BibTex RIS Kaynak Göster

Industrial and biotechnological applications of laccase enzyme

Yıl 2015, Cilt: 72 Sayı: 4, 351 - 368, 01.12.2015

Öz

Environmental pollution had emerged by the beginning of urban life and increased parallel to the industrial development. Rapidly increasing industrial activities, dumping of the wastes to the environment by the factories and releasing of the toxic chemicals have adverse impact on human health. Due to their ability to oxidise a wide range of substrates, which makes laccases very useful biocatalysts for their application to different industrial and biotechnological areas in recent years. Laccase enzyme is used in enhancing appearance color of the foods and drinks, in seperating lignin from paper and paper pulp and removing lignin from paper pulp, in textile industry as a colourant, bleaching of textile products, denim washing, various boiling processes, biological degradation and discoloration of textile waste waters, in different industries such as bioremediation and cosmetic industries and in biotechnology applications as biocatalyst. Laccase enzymes are obtained mainly from fungi and various types of organisms. In today’s conditions laccase enzyme are not obtained cheaply and easily for use in the industrial field. Surplus amount of laccase enzyme production is required for the bioremoval of the contaminated zones especially in industrial areas. To find the most effective laccase-producing source, it is required to choose the most appropriate fungal type, to find out the regenerative and inexpensive isolation methods or to optimize the enzyme production conditions.

Kaynakça

  • 1. Wiseman A. Handbook of Enzymes Biotechnology. Second Ed. Chapter 3. The Application of Enzymes in Industry, 1987: 274-373.
  • 2. Erkaya E, Çaylıkoca AB, Kalınyaprak F. Enzimatik Kataliz, Kimya Mühendisliği Uygulaması, Konya: Selçuk Üniversitesi, 2006: 78.
  • 3. Demain AL, Solomon NA. Industrial Microbiology and the advent of genetic engineering. San Francisco: A Scientific American Book, Freeman &Comp, 1981: 3-14.
  • 4. Gray HB, Malmstrom BG, Williams RJ. Copper coordination in blue proteins. J Biol Inorg Chem, 2000; 5: 551-59.
  • 5. Solomon EI, Sundaram UM, Machonkin TE. Multicopper oxidases and oxygenases. Chem Rev, 1996; 96: 2563–605.
  • 6. Mayer AM. Polyphenol oxidases in plants-recent progress. Phytochemistry, 1987; 26: 11–20.
  • 7. Tuncer M. Lakkaz, Kısım 1: Yapısı, Katalitik Özellikleri ve Dağılımları. Fen Bilimleri Enstitüsü Dergisi, 2010; 22: 19-63.
  • 8. Decker H, Terwilliger N. Cops and robbers: putative evolution of copper oxygen-binding proteins. J Exp Biol, 2000; 203: 1777–82.
  • 9. Paloheimo M, Valtakari L, Puranen T, Kruus K, Kallio J, Mantyla A, et al. Novel laccase enzyme and use thereof. USPTO Applicaton:20060063246, Class: 435183000 (USPTO), 2004.
  • 10. Alexandre G, Zhulin IB. Laccases are widespread in bacteria. Trends Biotechnol, 18, 2000; 41-42.
  • 11. Cantarelli C, Brenna O, Giovanelli G, Rossi M. Beverage stabilization throuh enzymatic removal of phenolics. Food Biotechnol, 1989; 3: 203-13.
  • 12. Giovanelli G, Ravasini G. Apple juice stabilization by combined enzyme membrane filtration process. Lebensmittel-Wissenschaft und Technologie, 1993; 26, 1-7.
  • 13. Minussi RC, Pastore GM, Durán N. Potential applications of laccase in the food industry. Trends Food Sci Technol, 2002; 13: 205–16.
  • 14. Si JQ. Use of laccases in baking. Int Pat Appl WO9428728.1993.
  • 15. Labat E, Morel MH, Rouau X. Effect of laccase and manganese peroxidase on wheat gluten and pentonans during mixing. Food Hydrocoll, 2001;15: 47- 52.
  • 16. Selinheimo E. Kruus K, Buchert J, Hopia A, Autio K. Effects of laccase, xylanase and their combination on the rheological properties of wheat doughs. J Cereal Sci, 2006; 43: 152–59.
  • 17. Flander L, Rouau X, Morel MH, Autio K, SeppänenLaakso T, Kruus K, Buchert J. Effects of Laccase and Xylanase on the Chemical and Rheological Properties of Oat and quality parameters of glutenfree oat breads, 2011; 59(15): 8385-90.
  • 18. Kuhad RC, Singh A, Eriksson KEL. Microorganisms and enzymes involved in the degradation of plant fiber cell Wall. Adv Biochem Eng Biotechnol 1997; 57: 47–125.
  • 19. Carter DN, McKenzie DG, Johnson AP, Idner K. Performance parameters of oxygen delignification. Tappi J, 1997; 80: 111–17.
  • 20. Call HP. Process for modifying, breaking down or breaching lignin, materials containing lignin or like substances. PCT World patent WO 94/29510, December 1994.
  • 21. Wong KS, Huang Q, Au CH, Wang J, Kwan HS. Biodegradation of dyes and polyaromatic hydrocarbons by two allelic forms of Lentinula edodes laccase expressed from Pichia pastoris. Bioresource Technology, 2012;104: 157–64.
  • 22. Call HP, Mücke I, History, overview and applications of mediated ligninolytic systems, especially laccase-mediator-systems (Lignozymprocess). J Biotechnol, 1997; 53: 163–202.
  • 23. Crestini C, Argyropoulos DS. The early oxidative biodegradation steps of residual kraft lignin models with laccase. Bioorg Med Chem, 1998; 6: 2161– 69.
  • 24. Camarero S, Garcia O, Vidal T, Colom J, del Rio JC, Gutierrez A et al. Efficient bleaching of non-wood high-quality paper pulp using laccase-mediator system. Enzyme Microb Technol, 2004; 35: 113–20.
  • 25. Chandra RP, Ragauskas AJ. Evaluating laccasefacilitated coupling of phenolic acids to high-yield kraft pulps. Enzyme Microb Technol, 2002; 30: 855–61.
  • 26. Kenealy W, Klungness J, Tshabalala M, Horn E, Akhtar M, Gleisner R, et al. Modification of lignocellulosic materials by laccase. TAPPI Fall Techn Conf, Engineering, Pulping & PCE&I Chicago, IL. 2003.
  • 27. Huttermann A, Mai C, Kharazipour A. Modification of lignin for the production of new compounded materials. Appl Microbiol Biotechnol, 2001; 55: 387–94.
  • 28. Felby C, Pedersen LS, Nielsen BR. Enhanced auto adhesion of wood fibers using phenol oxidases. Holzforschung, 1997; 51: 281–86.
  • 29. Lund M, Ragauskas AJ. Enzymatic modification of kraft lignin through oxidative coupling with water-soluble phenols. Appl Microbiol Biotechnol, 2001; 55: 699-703.
  • 30. Riu J, Schönsee I, Barcelo D. Determination of sulfonated azo dyes in groundwater and industrial effluents by automated solid-phase extraction followed by capillary electrophoresis/mass spectrometry. J. Mass Spectrom, 1998; 33: 653–63.
  • 31. Mishra G, Tripathy M. A critical review of the treatments for decolourization of textile effluent. Colourage, 1993; 40: 35–8.
  • 32. Banat IM, Nigam P, Singh D, Marchant R. Microbial decolorization of textile-dye- containing effluents: a review. Bioresour Technol, 1996; 58: 217– 27.
  • 33. Juang RS, Tseng RL, Wu FC, Lin SJ. Use of chitin and chitosan in lobster shell wastes for colour removal from aqueous solutions. J Environ Sci Health Part A Environ Sci Eng, 1996; 31: 325–38.
  • 34. Zollinger H. Synthesis, properties and applications of organic dyes and pigments. Colour chemistry. New York: John Wiley-VCH Publishers, 2002; 92- 100.
  • 35. Poots VJP, McKay JJ. The removal of acid dye from effluent using natural adsorbents- Peat. Water Res, 1976; 10: 1061–66.
  • 36. McKay G. Waste colour removal from textile effluents. Am Dyest Report, 1979; 68: 29-36.
  • 37. Spadaro JT, Lorne I, Renganathan V. Hydroxyl radical mediated degradation of azo dyes: evidence for benzene generation. Environ Sci Technol, 1994; 28: 1389–93.
  • 38. Baughman GL, Perenich TA. Fate of dyes in aquatic systems:I solubility and partitioning of some hydrophobic dyes and related compounds. Environ Toxicol Chem, 1988; 7: 183–99.
  • 39. Cooper P. Removing colour from dye house wastewater. Asian Textile J, 1995; 3: 52–6.
  • 40. Stephen JA. Electrooxidation of dyestuffs in waste waters. J Chem Technol Biotechnol, 1995; 62: 111-7.
  • 41. D'Annibale A, Ricci M, Quaratino D, Federic F, Fenice M. Panus tigrinus efficiently removes phenols, color and organic load from olive-mill wastewater. Res Microbiol, 2004; 155: 596–603.
  • 42. Dias AA, Bezerra RM, Pereira A.N. Activity and elution profileof laccase during biological decolorization and depolymerization of olive mill watewater. Biores Technol, 2004; 92: 7-13.
  • 43. Setti L, Giuliani S, Spinozzi G, Pifferi PG. Laccase catalyzed oxidative coupling of 3-methyl 2-benzothiazolinone hydrazone and methoxyphenols. Enzyme Microb Technol, 1999; 25: 285–89.
  • 44. Pazarlıoğlu NK, Sarıışık M, Telefoncu A. Laccase: production by Trametes versicolor and application to denim washing. Process Biochem, 2005; 40: 1673–78.
  • 45. Tzanov T, Basto C, Guebitz G, Cavaco-Paulo A. Laccases to improve the whiteness in a conventional bleaching of cotton. Macromol Mat Eng, 2003; 288: 807–10.
  • 46. Yoon MY. Denim Finishing with EnzymesBiobleaching with Laccase and Mediator. International Dyer, 2005; 1–3.
  • 47. Auterinen AL. White Biotechnology & Modern Textile Processing. Textile World, 2006; 40–44.
  • 48. Ossola M, Galante YM, Scouring of flax rove with the aid of enzymes. Enzyme Microbial Technol, 2004; 34: 177–86.
  • 49. Parshetti GK, Kalme SD, Gomare SS, Govindwar SP. Biodegradation of Reactive blue-25 by Aspergillus ochraceus NCIM-1146. Bioresource Technol, 2007; 98: 3638–42.
  • 50. Freire RS, Durán N, Kubota LT. Effects of fungal laccase immobilization procedures for the development of a biosensor for phenol compounds. Talanta, 2001; 54: 681– 86.
  • 51. Martele Y, Callewaerta K, Naessens K, Van Daeleb P, Baetsb R, Schacht E, Controlled patterning of biomolecules on solid surfaces. Mater Sci Eng Biomim Mater Sens Syst, 2003; 23: 341–45.
  • 52. Roy JJ, Abraham TE, Abhijith KS, Sujith KPV, Thakur M.S. Biosensor for the determination of phenols based on Cross-Linked Enzyme Crystals (CLEC) of laccase. Biosens Bioelectron, 2005; 21: 206–11.
  • 53. Cabrita JF, Abrantes LM, Viana AS. N - Hydroxysuccinimide - terminated self - assembled monolayers on gold for biomolecules immobilisation. Electrochim Acta, 2005; 50: 2117-24.
  • 54. Collins PJ, Kotterman MJJ, Field JA, Dobson ADW. Oxidation of anthracene and benzo[a]pyrene by laccases from Trametes versicolor. Appl Environ Microbiol, 1996; 62: 4563–7.
  • 55. Ahn MY, Dec J, Kim JE, Bollag JM. Treatment of 2,4-dichlorophenol polluted soil with free and immobilized laccase. J Environ Qual, 2002; 31: 1509-15.
  • 56. Pointing SB. Feasibility of bioremediation by whiterot fungi. Appl Microbiol Biotechnol, 2001; 57: 20–33.
  • 57. Nyanhongo GS, Rodríguez Couto S, Gübitz GM. Coupling of 2,4,6-trinitrotoluene TNT) metabolites onto humic monomers by a new laccase fromTrametes modesta. Chemosphere, 2006; 64(3): 359-70.
  • 58. Durán N, Esposito E. Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl Cat B: Environ, 2000; 28: 83–99.
  • 59. Mustafa R, Muniglia L, Rovel B, Girardin M. Phenolic colorants obtained by enzymatic synthesis using a fungal laccase in a hydroorganic biphasicsystem. Food Res Int, 2005; 38: 995-1000.
  • 60. Xu F. Recent progress in laccase study: properties, enzimology, production and applications. In: Flickinger MC, Drew SW, eds. The encyclopedia of bioprocessing technology: fermentation, biocatalysis and bioseparation. JohnWiley & Sons. New York, 1999: 1545-54.
  • 61. Roure M, Delattre P, Froger H. Composition for an enzymic coloration of keratin fibres, especially for hair and its use in a dyeing process. Eur Pat Appl, 1992; 37: 273–302.
  • 62. Aaslyng D, Rorbaek K, Sorensen NH. An ezyme for dying keratinous fibres. Int Pat Apl, 1996; 62: 4563–7.
  • 63. Lang G, Cotteret J. Hair dye composition containing a laccase. Int Pat Appl, 1999; 53: 357-63.
  • 64. Golz-Berner K, Walzel B, Zastrow L, Doucet O. Cosmetic and dermatological preparation containing copperbinding proteins for skin lightening. Int Pat Appl, 2004; 64: 2788-93.
  • 65. Anonim 5 www.medicalmushrooms.net/trametesversicolor (Erişim tarihi: 10.11.2014)
  • 66. Anonim 12 www.wikipedia.org/wiki/Trametes_ hirsuta (Erişim tarihi: 10.11.2014)
  • 67. Anonim 7 www.mushroomexpert.com/pleurotus_ ostrea_tus.html (Erişim tarihi: 10.11.2014)
  • 68. Anonim 3 www.elmundo.es/elmundo/2012/06/12/ baleares/1339485290.html (Erişim tarihi: 10.11.2014)
  • 69. Birhanlı E, Yeşilada Ö. Enhanced production of laccase in repeated-batch cultures of Funalia trogii and Trametes versicolor. Biochem Engin J, 2010; 52: 33–7.
  • 70. Aktaş N, Çiçek H, Taşpınar-Ünal A, Kibarer G, Kolonkaya N, Tanyolaç A. Reaction kinetics for laccase-catalyzed polymerization of 1-naphthol. Bioresource Technol, 2001; 80: 29-36.
  • 71. Kahraman SS, Gürdal IH. Effect of synthetic and natural culture media on laccase production by white rot fungi. Bioresource Technol, 2002;82: 215–17.
  • 72. Erkurt EA, Ünyayar A, Kumbur H. Decolorization of synthetic dyes by white rot fungi, involving laccase enzyme in the process. Process Biochemistry, 2007; 42: 1429–35.
  • 73. Erden E, Ucar MC, Kaymaz Y, Pazarlioglu NK. New and different lignocellulosic materials from Turkey for laccase and manganese peroxidase production by Trametes versicolor. Eng Life Sci, 2009; 9: 60–5.
  • 74. Şanlıer AH, Gider S, Köprülü A.Immobilization of laccase for biotechnology applications. Artificial Cells Nanomedicine Biotechnol, 2012; 1–5.
  • 75. Ünyayar A, Mazmancı MA, Erkurta A, Atacaga H. Decolorızatıon Kınetics Of The Azo Dye Drımaren Blue X3lr By Laccase. React Kinet Catal Lett, 2005; 86: 99-107.
  • 76. Dubé E, Shareck F, Hurtubise Y, Daneault C, Beauregard M. Homologous cloning, expression, and characterisation of a laccase from Streptomyces coelicolor and enzymatic decolourisation of an indigo dye. Appl Microbiol Biotechnol, 2008; 79(4): 597-603.
  • 77. Bains J, Capalash N, Sharma, P. Laccase from a nonmelanogenic, alkalotolerant-proteobacterium JB isolated from industrial waste water drained soil. Biotechnol Lett, 2003; 25: 1155–59.
  • 78. Martins LO, Soares CM, Pereira MM, Teixeira M, Costa T, Jones GH. et al. Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. J Biol Chem, 2002; 277(21): 18849–59.
  • 79. Diamantidis G, Effosse A, Potier P, Bally R. Purification and characterization of the first bacterial laccase in the rhizospheric bacterium Azospirillum lipoferum. Soil Biol Biochem, 2000; 32: 919–27.
  • 80. Suzuki T, Endo K, Iro M, Tsujibo H, Miyamoto K, Inamori Y. A thermostable laccase from Streptomyces lavendulae REN-7: Purification, chracterization, nucleotide sequence, and expression. Biosci Biochem, 2003; 67: 2167–75.
  • 81. Arias ME, Arenas M, Rodríguez J, Soliveri J, Ball AS, Hernández M. Kraft pulp biobleaching and mediated oxidation of a nonphenolic substrate by laccase from Streptomyces cyaneus CECT 3335. Appl Environ Microbiol, 2003; 69: 1953–58.
  • 82. Palonen H, Viikari L. Role of oxidative enzymatic treatments on enzymatic hydrolysis of softwood. Biotechnol Bioeng, 2004; 86: 550–7.
  • 83. Kuznetsov BA, Shumakovich GP, Koroleva OV, Yaropolov AL. On applicability of laccase as label in the mediated and mediatorless electroimmunoassay: effect of distance on the direct electron transfer between laccase and electrode. Biosens Bioelectron, 2001; 16: 73–84.
  • 84. Claus H, Faber G, König H. Redox-mediated decolorization of synthetic dyes by fungal laccases. Appl Microbiol Biotechnol, 2002; 59: 672–8.
  • 85. Wesenberg D, Kyriakides I, Agathos SN. Whiterot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv, 2008; 5732–42.
  • 86. Campos R, Kandelbauer A, Robra KH, CavacoPaulo A, Gübitz G.M. Indigo degradation with purified laccases from Trametes hirsuta and Sclerotiumrolfsii. J Biotechnol, 2001; 89: 131–9.
  • 87. Kumar A, Vanamala A, Kumar R. Exploration of bacterial laccase in Pseudomonas stutzeri and its application in bleaching the wood pulp. FEBS J, 2005; 272 (1): 6-8.
  • 88. Camarero S, Ibarra D, Martinez MJ, Martinez AT. Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl Environ Microbiol, 2005; 71: 1775–84.
  • 89. Johannes C, Majcherczyk A. Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems. Appl Environ Microbiol, 2000; 66: 524–28.
  • 90. Park C, Lee M, Lee B, Kim SW, Chase HA, Lee J, Kim S. Biodegradation and biosorption for decolorization of synthetic dyes by Funalia trogii. Biochemical Engineering J, 2007; 36: 59–65.
  • 91. Maximo C, Amorim MTP, Costa-Ferreira M. Biotransformation of industrial reactive azo dyes by Geotrichum sp. CCMI 1019. Enzyme Microbial Technol, 2003; 32: 145–51.
  • 92. Kumanneni A, Ghazi I, Camarero S, Ballesteros A, Plou FJ, Alcalde M. Decolorization of synthetic dyes by laccase immobilized on epoxy-activated carriers. Process Biochemistry, 2008; 43:169–78.
  • 93. Fan F, Zhuo R, Sun Su, Wan X, Jiang M, Zhang X et al. Cloning and functional analysis of a new laccase gene from Trametes sp. 48424 which had the high yield of laccase and strong ability for decolorizing different dyes. Bioresource Technol, 2011; 102: 3126–37.
  • 94. Terro´n MC, Gonza´lez T, Carbajo JM, Yagüe S, Arana-Cuenca A, Te´llez A, et al. Structural closerelated aromatic compounds have different effects on laccase activity and on lcc gene expression in the ligninolytic fungus Trametes sp. I-62. Fungal Genetics Biol, 2004; 41: 954–62.
  • 95. Belinky PA, Goldberg D, Krinfeld B, Burger M, Rothschild N, Cogan U, et al. Manganese-containing superoxide dismutase from the white-rot fungus Phanerochaete chrysosporium: its function, expression and gene structure. Enzyme Microbial Technol, 2002; 31: 754–64.
  • 96. Seddas PMA, Arnould C, Tollot M, Arias CM, Gianinazzi-Pearson V. Spatial monitoring of gene activity in extraradical and intraradical developmental stages of arbuscular mycorrhizal fungi by direct fluorescent in situ RT-PCR. Fungal Genetics Biol, 2008; 45: 1155–65.
  • 97. Yang Y, Ma F, Fan F, Wan X, Zhang X, Jiang M. Characterization of a laccase gene from the white-rot fungi Trametes sp. 5930 isolated from Shennongjia Nature Reserve in China and studying on the capability of decolorization of different synthetic dyes. Biochemical Engin J, 2011; 57: 13–22.
  • 98. Zhuo R, Ma L, Fan F, Gong Y, Wan X, Jiang M, et al. Decolorization of different dyes by a newly isolated white-rot fungi strain Ganoderma sp. En3 and cloning and functional analysis of its laccase gene. J Hazard Mat, 2011; 192: 855– 73.
  • 99. Gonza´lez T, Terro´n MC, Yagüe S, Junca H, Carbajo JM, Zapico EJ, et al. Melanoidincontaining wastewaters induce selective laccase gene expression in the white-rot fungus Trametes sp. I-62. Res Microbiol, 2008; 159: 103-”9.
  • 100. Büyük İ, Demiralp B, Özenoğlu S, Aras S, CansaranDuman D. Expression levels of the laccase gene in lichen Pseudevernia furfuracea subjected to Pb+2 heavy metal stress. 10-12 Eylül 2014. Moleküler Biyoloji Kongresi. İzmir.

Lakkaz enziminin endüstriyel ve biyoteknoloji alanında kullanımı

Yıl 2015, Cilt: 72 Sayı: 4, 351 - 368, 01.12.2015

Öz

Çevre kirliliği kentsel yaşamın başlamasıyla birlikte ortaya çıkmış ve endüstriyel gelişmeler sonucu artış göstermiştir. Hızla artan endüstriyel faaliyetler ve bunun sonucu olarak fabrikaların çevreye bırakmış olduğu atıklar ile toksik kimyasal salınımı insan sağlığını olumsuz etkilenmektedir. Lakkaz enzimi oldukça geniş bir çeşitlilikteki substratları oksitleyebilme özelliğinden dolayı son zamanlarda bu enzimlerin farklı endüstriyel alanlarda kullanılmalarına yol açmıştır. Lakkaz enzimi, gıdaların veya meşrubatların görünüm renklerinin artırılması, kağıt ve kağıt hamurundaki ligninin ayrıştırılması ve kağıt hamurundan uzaklaştırılması, tekstil endüstrisinde boyar madde olarak kullanımı, tekstil ürünlerinin ağartılması, kot yıkama, çeşitli kaynatma işlemleri, tekstil atık sularının biyolojik parçalanması ve renksizleştirilmesinde kullanımı, biyoremidasyon ve kozmetik gibi farklı endüstriyel ve biyoteknolojik uygulamalarda biyokatalizör olarak kullanılmaktadır. Lakkaz enzimleri başta fungus türleri olmak üzere çeşitli organizmalardan elde edilmektedir. Günümüz koşullarında lakkaz enzimi endüstriyel alanlarda kullanım için ucuz ve kolay elde edilememektedir. Özellikle endüstriyel alanlarda kirlenmiş bölgelerin biyogiderimi için fazla miktarlarda lakkaz enzimi üretimi gerekmektedir. Lakkaz üreten en etkili kaynağı bulmak için en uygun fungal türünü seçmek, yeniden üretilebilir ve pahalı olmayan izolasyon yöntemlerini bulmak ya da enzim üretim koşullarını optimize etmek gerekmektedir

Kaynakça

  • 1. Wiseman A. Handbook of Enzymes Biotechnology. Second Ed. Chapter 3. The Application of Enzymes in Industry, 1987: 274-373.
  • 2. Erkaya E, Çaylıkoca AB, Kalınyaprak F. Enzimatik Kataliz, Kimya Mühendisliği Uygulaması, Konya: Selçuk Üniversitesi, 2006: 78.
  • 3. Demain AL, Solomon NA. Industrial Microbiology and the advent of genetic engineering. San Francisco: A Scientific American Book, Freeman &Comp, 1981: 3-14.
  • 4. Gray HB, Malmstrom BG, Williams RJ. Copper coordination in blue proteins. J Biol Inorg Chem, 2000; 5: 551-59.
  • 5. Solomon EI, Sundaram UM, Machonkin TE. Multicopper oxidases and oxygenases. Chem Rev, 1996; 96: 2563–605.
  • 6. Mayer AM. Polyphenol oxidases in plants-recent progress. Phytochemistry, 1987; 26: 11–20.
  • 7. Tuncer M. Lakkaz, Kısım 1: Yapısı, Katalitik Özellikleri ve Dağılımları. Fen Bilimleri Enstitüsü Dergisi, 2010; 22: 19-63.
  • 8. Decker H, Terwilliger N. Cops and robbers: putative evolution of copper oxygen-binding proteins. J Exp Biol, 2000; 203: 1777–82.
  • 9. Paloheimo M, Valtakari L, Puranen T, Kruus K, Kallio J, Mantyla A, et al. Novel laccase enzyme and use thereof. USPTO Applicaton:20060063246, Class: 435183000 (USPTO), 2004.
  • 10. Alexandre G, Zhulin IB. Laccases are widespread in bacteria. Trends Biotechnol, 18, 2000; 41-42.
  • 11. Cantarelli C, Brenna O, Giovanelli G, Rossi M. Beverage stabilization throuh enzymatic removal of phenolics. Food Biotechnol, 1989; 3: 203-13.
  • 12. Giovanelli G, Ravasini G. Apple juice stabilization by combined enzyme membrane filtration process. Lebensmittel-Wissenschaft und Technologie, 1993; 26, 1-7.
  • 13. Minussi RC, Pastore GM, Durán N. Potential applications of laccase in the food industry. Trends Food Sci Technol, 2002; 13: 205–16.
  • 14. Si JQ. Use of laccases in baking. Int Pat Appl WO9428728.1993.
  • 15. Labat E, Morel MH, Rouau X. Effect of laccase and manganese peroxidase on wheat gluten and pentonans during mixing. Food Hydrocoll, 2001;15: 47- 52.
  • 16. Selinheimo E. Kruus K, Buchert J, Hopia A, Autio K. Effects of laccase, xylanase and their combination on the rheological properties of wheat doughs. J Cereal Sci, 2006; 43: 152–59.
  • 17. Flander L, Rouau X, Morel MH, Autio K, SeppänenLaakso T, Kruus K, Buchert J. Effects of Laccase and Xylanase on the Chemical and Rheological Properties of Oat and quality parameters of glutenfree oat breads, 2011; 59(15): 8385-90.
  • 18. Kuhad RC, Singh A, Eriksson KEL. Microorganisms and enzymes involved in the degradation of plant fiber cell Wall. Adv Biochem Eng Biotechnol 1997; 57: 47–125.
  • 19. Carter DN, McKenzie DG, Johnson AP, Idner K. Performance parameters of oxygen delignification. Tappi J, 1997; 80: 111–17.
  • 20. Call HP. Process for modifying, breaking down or breaching lignin, materials containing lignin or like substances. PCT World patent WO 94/29510, December 1994.
  • 21. Wong KS, Huang Q, Au CH, Wang J, Kwan HS. Biodegradation of dyes and polyaromatic hydrocarbons by two allelic forms of Lentinula edodes laccase expressed from Pichia pastoris. Bioresource Technology, 2012;104: 157–64.
  • 22. Call HP, Mücke I, History, overview and applications of mediated ligninolytic systems, especially laccase-mediator-systems (Lignozymprocess). J Biotechnol, 1997; 53: 163–202.
  • 23. Crestini C, Argyropoulos DS. The early oxidative biodegradation steps of residual kraft lignin models with laccase. Bioorg Med Chem, 1998; 6: 2161– 69.
  • 24. Camarero S, Garcia O, Vidal T, Colom J, del Rio JC, Gutierrez A et al. Efficient bleaching of non-wood high-quality paper pulp using laccase-mediator system. Enzyme Microb Technol, 2004; 35: 113–20.
  • 25. Chandra RP, Ragauskas AJ. Evaluating laccasefacilitated coupling of phenolic acids to high-yield kraft pulps. Enzyme Microb Technol, 2002; 30: 855–61.
  • 26. Kenealy W, Klungness J, Tshabalala M, Horn E, Akhtar M, Gleisner R, et al. Modification of lignocellulosic materials by laccase. TAPPI Fall Techn Conf, Engineering, Pulping & PCE&I Chicago, IL. 2003.
  • 27. Huttermann A, Mai C, Kharazipour A. Modification of lignin for the production of new compounded materials. Appl Microbiol Biotechnol, 2001; 55: 387–94.
  • 28. Felby C, Pedersen LS, Nielsen BR. Enhanced auto adhesion of wood fibers using phenol oxidases. Holzforschung, 1997; 51: 281–86.
  • 29. Lund M, Ragauskas AJ. Enzymatic modification of kraft lignin through oxidative coupling with water-soluble phenols. Appl Microbiol Biotechnol, 2001; 55: 699-703.
  • 30. Riu J, Schönsee I, Barcelo D. Determination of sulfonated azo dyes in groundwater and industrial effluents by automated solid-phase extraction followed by capillary electrophoresis/mass spectrometry. J. Mass Spectrom, 1998; 33: 653–63.
  • 31. Mishra G, Tripathy M. A critical review of the treatments for decolourization of textile effluent. Colourage, 1993; 40: 35–8.
  • 32. Banat IM, Nigam P, Singh D, Marchant R. Microbial decolorization of textile-dye- containing effluents: a review. Bioresour Technol, 1996; 58: 217– 27.
  • 33. Juang RS, Tseng RL, Wu FC, Lin SJ. Use of chitin and chitosan in lobster shell wastes for colour removal from aqueous solutions. J Environ Sci Health Part A Environ Sci Eng, 1996; 31: 325–38.
  • 34. Zollinger H. Synthesis, properties and applications of organic dyes and pigments. Colour chemistry. New York: John Wiley-VCH Publishers, 2002; 92- 100.
  • 35. Poots VJP, McKay JJ. The removal of acid dye from effluent using natural adsorbents- Peat. Water Res, 1976; 10: 1061–66.
  • 36. McKay G. Waste colour removal from textile effluents. Am Dyest Report, 1979; 68: 29-36.
  • 37. Spadaro JT, Lorne I, Renganathan V. Hydroxyl radical mediated degradation of azo dyes: evidence for benzene generation. Environ Sci Technol, 1994; 28: 1389–93.
  • 38. Baughman GL, Perenich TA. Fate of dyes in aquatic systems:I solubility and partitioning of some hydrophobic dyes and related compounds. Environ Toxicol Chem, 1988; 7: 183–99.
  • 39. Cooper P. Removing colour from dye house wastewater. Asian Textile J, 1995; 3: 52–6.
  • 40. Stephen JA. Electrooxidation of dyestuffs in waste waters. J Chem Technol Biotechnol, 1995; 62: 111-7.
  • 41. D'Annibale A, Ricci M, Quaratino D, Federic F, Fenice M. Panus tigrinus efficiently removes phenols, color and organic load from olive-mill wastewater. Res Microbiol, 2004; 155: 596–603.
  • 42. Dias AA, Bezerra RM, Pereira A.N. Activity and elution profileof laccase during biological decolorization and depolymerization of olive mill watewater. Biores Technol, 2004; 92: 7-13.
  • 43. Setti L, Giuliani S, Spinozzi G, Pifferi PG. Laccase catalyzed oxidative coupling of 3-methyl 2-benzothiazolinone hydrazone and methoxyphenols. Enzyme Microb Technol, 1999; 25: 285–89.
  • 44. Pazarlıoğlu NK, Sarıışık M, Telefoncu A. Laccase: production by Trametes versicolor and application to denim washing. Process Biochem, 2005; 40: 1673–78.
  • 45. Tzanov T, Basto C, Guebitz G, Cavaco-Paulo A. Laccases to improve the whiteness in a conventional bleaching of cotton. Macromol Mat Eng, 2003; 288: 807–10.
  • 46. Yoon MY. Denim Finishing with EnzymesBiobleaching with Laccase and Mediator. International Dyer, 2005; 1–3.
  • 47. Auterinen AL. White Biotechnology & Modern Textile Processing. Textile World, 2006; 40–44.
  • 48. Ossola M, Galante YM, Scouring of flax rove with the aid of enzymes. Enzyme Microbial Technol, 2004; 34: 177–86.
  • 49. Parshetti GK, Kalme SD, Gomare SS, Govindwar SP. Biodegradation of Reactive blue-25 by Aspergillus ochraceus NCIM-1146. Bioresource Technol, 2007; 98: 3638–42.
  • 50. Freire RS, Durán N, Kubota LT. Effects of fungal laccase immobilization procedures for the development of a biosensor for phenol compounds. Talanta, 2001; 54: 681– 86.
  • 51. Martele Y, Callewaerta K, Naessens K, Van Daeleb P, Baetsb R, Schacht E, Controlled patterning of biomolecules on solid surfaces. Mater Sci Eng Biomim Mater Sens Syst, 2003; 23: 341–45.
  • 52. Roy JJ, Abraham TE, Abhijith KS, Sujith KPV, Thakur M.S. Biosensor for the determination of phenols based on Cross-Linked Enzyme Crystals (CLEC) of laccase. Biosens Bioelectron, 2005; 21: 206–11.
  • 53. Cabrita JF, Abrantes LM, Viana AS. N - Hydroxysuccinimide - terminated self - assembled monolayers on gold for biomolecules immobilisation. Electrochim Acta, 2005; 50: 2117-24.
  • 54. Collins PJ, Kotterman MJJ, Field JA, Dobson ADW. Oxidation of anthracene and benzo[a]pyrene by laccases from Trametes versicolor. Appl Environ Microbiol, 1996; 62: 4563–7.
  • 55. Ahn MY, Dec J, Kim JE, Bollag JM. Treatment of 2,4-dichlorophenol polluted soil with free and immobilized laccase. J Environ Qual, 2002; 31: 1509-15.
  • 56. Pointing SB. Feasibility of bioremediation by whiterot fungi. Appl Microbiol Biotechnol, 2001; 57: 20–33.
  • 57. Nyanhongo GS, Rodríguez Couto S, Gübitz GM. Coupling of 2,4,6-trinitrotoluene TNT) metabolites onto humic monomers by a new laccase fromTrametes modesta. Chemosphere, 2006; 64(3): 359-70.
  • 58. Durán N, Esposito E. Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl Cat B: Environ, 2000; 28: 83–99.
  • 59. Mustafa R, Muniglia L, Rovel B, Girardin M. Phenolic colorants obtained by enzymatic synthesis using a fungal laccase in a hydroorganic biphasicsystem. Food Res Int, 2005; 38: 995-1000.
  • 60. Xu F. Recent progress in laccase study: properties, enzimology, production and applications. In: Flickinger MC, Drew SW, eds. The encyclopedia of bioprocessing technology: fermentation, biocatalysis and bioseparation. JohnWiley & Sons. New York, 1999: 1545-54.
  • 61. Roure M, Delattre P, Froger H. Composition for an enzymic coloration of keratin fibres, especially for hair and its use in a dyeing process. Eur Pat Appl, 1992; 37: 273–302.
  • 62. Aaslyng D, Rorbaek K, Sorensen NH. An ezyme for dying keratinous fibres. Int Pat Apl, 1996; 62: 4563–7.
  • 63. Lang G, Cotteret J. Hair dye composition containing a laccase. Int Pat Appl, 1999; 53: 357-63.
  • 64. Golz-Berner K, Walzel B, Zastrow L, Doucet O. Cosmetic and dermatological preparation containing copperbinding proteins for skin lightening. Int Pat Appl, 2004; 64: 2788-93.
  • 65. Anonim 5 www.medicalmushrooms.net/trametesversicolor (Erişim tarihi: 10.11.2014)
  • 66. Anonim 12 www.wikipedia.org/wiki/Trametes_ hirsuta (Erişim tarihi: 10.11.2014)
  • 67. Anonim 7 www.mushroomexpert.com/pleurotus_ ostrea_tus.html (Erişim tarihi: 10.11.2014)
  • 68. Anonim 3 www.elmundo.es/elmundo/2012/06/12/ baleares/1339485290.html (Erişim tarihi: 10.11.2014)
  • 69. Birhanlı E, Yeşilada Ö. Enhanced production of laccase in repeated-batch cultures of Funalia trogii and Trametes versicolor. Biochem Engin J, 2010; 52: 33–7.
  • 70. Aktaş N, Çiçek H, Taşpınar-Ünal A, Kibarer G, Kolonkaya N, Tanyolaç A. Reaction kinetics for laccase-catalyzed polymerization of 1-naphthol. Bioresource Technol, 2001; 80: 29-36.
  • 71. Kahraman SS, Gürdal IH. Effect of synthetic and natural culture media on laccase production by white rot fungi. Bioresource Technol, 2002;82: 215–17.
  • 72. Erkurt EA, Ünyayar A, Kumbur H. Decolorization of synthetic dyes by white rot fungi, involving laccase enzyme in the process. Process Biochemistry, 2007; 42: 1429–35.
  • 73. Erden E, Ucar MC, Kaymaz Y, Pazarlioglu NK. New and different lignocellulosic materials from Turkey for laccase and manganese peroxidase production by Trametes versicolor. Eng Life Sci, 2009; 9: 60–5.
  • 74. Şanlıer AH, Gider S, Köprülü A.Immobilization of laccase for biotechnology applications. Artificial Cells Nanomedicine Biotechnol, 2012; 1–5.
  • 75. Ünyayar A, Mazmancı MA, Erkurta A, Atacaga H. Decolorızatıon Kınetics Of The Azo Dye Drımaren Blue X3lr By Laccase. React Kinet Catal Lett, 2005; 86: 99-107.
  • 76. Dubé E, Shareck F, Hurtubise Y, Daneault C, Beauregard M. Homologous cloning, expression, and characterisation of a laccase from Streptomyces coelicolor and enzymatic decolourisation of an indigo dye. Appl Microbiol Biotechnol, 2008; 79(4): 597-603.
  • 77. Bains J, Capalash N, Sharma, P. Laccase from a nonmelanogenic, alkalotolerant-proteobacterium JB isolated from industrial waste water drained soil. Biotechnol Lett, 2003; 25: 1155–59.
  • 78. Martins LO, Soares CM, Pereira MM, Teixeira M, Costa T, Jones GH. et al. Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. J Biol Chem, 2002; 277(21): 18849–59.
  • 79. Diamantidis G, Effosse A, Potier P, Bally R. Purification and characterization of the first bacterial laccase in the rhizospheric bacterium Azospirillum lipoferum. Soil Biol Biochem, 2000; 32: 919–27.
  • 80. Suzuki T, Endo K, Iro M, Tsujibo H, Miyamoto K, Inamori Y. A thermostable laccase from Streptomyces lavendulae REN-7: Purification, chracterization, nucleotide sequence, and expression. Biosci Biochem, 2003; 67: 2167–75.
  • 81. Arias ME, Arenas M, Rodríguez J, Soliveri J, Ball AS, Hernández M. Kraft pulp biobleaching and mediated oxidation of a nonphenolic substrate by laccase from Streptomyces cyaneus CECT 3335. Appl Environ Microbiol, 2003; 69: 1953–58.
  • 82. Palonen H, Viikari L. Role of oxidative enzymatic treatments on enzymatic hydrolysis of softwood. Biotechnol Bioeng, 2004; 86: 550–7.
  • 83. Kuznetsov BA, Shumakovich GP, Koroleva OV, Yaropolov AL. On applicability of laccase as label in the mediated and mediatorless electroimmunoassay: effect of distance on the direct electron transfer between laccase and electrode. Biosens Bioelectron, 2001; 16: 73–84.
  • 84. Claus H, Faber G, König H. Redox-mediated decolorization of synthetic dyes by fungal laccases. Appl Microbiol Biotechnol, 2002; 59: 672–8.
  • 85. Wesenberg D, Kyriakides I, Agathos SN. Whiterot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv, 2008; 5732–42.
  • 86. Campos R, Kandelbauer A, Robra KH, CavacoPaulo A, Gübitz G.M. Indigo degradation with purified laccases from Trametes hirsuta and Sclerotiumrolfsii. J Biotechnol, 2001; 89: 131–9.
  • 87. Kumar A, Vanamala A, Kumar R. Exploration of bacterial laccase in Pseudomonas stutzeri and its application in bleaching the wood pulp. FEBS J, 2005; 272 (1): 6-8.
  • 88. Camarero S, Ibarra D, Martinez MJ, Martinez AT. Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes. Appl Environ Microbiol, 2005; 71: 1775–84.
  • 89. Johannes C, Majcherczyk A. Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems. Appl Environ Microbiol, 2000; 66: 524–28.
  • 90. Park C, Lee M, Lee B, Kim SW, Chase HA, Lee J, Kim S. Biodegradation and biosorption for decolorization of synthetic dyes by Funalia trogii. Biochemical Engineering J, 2007; 36: 59–65.
  • 91. Maximo C, Amorim MTP, Costa-Ferreira M. Biotransformation of industrial reactive azo dyes by Geotrichum sp. CCMI 1019. Enzyme Microbial Technol, 2003; 32: 145–51.
  • 92. Kumanneni A, Ghazi I, Camarero S, Ballesteros A, Plou FJ, Alcalde M. Decolorization of synthetic dyes by laccase immobilized on epoxy-activated carriers. Process Biochemistry, 2008; 43:169–78.
  • 93. Fan F, Zhuo R, Sun Su, Wan X, Jiang M, Zhang X et al. Cloning and functional analysis of a new laccase gene from Trametes sp. 48424 which had the high yield of laccase and strong ability for decolorizing different dyes. Bioresource Technol, 2011; 102: 3126–37.
  • 94. Terro´n MC, Gonza´lez T, Carbajo JM, Yagüe S, Arana-Cuenca A, Te´llez A, et al. Structural closerelated aromatic compounds have different effects on laccase activity and on lcc gene expression in the ligninolytic fungus Trametes sp. I-62. Fungal Genetics Biol, 2004; 41: 954–62.
  • 95. Belinky PA, Goldberg D, Krinfeld B, Burger M, Rothschild N, Cogan U, et al. Manganese-containing superoxide dismutase from the white-rot fungus Phanerochaete chrysosporium: its function, expression and gene structure. Enzyme Microbial Technol, 2002; 31: 754–64.
  • 96. Seddas PMA, Arnould C, Tollot M, Arias CM, Gianinazzi-Pearson V. Spatial monitoring of gene activity in extraradical and intraradical developmental stages of arbuscular mycorrhizal fungi by direct fluorescent in situ RT-PCR. Fungal Genetics Biol, 2008; 45: 1155–65.
  • 97. Yang Y, Ma F, Fan F, Wan X, Zhang X, Jiang M. Characterization of a laccase gene from the white-rot fungi Trametes sp. 5930 isolated from Shennongjia Nature Reserve in China and studying on the capability of decolorization of different synthetic dyes. Biochemical Engin J, 2011; 57: 13–22.
  • 98. Zhuo R, Ma L, Fan F, Gong Y, Wan X, Jiang M, et al. Decolorization of different dyes by a newly isolated white-rot fungi strain Ganoderma sp. En3 and cloning and functional analysis of its laccase gene. J Hazard Mat, 2011; 192: 855– 73.
  • 99. Gonza´lez T, Terro´n MC, Yagüe S, Junca H, Carbajo JM, Zapico EJ, et al. Melanoidincontaining wastewaters induce selective laccase gene expression in the white-rot fungus Trametes sp. I-62. Res Microbiol, 2008; 159: 103-”9.
  • 100. Büyük İ, Demiralp B, Özenoğlu S, Aras S, CansaranDuman D. Expression levels of the laccase gene in lichen Pseudevernia furfuracea subjected to Pb+2 heavy metal stress. 10-12 Eylül 2014. Moleküler Biyoloji Kongresi. İzmir.
Toplam 100 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Begüm Demiralp Bu kişi benim

İlker Büyük Bu kişi benim

Sümer Aras Bu kişi benim

Demet Cansaran Duman Bu kişi benim

Yayımlanma Tarihi 1 Aralık 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 72 Sayı: 4

Kaynak Göster

APA Demiralp, B., Büyük, İ., Aras, S., Duman, D. C. (2015). Lakkaz enziminin endüstriyel ve biyoteknoloji alanında kullanımı. Türk Hijyen Ve Deneysel Biyoloji Dergisi, 72(4), 351-368.
AMA Demiralp B, Büyük İ, Aras S, Duman DC. Lakkaz enziminin endüstriyel ve biyoteknoloji alanında kullanımı. Turk Hij Den Biyol Derg. Aralık 2015;72(4):351-368.
Chicago Demiralp, Begüm, İlker Büyük, Sümer Aras, ve Demet Cansaran Duman. “Lakkaz Enziminin endüstriyel Ve Biyoteknoloji alanında kullanımı”. Türk Hijyen Ve Deneysel Biyoloji Dergisi 72, sy. 4 (Aralık 2015): 351-68.
EndNote Demiralp B, Büyük İ, Aras S, Duman DC (01 Aralık 2015) Lakkaz enziminin endüstriyel ve biyoteknoloji alanında kullanımı. Türk Hijyen ve Deneysel Biyoloji Dergisi 72 4 351–368.
IEEE B. Demiralp, İ. Büyük, S. Aras, ve D. C. Duman, “Lakkaz enziminin endüstriyel ve biyoteknoloji alanında kullanımı”, Turk Hij Den Biyol Derg, c. 72, sy. 4, ss. 351–368, 2015.
ISNAD Demiralp, Begüm vd. “Lakkaz Enziminin endüstriyel Ve Biyoteknoloji alanında kullanımı”. Türk Hijyen ve Deneysel Biyoloji Dergisi 72/4 (Aralık 2015), 351-368.
JAMA Demiralp B, Büyük İ, Aras S, Duman DC. Lakkaz enziminin endüstriyel ve biyoteknoloji alanında kullanımı. Turk Hij Den Biyol Derg. 2015;72:351–368.
MLA Demiralp, Begüm vd. “Lakkaz Enziminin endüstriyel Ve Biyoteknoloji alanında kullanımı”. Türk Hijyen Ve Deneysel Biyoloji Dergisi, c. 72, sy. 4, 2015, ss. 351-68.
Vancouver Demiralp B, Büyük İ, Aras S, Duman DC. Lakkaz enziminin endüstriyel ve biyoteknoloji alanında kullanımı. Turk Hij Den Biyol Derg. 2015;72(4):351-68.