve bu özelliğin küme oluşumunu olumlu yönde etkilediği düşünülmektedir. C. vulgaris ile yapılan çalışmada; algin sıvı ortamdan kısmen ayrılması mümkün olmuştur. Ancak çökme düzeyinin arttırılması amacıyla çalışmalar sürdürülecektir. Kaolinle yapılan denemelerde başarılı sonuç alınması, biyoflokülantın atık su arıtımında kullanılabilme potansiyeline sahip olduğunu göstermektedir. Bu nedenle biyoflokülantın atık su arıtımında sağlayacağı etkinin daha sonra yapılacak çalışmalarla incelenmesi de düşünülmektedir.

Kaynakça

  • 1. Özdiş Ö. Krom (VI) birikiminin Chlorella vulgaris’te hücre sayısı, klorofil, büyüme hızı, protein ve şeker miktarlarına etkileri. Yüksek Lisans Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, 2005.
  • 2. Lee AK, Lewis DM, Ashman PJ. Energy requirements and economic analysis of a full-scale microbial flocculation system for microalgal harvesting. Chem Eng Res and Design, 2010; 88: 988-96.
  • 3. http://w3.gazi.edu.tr/~tahir/alg/resim.htm (08.06.2013).
  • 4. Zheng Y, Ye ZL, Fang XL, Li YH, Cai WM. Production and characteristics of a bioflocculant produced by Bacillus sp. F19. Bioresour Technol, 2008; 99: 7686–91.
  • 5. Jia B, Yu J. The research status and development trend of microbial flocculant. Physics Procedia, 2012; 24: 425–8.
  • 6. Zheng H, Gao Z, Yin J, Tang X, Ji X, Huang H. Harvesting of microalgae by flocculation with poly (c-glutamic acid). Bioresour Technol, 2012; 112: 212–20.
  • 7. Karahan AG, Arıdoğan B, Çakmakçı ML. Genel mikrobiyoloji uygulama kılavuzu. Isparta: Süleyman Demirel Üniversitesi Yayınları, 2002.
  • 8. Vijayalakshmi SP, Raichur AM. The utility of Bacillus subtilis as a bioflocculant for fine coal. Colloids and Surfaces B: Biointerfaces, 2003; 29: 265-75.
  • 9. Xia S, Zhang Z, Wang X, Yang A, Chen L, Zhao J, et al. Production and characterization of a bioflocculant by Proteus mirabilis TJ-1. Bioresour Technol, 2008; 99: 6520-7.
  • 10. Feng DL, Xu SH. Characterization of bioflocculant MBF3-3 produced by an isolated Bacillus sp.World J Microbiol Biotechnol, 2008; 24: 1627–32.
  • 11. Abd-El-Haleem DAM, Al-Thani RF, Al-Mokemy T, AlMarii S, Hassan F. Isolation and characterization of extracellular bioflocculants produced by bacteria isolated from Qatari ecosystems. Pol J Microbiol, 2008; 57 (3): 231-9.
  • 12. http://www.dls.ym.edu.tw/ol_biology2/ultranet/ Media.html (14.12.2000).
  • 13. Oh HM, Lee SJ, Park MH, Kim HS, Kim HC, Yoon JH, et al. Harvesting of Chlorella vulgaris using a bioflocculant from Paenibacillus sp. AM49. Biotechnol. Lett, 2001; 23: 1229-34.
  • 14. Lu WY, Zhang T, Zhang DY, Li CH, Wen JD, Du LX. A novel bioflocculant produced by Enterobacter aerogenes and its use in defecating the trona suspension. Biochem Eng J, 2005; 27: 1–7.
  • 15. Nomura T, Araki S, Nagao T, Konishi Y. Resource recovery treatment of waste sludge using a solubilizing reagent. J Mater Cycles Waste Manag, 2007; 9: 34–9.
  • 16. Nwodo UU, Agunbiade MO, Green E, Nwamadi M, Rumbold K, Okoh AI. Characterization of an exopolymeric flocculant produced by a Brachybacterium sp. Materials, 2013; 6: 1237-54.
  • 17. Wan C, Zhao XQ, Guo SL, Alam MA, Bai FW. Bioflocculant production from Solibacillus silvestris W01 and its application in cost-effective harvest of marine microalga Nannochloropsis oceanica by flocculation. Bioresour Technol, 2013; 135: 207–12.
  • 18. Auhim HS, Odaa NH. Optimization of flocculation conditions of exopolysaccharide biofloculant from Azotobacter chrococcum and its potential for river water treatment. J Microbiol Biotech Res, 2013; 3(3): 93-9.
  • 19. Xiong Y, Wang Y, Yu Y, Li Q, Wang H, Chen R, et al. Production and characterization of a novel bioflocculant from Bacillus licheniformis. Appl Environ Microbiol, 2010; 76 (9): 2778–82.
  • 20. http://chemistry.oregonstate.edu/courses/ch361- 464/ch362/irinterp.htm (06.07.2013).
  • 21. Kumar GC, Joo HS, Kavali R, Choi JW, Chang CS. Characterization of an extracellular biopolymer flocculant from a haloalkalophilic Bacillus isolate. World J Microbiol Biotechnol, 2004; 20 (8): 837-43.
  • 22. Salehizadeh H, Vossoughi M, Alemzadeh I. Some investigations on bioflocculant producing bacteria. Biochem Eng J, 2000; 5: 39-44.
  • 23. Sathiyanarayanan G, Seghal Kiran G, Selvin J. Synthesis of silver nanoparticles by polysaccharide bioflocculant produced from marine Bacillus subtilis MSBN17. Colloids Surf B: Biointerf, 2013; 102: 13–20.
  • 24. Bajaj IB, Singhal RS. Sequential optimization approach for enhanced production of poly(γglutamic acid) from newly isolated Bacillus subtilis. Food Technol Biotechnol, 2009; 47 (3): 313–22.
  • 25. Elkady MF, Farag S, Zaki S, Abu-Elreesh G, AbdEl-Haleem D. Bacillus mojavensis strain 32A, a bioflocculant-producing bacterium isolated from an Egyptian salt production pond. Bioresour Technol, 2011; 102: 8143–51.
  • 26. Li Z, Zhong S, Lei H, Chen R, Yu Q, Li H. Production of a novel bioflocculant by Bacillus licheniformis X14 and its application to low temperature drinking water treatment. Bioresour Technol, 2009; 100: 3650-6.
  • 27. Lian B, Chen Y, Zhao J, Teng H, Zhu L, Yuan S. Microbial flocculation by Bacillus mucilaginosus: applications and mechanisms. Bioresour Technol, 2008; 99: 4825-31.
  • 28. Deng SB, Bai RB, Hu XM, Luo Q. Characteristics of a bioflocculant produced by Bacillus mucilaginosus and its use in starch wastewater treatment. Appl Microbiol Biotechnol, 2003; 60: 588-93.
  • 29. Salehizadeh H, Shojaosadati SA. Extracellular biopolymeric flocculants: recent trends and biotechnological importance. Biotechnol Adv, 2001; 19: 371-85.
  • 30. Zhang Z, Xia S, Zhao J, Zhang J. Characterization and flocculation mechanism of high efficiency microbial flocculant TJ-F1 from Proteus mirabilis. Colloids Surf B: Biointerf, 2010; 75: 247-51.
  • 31. Teixeira CMLL, Kirsten FV, Teixeira PCN. Evaluation of Moringa oleifera seed flour as a flocculating agent for potential biodiesel producer microalgae. J Appl Phycol, 2012; 24: 557–63.
  • 32. Suh HH, Kwon GS, Lee CH, Kim HS, Oh HM, Yoon BD. Characterization of bioflocculant produced by Bacillus sp. DP-152. J Ferment Bioeng, 1997; 84 (2): 108-12.
  • 33. Deng S, Yu G, Ting YP. Production of a bioflocculant by Aspergillus parasiticus and its application in dye removal. Colloids Surf B: Biointerf, 2005; 44: 179–86.

Separation of Chlorella vulgaris from liquid phase using bioflocculants

Yıl 2014, Cilt: 71 Sayı: 4, 187 - 200, 01.12.2014

Öz

Objective: Seperation of Chlorella vulgaris from liquid phase is a difficult and expensive process to apply on a large scale. The aim of this work is the determination of bioflocculant activity of some bacterial strains isolated from different resources, purification of bioflocculant and seperation of C. vulgaris from liquid phase using bioflocculant. Methods: Morphological properties and Gram reactions isolated from soil and waste water samples obtained from different cities were investigated. Then the flocculating activities of the cell free culture supernatants containing bioflocculant were analyzed by using spectrophotometric method. Five strains exhibited the highest flocculating activity were identified using 16S rRNA gene nucleotide sequence analysis. The flocculating activity of Bacillus amyloliquefaciens AS21a was found to be higher and more stable than the other strains. For this reason, this strain was used for production and purification of bioflocculant. The structural properties of the purified bioflocculant were determined by total protein and carbohydrate analysis, and Fourier Transform Infrared Spectroscopy FTIR spectroscopy analysis. The flocculation efficiency of crude supernatant and purified bioflocculant on C. vulgaris was determined Results: 109 strains were isolated from samples of soil and waste water. Five strains have 40% and more high flocculating efficiency. Strain that has the highest activity has been identified as B. amyloliquefaciens AS21a which wastewater was isolated. The raw extract obtained from this strain showed about 90% flocculating activity in pure kaolin suspension pH 8.0 . Analysis showed that the bioflocculant is a biopolymer containing 13.56% protein and 86.44% carbohydrate. Finally, the bioflocculant produced by AS21a showed 51.13% flocculating efficiency on freshwater green microalgae C. vulgaris. Conclusion: This study has shown that waste water is a rich source for bioflocculant producing microorganisms. It is believed that flocculating activity will increase at the optimum experimental conditions. Besides that, efficiency of flocculating activity was affected by factors such as pH and purity of kaolin. For this reason, the effects of other factors such as temperature, amount of bioflocculant, agitation time and etc. on the flocculating activity must be examined. Further analysis such as FTIR, carbohydrate and protein analysis showed that the main compositions of the purified bioflocculants were carbohydrates containing some proteins. Therefore, it was concluded that it has a high molecular weight and this property has increased the flocculating activity. Experimental results showed that C. vulgaris was partially separated from the liquid phase. However, the experiments will continue for the purpose of increasing the flocculating activity. Getting successfully experimental results with kaolin showed that bioflocculant has a potential use in wastewater treatment. For this reason, it also is thought to analyze the effect of bioflocculant on the wastewater treatment with further studies.

Kaynakça

  • 1. Özdiş Ö. Krom (VI) birikiminin Chlorella vulgaris’te hücre sayısı, klorofil, büyüme hızı, protein ve şeker miktarlarına etkileri. Yüksek Lisans Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, 2005.
  • 2. Lee AK, Lewis DM, Ashman PJ. Energy requirements and economic analysis of a full-scale microbial flocculation system for microalgal harvesting. Chem Eng Res and Design, 2010; 88: 988-96.
  • 3. http://w3.gazi.edu.tr/~tahir/alg/resim.htm (08.06.2013).
  • 4. Zheng Y, Ye ZL, Fang XL, Li YH, Cai WM. Production and characteristics of a bioflocculant produced by Bacillus sp. F19. Bioresour Technol, 2008; 99: 7686–91.
  • 5. Jia B, Yu J. The research status and development trend of microbial flocculant. Physics Procedia, 2012; 24: 425–8.
  • 6. Zheng H, Gao Z, Yin J, Tang X, Ji X, Huang H. Harvesting of microalgae by flocculation with poly (c-glutamic acid). Bioresour Technol, 2012; 112: 212–20.
  • 7. Karahan AG, Arıdoğan B, Çakmakçı ML. Genel mikrobiyoloji uygulama kılavuzu. Isparta: Süleyman Demirel Üniversitesi Yayınları, 2002.
  • 8. Vijayalakshmi SP, Raichur AM. The utility of Bacillus subtilis as a bioflocculant for fine coal. Colloids and Surfaces B: Biointerfaces, 2003; 29: 265-75.
  • 9. Xia S, Zhang Z, Wang X, Yang A, Chen L, Zhao J, et al. Production and characterization of a bioflocculant by Proteus mirabilis TJ-1. Bioresour Technol, 2008; 99: 6520-7.
  • 10. Feng DL, Xu SH. Characterization of bioflocculant MBF3-3 produced by an isolated Bacillus sp.World J Microbiol Biotechnol, 2008; 24: 1627–32.
  • 11. Abd-El-Haleem DAM, Al-Thani RF, Al-Mokemy T, AlMarii S, Hassan F. Isolation and characterization of extracellular bioflocculants produced by bacteria isolated from Qatari ecosystems. Pol J Microbiol, 2008; 57 (3): 231-9.
  • 12. http://www.dls.ym.edu.tw/ol_biology2/ultranet/ Media.html (14.12.2000).
  • 13. Oh HM, Lee SJ, Park MH, Kim HS, Kim HC, Yoon JH, et al. Harvesting of Chlorella vulgaris using a bioflocculant from Paenibacillus sp. AM49. Biotechnol. Lett, 2001; 23: 1229-34.
  • 14. Lu WY, Zhang T, Zhang DY, Li CH, Wen JD, Du LX. A novel bioflocculant produced by Enterobacter aerogenes and its use in defecating the trona suspension. Biochem Eng J, 2005; 27: 1–7.
  • 15. Nomura T, Araki S, Nagao T, Konishi Y. Resource recovery treatment of waste sludge using a solubilizing reagent. J Mater Cycles Waste Manag, 2007; 9: 34–9.
  • 16. Nwodo UU, Agunbiade MO, Green E, Nwamadi M, Rumbold K, Okoh AI. Characterization of an exopolymeric flocculant produced by a Brachybacterium sp. Materials, 2013; 6: 1237-54.
  • 17. Wan C, Zhao XQ, Guo SL, Alam MA, Bai FW. Bioflocculant production from Solibacillus silvestris W01 and its application in cost-effective harvest of marine microalga Nannochloropsis oceanica by flocculation. Bioresour Technol, 2013; 135: 207–12.
  • 18. Auhim HS, Odaa NH. Optimization of flocculation conditions of exopolysaccharide biofloculant from Azotobacter chrococcum and its potential for river water treatment. J Microbiol Biotech Res, 2013; 3(3): 93-9.
  • 19. Xiong Y, Wang Y, Yu Y, Li Q, Wang H, Chen R, et al. Production and characterization of a novel bioflocculant from Bacillus licheniformis. Appl Environ Microbiol, 2010; 76 (9): 2778–82.
  • 20. http://chemistry.oregonstate.edu/courses/ch361- 464/ch362/irinterp.htm (06.07.2013).
  • 21. Kumar GC, Joo HS, Kavali R, Choi JW, Chang CS. Characterization of an extracellular biopolymer flocculant from a haloalkalophilic Bacillus isolate. World J Microbiol Biotechnol, 2004; 20 (8): 837-43.
  • 22. Salehizadeh H, Vossoughi M, Alemzadeh I. Some investigations on bioflocculant producing bacteria. Biochem Eng J, 2000; 5: 39-44.
  • 23. Sathiyanarayanan G, Seghal Kiran G, Selvin J. Synthesis of silver nanoparticles by polysaccharide bioflocculant produced from marine Bacillus subtilis MSBN17. Colloids Surf B: Biointerf, 2013; 102: 13–20.
  • 24. Bajaj IB, Singhal RS. Sequential optimization approach for enhanced production of poly(γglutamic acid) from newly isolated Bacillus subtilis. Food Technol Biotechnol, 2009; 47 (3): 313–22.
  • 25. Elkady MF, Farag S, Zaki S, Abu-Elreesh G, AbdEl-Haleem D. Bacillus mojavensis strain 32A, a bioflocculant-producing bacterium isolated from an Egyptian salt production pond. Bioresour Technol, 2011; 102: 8143–51.
  • 26. Li Z, Zhong S, Lei H, Chen R, Yu Q, Li H. Production of a novel bioflocculant by Bacillus licheniformis X14 and its application to low temperature drinking water treatment. Bioresour Technol, 2009; 100: 3650-6.
  • 27. Lian B, Chen Y, Zhao J, Teng H, Zhu L, Yuan S. Microbial flocculation by Bacillus mucilaginosus: applications and mechanisms. Bioresour Technol, 2008; 99: 4825-31.
  • 28. Deng SB, Bai RB, Hu XM, Luo Q. Characteristics of a bioflocculant produced by Bacillus mucilaginosus and its use in starch wastewater treatment. Appl Microbiol Biotechnol, 2003; 60: 588-93.
  • 29. Salehizadeh H, Shojaosadati SA. Extracellular biopolymeric flocculants: recent trends and biotechnological importance. Biotechnol Adv, 2001; 19: 371-85.
  • 30. Zhang Z, Xia S, Zhao J, Zhang J. Characterization and flocculation mechanism of high efficiency microbial flocculant TJ-F1 from Proteus mirabilis. Colloids Surf B: Biointerf, 2010; 75: 247-51.
  • 31. Teixeira CMLL, Kirsten FV, Teixeira PCN. Evaluation of Moringa oleifera seed flour as a flocculating agent for potential biodiesel producer microalgae. J Appl Phycol, 2012; 24: 557–63.
  • 32. Suh HH, Kwon GS, Lee CH, Kim HS, Oh HM, Yoon BD. Characterization of bioflocculant produced by Bacillus sp. DP-152. J Ferment Bioeng, 1997; 84 (2): 108-12.
  • 33. Deng S, Yu G, Ting YP. Production of a bioflocculant by Aspergillus parasiticus and its application in dye removal. Colloids Surf B: Biointerf, 2005; 44: 179–86.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Gizem Günay Bu kişi benim

Aynur Gül Karahan Bu kişi benim

Mehmet Lütfü Çakmakçı Bu kişi benim

Yayımlanma Tarihi 1 Aralık 2014
Yayımlandığı Sayı Yıl 2014 Cilt: 71 Sayı: 4

Kaynak Göster

APA Günay, G., Karahan, A. G., & Çakmakçı, M. L. (2014). Chlorella vulgaris’in biyoflokülantlarla sıvı ortamlardan ayrılması. Türk Hijyen Ve Deneysel Biyoloji Dergisi, 71(4), 187-200.
AMA Günay G, Karahan AG, Çakmakçı ML. Chlorella vulgaris’in biyoflokülantlarla sıvı ortamlardan ayrılması. Turk Hij Den Biyol Derg. Aralık 2014;71(4):187-200.
Chicago Günay, Gizem, Aynur Gül Karahan, ve Mehmet Lütfü Çakmakçı. “Chlorella vulgaris’in biyoflokülantlarla sıvı Ortamlardan ayrılması”. Türk Hijyen Ve Deneysel Biyoloji Dergisi 71, sy. 4 (Aralık 2014): 187-200.
EndNote Günay G, Karahan AG, Çakmakçı ML (01 Aralık 2014) Chlorella vulgaris’in biyoflokülantlarla sıvı ortamlardan ayrılması. Türk Hijyen ve Deneysel Biyoloji Dergisi 71 4 187–200.
IEEE G. Günay, A. G. Karahan, ve M. L. Çakmakçı, “Chlorella vulgaris’in biyoflokülantlarla sıvı ortamlardan ayrılması”, Turk Hij Den Biyol Derg, c. 71, sy. 4, ss. 187–200, 2014.
ISNAD Günay, Gizem vd. “Chlorella vulgaris’in biyoflokülantlarla sıvı Ortamlardan ayrılması”. Türk Hijyen ve Deneysel Biyoloji Dergisi 71/4 (Aralık 2014), 187-200.
JAMA Günay G, Karahan AG, Çakmakçı ML. Chlorella vulgaris’in biyoflokülantlarla sıvı ortamlardan ayrılması. Turk Hij Den Biyol Derg. 2014;71:187–200.
MLA Günay, Gizem vd. “Chlorella vulgaris’in biyoflokülantlarla sıvı Ortamlardan ayrılması”. Türk Hijyen Ve Deneysel Biyoloji Dergisi, c. 71, sy. 4, 2014, ss. 187-00.
Vancouver Günay G, Karahan AG, Çakmakçı ML. Chlorella vulgaris’in biyoflokülantlarla sıvı ortamlardan ayrılması. Turk Hij Den Biyol Derg. 2014;71(4):187-200.