BibTex RIS Kaynak Göster

Bitkilerde RNA interferans

Yıl 2015, Cilt: 72 Sayı: 3, 255 - 262, 01.09.2015

Öz

RNA interferans RNAi mekanizması, hücreye giren çift zincirli RNA’nın dsRNA komplementeri olan mRNA zincirinin degradasyonuna yol açması ile sonuçlanan transkripsiyon sonrası gen susturma posttranscriptional gene silencing , ya da gen ifadesinin düzenlenmesi olarak tanımlanır. RNAi mekanizması sırasında, hedef mRNA’ya komplementer dizi, 500 kDa ağırlığında ve nükleaz aktiviteli bir RNA-multi protein kompleksi olan RISC faktörü aracılığı ile mRNA’nın anlamlı dizisine bağlanır ve gen susturulma mekanizması bu RISC faktörü aracılığı ile kontrol edilir. Gen susturulması mRNA’nın RISC faktöründe bulunan ‘Argounate’ proteinle etkileşime girmesi ve ‘Dicer’ enzimi tarafından tanınıp kesilmesi ile gerçekleşir. Bu mekanizma, genomun virüs kalıtım materyali ve transpozonlar gibi hareketli genetik elementlerin istilasından korunmasını sağlamak amacıyla gerçekleşen doğal bir işlemdir. RNAi mekanizması, ökaryot organizmalarda iki tür molekül tarafından gerçekleştirilir. Bu moleküller 22 nükleotid uzunluğunda miRNA micro RNA ve 2123 nükleotid uzunluğunda, çift zincirli siRNA small interfering RNA molekülleridir. Son yıllarda bilim dünyasının önde gelen konuları arasında yer alan RNAi araştırmaları ile çeşitli organizmalarda genlerin işlevlerini inceleme, işlevlerini bilmediğimiz genlerin fonksiyonlarını belirleme, konak patojen ilişkisi, üreme, programlanmış hücre ölümü, tümör oluşumu gibi birçok alanda bilgi sahibi olunmuştur. Ayrıca; bitkilerde kodlanmayan RNA’ların doku farklılaşması ve gelişiminin kontrolü, sinyal iletimi, fitohormonlarla etkileşim, abiyotik kuraklık, tuzluluk vb. ve biyotik patojenler vb. stres gibi çevresel etmenlere verilen cevaplarda rol oynadığı görülmüştür. Bu derleme çalışmasında RNAi mekanizmasının temelleri ve bitkilerde RNAi kullanımı açıklanmaya çalışılacaktır

Kaynakça

  • 1. Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into Petunia result in supression of homologous revesible co-supression of homologous genes in trans. The Plant Cell, 1990; 2: 279-89.
  • 2. Jorgensen RA, Cluster PD, English J, Que Q, Napoli CA. Chalgone synthase cosupression phenotypes in petunia flovers: comparison of sense vs. antisense constructs and single-copy vs.complex T-DNA sequences. Plant Mol Biol, 1996; 32(5): 957-73.
  • 3. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998; 391 (6669): 806-11.
  • 4. DaneholtB. Advanced Information: RNA interference. The Nobel Prize in Physiology or Medicine. Archived from the original. Retrieved, 2007.
  • 5. Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi: double-stranded RNA directs the ATPdependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 2000; 101: 25-33.
  • 6. Allshire R. RNAi and heterochromatin–a hushedup affair. Science, 2002; 297: 1818-9.
  • 7. Vaucheret H. Post-transcriptional small RNA pathways in plants: mechanism and regulations. Genes Dev, 2006; 20: 759-71.
  • 8. Zhao T. A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev, 2007; 21(94): 1190-203.
  • 9. Sunkar R. Zhu JK. Micro RNAs and Shortinterfering RNAs in Plants. J Integr Plant Biol, 2007; 49: 817-26.
  • 10. Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell, 2009; 136: 642-55.
  • 11. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004; 116: 281-97.
  • 12. Kim VN. Small RNAs: classification, biogenesis, and function. Mol Cells, 2005; 19: 1-15.
  • 13. Sunkar R, Zhu JK. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell, 2004; 16: 2001-19.
  • 14. Kim VN. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol, 2009; 10: 126-39.
  • 15. Watanabe T, Totoki Y, Sasaki H, Minami N, Imai H. Analysis of small RNA profiles during development. Methods Enzymol, 2007; 427: 155-69.
  • 16. Zilberman D, Cao X, Jacobsen SE. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science, 2003: 31; 299(5607): 716-9.
  • 17. Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, et al. A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One, 2007: 19; 2(12): e1326.
  • 18. Ashley J, Ian J. The RNA-induced Silencing Complex: A Versatile Gene-silencing Machine. Biol Chem, 2009; 284(27): 17897–901.
  • 19. Hutvagnerg G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science, 2002; 297(5589): 2056-60.
  • 20. Khvora A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell, 2003; 115(2): 209-16.
  • 21. Saydam F, Degirmenci İ, Güneş HV. Mikro RNA’lar ve kanser. Dicle Medical Journal 2011; 38(1): 113-20.
  • 22. Sun W, Li YSJ, Huang HD, Shyy JYJ, Chien S. MicroRNA: A master Regulator of Cellular Process fro Bioengineering Systems. Annu Rev Biomed Eng, 2010; 12: 1-27.
  • 23. Pillai RS. MicroRNA function: multiple mechanism for atiny RNA. 2005; 11812: 1753-61.
  • 24. Nowotny M, Yang W. Structural and functional modules in RNA interference. Curr Opin Struct Biol, 2009; 19(3): 286-93.
  • 25. William L, David S, Julian TR. Development and testing of the OPLS all atom force field for conformational energetics and properties of organic liquids. J Am Chem Soc, 1996; 118(45): 11225–36.
  • 26. Park W, Li J, Song R, Messing J, Chen X. Carpel factory, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Current Biology, 2002; 12(17): 1484-95.
  • 27. Adai A. Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res, 2005; 15: 78-91.
  • 28. Li X, Zhang YZ. Computational detection of microRNAs targeting transcription factor genes in Arabidopsis thaliana. Comput Biol Chem, 2005; 29: 360-67.
  • 29. Sunkar R, Girke T, Jain PK, Zhu JK. Cloning and characterization of microRNAs from rice. Plant Cell, 2005; 17(5): 1397-411.
  • 30. Billoud B, De Paepe R, Baulcombe D, Boccara M. Identification of new small non-coding RNAs from tobacco and Arabidopsis. Biochimie, 2005; 87(9-10): 905-10.
  • 31. Dezulian T. Conservation and divergence of microRNA families in plants. Genome Biol, 2005; 6: 13-38.
  • 32. Bedell JA, Budiman MA, Nunberg A, Citek RW, Robbins D, Jones J, et al. Sorghum genome sequencing by methylation filtration. PLoS Biol, 2005; 3(1): e13.
  • 33. Lu S, Sun YS, Shi R, Clark C, Li L, Chiang VL. As in Populus trichocarpathat are absent from Arabidopsis. Plant Cell, 2005; 17: 2186-203.
  • 34. Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, et al. The genome of black cottonwood, Populus trichocarpa. Science, 2006; 313: 1596-604.
  • 35. Qiu CX, Xie FL, Zhu YY, Guo K, Huang SQ, Nie L, et al. Computational identification of microRNAs and their targets in Gossypium hirsutumex pressed sequence tags. Gene, 2007; 395: 49-61.
  • 36. Xie FL, Huang SQ, Guo K, Xiang AL, Zhu YY, Nie L, et al. Computational identification of novel microRNAs and targets in Brassica napus. Febs Lett, 2007; 581: 1464-74.
  • 37. Zhao Y, Srivastava D. A developmental view of microRNA function. Trends Biochem Sci, 2007; 32(4): 189-97.
  • 38. Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, et al. A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. Plos one, 2007; 12: 1326-44.
  • 39. Arazi T, Talmor-Neiman M, Stav R, Riese M, Huijser P, Baulcombe DC. Cloning and characterization of micro RNAs from moss. Plant J, 2005; 43: 837-48.
  • 40. Levitt J. Responses of plants to environmental Stresses. New York, London: Academic Press, 1972: 697.
  • 41. Lichtenhaler HK. Vegetation stress: An introduction to the stress concept in plants. J Plant Physiol, 1996; 148: 4-14.
  • 42. Cushman JC. Bohnert HJ. Genomic approaches to plant stress tolerance. Curr Opin Plant Biol, 2000; 3: 117-24.
  • 43. Vinocur B, Altman A. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol, 2005; 16: 123-32.
  • 44. Chinnusamy V, Zhu JK. Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol, 2009; 12: 1-7.
  • 45. Felippes De FF, Schneeberger K, Dezulian T, Huson DH, Weigel D. Evolution of Arabidopsis thaliana microRNAs from random sequences. RNA New York, 2008; 14(12): 2455-9.
  • 46. Piriyapongsa J, Jordan IK. Dual coding of siRNAs and miRNAs by plant transposable elements. RNA, 2008; 14: 814-21.
  • 47. Borchert GM, Holton NW, Williams JD, Hernan WL, Bishop IP, Dembosky JA, et al. Comprehensive analysis of microRNA genomic loci identifies pervasive repetitiveelement origins. Mobile Genetic Elements, 2011; 1(1): 8-17.
  • 48. Lindbo JA, Silva Roales L, Proebsting WM, Dougherty WG . Introduction of highly spesific antiviral state in transgenic plants: Implacation for regulation gene expression and virus resistance. Plant Cell, 1993; 5: 1749-59.
  • 49. Angell SM, Baulcombe DC. Consistent gene silencing in transgenic plants expressing a replicating potato virus X RNA. Embo J, 1997; 16(12): 3675–84.
  • 50. Gan D, Ding F, Zhuang D, Jiang H, Jiang T, Zhu S, et al. Application of RNA interference methodology to investigate and develop SCMV resistance in maize. J Genet, 2014; 93(2): 305-11.
  • 51. Zhang ZY, Yang L, Zhou SF, Wang HG, Li WC, Fu FL. Improvement of resistance to maize dwarf mosaic virus mediated by transgenic RNA interference. J Biotechnol, 2011; 153(3–4): 181–7.
  • 52. Zha WJ, Peng XX, Chen RZ, Du B, Zhu LL, He GC. Knockdown of midgut genes by dsRNA-transgenic plantmediated RNA interference in the hemipteran insect Nilaparvata lugens. PLoS One, 2011; 6(5): 20504.
  • 53. Yarmolinsky D, Brychkova G, Kurmanbayeva A, Bekturova A, Ventura Y, Khozin-Goldberg I, et al. Impairment in Sulfite Reductase Leads to Early Leaf Senescence in Tomato Plants. American Society of Plant Biologists, 2014; 165: 1505–20.
  • 54. Shweta M, JA Khan. In silico prediction of cotton (Gossypium hirsutum) encoded microRNAs targets in the genome of Cotton leaf curl Allahabad virus. Bioinformation, 2014; 10(5): 251-5.
  • 55. Chunhua Y, Dayong L, Xue L, Chengjun J, Lili H, Xianfeng Z, et al. OsMYB103L, an R2R3-MYB transcription factor, influences leaf rolling and mechanical strength inrice (Oryza sativaL.). BMC Plant Biol, 2014; 14: 158.
  • 56. Kiirika LM, Bergmann HF, Schikowsky C, Wimmer D, Korte J, Schmitz U, et al. Silencing of the Rac1 GTPase MtROP9 in Medicago truncatula stimulates early mycorrhizal and oomycete root colonizations but negatively affects rhizobial infection. Plant Physiol, 2012; 159(1): 501-16.
  • 57. Wan P, Wu J, Zhou Y, Xiao J, Feng J, Zhao W, et al. Computational Analysis of Drought Stress-Associated miRNAs and miRNA CoRegulation Network in Physcomitrella patens. Genomics Proteomics Bioinformatics, 2011; 9(1-2): 37-44.

RNA interference in plants

Yıl 2015, Cilt: 72 Sayı: 3, 255 - 262, 01.09.2015

Öz

RNA interference RNAi is defined as silencing of gene after transcription post-transcriptional gene silencing , when double stranded RNA dsRNA steps into the cell and cause degradation of endogenic complementary mRNA, or regulation of gene expression process. During RNA is mechanism, complementary sequence of target mRNA connects to sense strand of mRNA by factor of RISC. Gene silencing mechanism is controlled by RISC factor with a mass of 500 kDa which is RNA multi protein complex with nuclease activity. Silencing is occurred by cutting of mRNA, which is interacting with Argounate protein on RISC factor, with Dicer enzyme. This silencing mechanism is natural and takes a position in defending genome and biological function of organisms from invasion of movable genetic material such as viral hereditary material and transposons. RNAi mechanism realized with two kinds of molecules in eukaryotic organisms. These are miRNA microRNA which is 22 bp and siRNA small interfering RNA which is 21-23 bp. In recent years RNAi has become prominent research area in science world. Several information were achieved with researches of RNAi such as determining function of genes, host-pathogen interaction, reproduction, apoptosis programmed cell death and tumorgenesis etc. Also, determined with RNAi researchs that; non-coding RNA plays role in controlling of tissue development and differentiation, signal transduction, interaction with phytohormone, responses of abiotic drought, salinity etc. or biotic pathogens etc. stress. As a conclusion, this review will try to explain base of RNAi mechanism and usage in plants.

Kaynakça

  • 1. Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into Petunia result in supression of homologous revesible co-supression of homologous genes in trans. The Plant Cell, 1990; 2: 279-89.
  • 2. Jorgensen RA, Cluster PD, English J, Que Q, Napoli CA. Chalgone synthase cosupression phenotypes in petunia flovers: comparison of sense vs. antisense constructs and single-copy vs.complex T-DNA sequences. Plant Mol Biol, 1996; 32(5): 957-73.
  • 3. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998; 391 (6669): 806-11.
  • 4. DaneholtB. Advanced Information: RNA interference. The Nobel Prize in Physiology or Medicine. Archived from the original. Retrieved, 2007.
  • 5. Zamore PD, Tuschl T, Sharp PA, Bartel DP. RNAi: double-stranded RNA directs the ATPdependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 2000; 101: 25-33.
  • 6. Allshire R. RNAi and heterochromatin–a hushedup affair. Science, 2002; 297: 1818-9.
  • 7. Vaucheret H. Post-transcriptional small RNA pathways in plants: mechanism and regulations. Genes Dev, 2006; 20: 759-71.
  • 8. Zhao T. A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev, 2007; 21(94): 1190-203.
  • 9. Sunkar R. Zhu JK. Micro RNAs and Shortinterfering RNAs in Plants. J Integr Plant Biol, 2007; 49: 817-26.
  • 10. Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell, 2009; 136: 642-55.
  • 11. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004; 116: 281-97.
  • 12. Kim VN. Small RNAs: classification, biogenesis, and function. Mol Cells, 2005; 19: 1-15.
  • 13. Sunkar R, Zhu JK. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell, 2004; 16: 2001-19.
  • 14. Kim VN. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol, 2009; 10: 126-39.
  • 15. Watanabe T, Totoki Y, Sasaki H, Minami N, Imai H. Analysis of small RNA profiles during development. Methods Enzymol, 2007; 427: 155-69.
  • 16. Zilberman D, Cao X, Jacobsen SE. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science, 2003: 31; 299(5607): 716-9.
  • 17. Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, et al. A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One, 2007: 19; 2(12): e1326.
  • 18. Ashley J, Ian J. The RNA-induced Silencing Complex: A Versatile Gene-silencing Machine. Biol Chem, 2009; 284(27): 17897–901.
  • 19. Hutvagnerg G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science, 2002; 297(5589): 2056-60.
  • 20. Khvora A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell, 2003; 115(2): 209-16.
  • 21. Saydam F, Degirmenci İ, Güneş HV. Mikro RNA’lar ve kanser. Dicle Medical Journal 2011; 38(1): 113-20.
  • 22. Sun W, Li YSJ, Huang HD, Shyy JYJ, Chien S. MicroRNA: A master Regulator of Cellular Process fro Bioengineering Systems. Annu Rev Biomed Eng, 2010; 12: 1-27.
  • 23. Pillai RS. MicroRNA function: multiple mechanism for atiny RNA. 2005; 11812: 1753-61.
  • 24. Nowotny M, Yang W. Structural and functional modules in RNA interference. Curr Opin Struct Biol, 2009; 19(3): 286-93.
  • 25. William L, David S, Julian TR. Development and testing of the OPLS all atom force field for conformational energetics and properties of organic liquids. J Am Chem Soc, 1996; 118(45): 11225–36.
  • 26. Park W, Li J, Song R, Messing J, Chen X. Carpel factory, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Current Biology, 2002; 12(17): 1484-95.
  • 27. Adai A. Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res, 2005; 15: 78-91.
  • 28. Li X, Zhang YZ. Computational detection of microRNAs targeting transcription factor genes in Arabidopsis thaliana. Comput Biol Chem, 2005; 29: 360-67.
  • 29. Sunkar R, Girke T, Jain PK, Zhu JK. Cloning and characterization of microRNAs from rice. Plant Cell, 2005; 17(5): 1397-411.
  • 30. Billoud B, De Paepe R, Baulcombe D, Boccara M. Identification of new small non-coding RNAs from tobacco and Arabidopsis. Biochimie, 2005; 87(9-10): 905-10.
  • 31. Dezulian T. Conservation and divergence of microRNA families in plants. Genome Biol, 2005; 6: 13-38.
  • 32. Bedell JA, Budiman MA, Nunberg A, Citek RW, Robbins D, Jones J, et al. Sorghum genome sequencing by methylation filtration. PLoS Biol, 2005; 3(1): e13.
  • 33. Lu S, Sun YS, Shi R, Clark C, Li L, Chiang VL. As in Populus trichocarpathat are absent from Arabidopsis. Plant Cell, 2005; 17: 2186-203.
  • 34. Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, et al. The genome of black cottonwood, Populus trichocarpa. Science, 2006; 313: 1596-604.
  • 35. Qiu CX, Xie FL, Zhu YY, Guo K, Huang SQ, Nie L, et al. Computational identification of microRNAs and their targets in Gossypium hirsutumex pressed sequence tags. Gene, 2007; 395: 49-61.
  • 36. Xie FL, Huang SQ, Guo K, Xiang AL, Zhu YY, Nie L, et al. Computational identification of novel microRNAs and targets in Brassica napus. Febs Lett, 2007; 581: 1464-74.
  • 37. Zhao Y, Srivastava D. A developmental view of microRNA function. Trends Biochem Sci, 2007; 32(4): 189-97.
  • 38. Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, et al. A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. Plos one, 2007; 12: 1326-44.
  • 39. Arazi T, Talmor-Neiman M, Stav R, Riese M, Huijser P, Baulcombe DC. Cloning and characterization of micro RNAs from moss. Plant J, 2005; 43: 837-48.
  • 40. Levitt J. Responses of plants to environmental Stresses. New York, London: Academic Press, 1972: 697.
  • 41. Lichtenhaler HK. Vegetation stress: An introduction to the stress concept in plants. J Plant Physiol, 1996; 148: 4-14.
  • 42. Cushman JC. Bohnert HJ. Genomic approaches to plant stress tolerance. Curr Opin Plant Biol, 2000; 3: 117-24.
  • 43. Vinocur B, Altman A. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol, 2005; 16: 123-32.
  • 44. Chinnusamy V, Zhu JK. Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol, 2009; 12: 1-7.
  • 45. Felippes De FF, Schneeberger K, Dezulian T, Huson DH, Weigel D. Evolution of Arabidopsis thaliana microRNAs from random sequences. RNA New York, 2008; 14(12): 2455-9.
  • 46. Piriyapongsa J, Jordan IK. Dual coding of siRNAs and miRNAs by plant transposable elements. RNA, 2008; 14: 814-21.
  • 47. Borchert GM, Holton NW, Williams JD, Hernan WL, Bishop IP, Dembosky JA, et al. Comprehensive analysis of microRNA genomic loci identifies pervasive repetitiveelement origins. Mobile Genetic Elements, 2011; 1(1): 8-17.
  • 48. Lindbo JA, Silva Roales L, Proebsting WM, Dougherty WG . Introduction of highly spesific antiviral state in transgenic plants: Implacation for regulation gene expression and virus resistance. Plant Cell, 1993; 5: 1749-59.
  • 49. Angell SM, Baulcombe DC. Consistent gene silencing in transgenic plants expressing a replicating potato virus X RNA. Embo J, 1997; 16(12): 3675–84.
  • 50. Gan D, Ding F, Zhuang D, Jiang H, Jiang T, Zhu S, et al. Application of RNA interference methodology to investigate and develop SCMV resistance in maize. J Genet, 2014; 93(2): 305-11.
  • 51. Zhang ZY, Yang L, Zhou SF, Wang HG, Li WC, Fu FL. Improvement of resistance to maize dwarf mosaic virus mediated by transgenic RNA interference. J Biotechnol, 2011; 153(3–4): 181–7.
  • 52. Zha WJ, Peng XX, Chen RZ, Du B, Zhu LL, He GC. Knockdown of midgut genes by dsRNA-transgenic plantmediated RNA interference in the hemipteran insect Nilaparvata lugens. PLoS One, 2011; 6(5): 20504.
  • 53. Yarmolinsky D, Brychkova G, Kurmanbayeva A, Bekturova A, Ventura Y, Khozin-Goldberg I, et al. Impairment in Sulfite Reductase Leads to Early Leaf Senescence in Tomato Plants. American Society of Plant Biologists, 2014; 165: 1505–20.
  • 54. Shweta M, JA Khan. In silico prediction of cotton (Gossypium hirsutum) encoded microRNAs targets in the genome of Cotton leaf curl Allahabad virus. Bioinformation, 2014; 10(5): 251-5.
  • 55. Chunhua Y, Dayong L, Xue L, Chengjun J, Lili H, Xianfeng Z, et al. OsMYB103L, an R2R3-MYB transcription factor, influences leaf rolling and mechanical strength inrice (Oryza sativaL.). BMC Plant Biol, 2014; 14: 158.
  • 56. Kiirika LM, Bergmann HF, Schikowsky C, Wimmer D, Korte J, Schmitz U, et al. Silencing of the Rac1 GTPase MtROP9 in Medicago truncatula stimulates early mycorrhizal and oomycete root colonizations but negatively affects rhizobial infection. Plant Physiol, 2012; 159(1): 501-16.
  • 57. Wan P, Wu J, Zhou Y, Xiao J, Feng J, Zhao W, et al. Computational Analysis of Drought Stress-Associated miRNAs and miRNA CoRegulation Network in Physcomitrella patens. Genomics Proteomics Bioinformatics, 2011; 9(1-2): 37-44.
Toplam 57 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Derleme
Yazarlar

Sümer Aras Bu kişi benim

Semra Soydam -aydın Bu kişi benim

Aslı Fazlıoğlu Bu kişi benim

Demet Cansaran -duman Bu kişi benim

İlker Büyük Bu kişi benim

Kürşat Derici Bu kişi benim

Yayımlanma Tarihi 1 Eylül 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 72 Sayı: 3

Kaynak Göster

APA Aras, S., Soydam -aydın, S., Fazlıoğlu, A., Cansaran -duman, D., vd. (2015). Bitkilerde RNA interferans. Türk Hijyen Ve Deneysel Biyoloji Dergisi, 72(3), 255-262.
AMA Aras S, Soydam -aydın S, Fazlıoğlu A, Cansaran -duman D, Büyük İ, Derici K. Bitkilerde RNA interferans. Turk Hij Den Biyol Derg. Eylül 2015;72(3):255-262.
Chicago Aras, Sümer, Semra Soydam -aydın, Aslı Fazlıoğlu, Demet Cansaran -duman, İlker Büyük, ve Kürşat Derici. “Bitkilerde RNA Interferans”. Türk Hijyen Ve Deneysel Biyoloji Dergisi 72, sy. 3 (Eylül 2015): 255-62.
EndNote Aras S, Soydam -aydın S, Fazlıoğlu A, Cansaran -duman D, Büyük İ, Derici K (01 Eylül 2015) Bitkilerde RNA interferans. Türk Hijyen ve Deneysel Biyoloji Dergisi 72 3 255–262.
IEEE S. Aras, S. Soydam -aydın, A. Fazlıoğlu, D. Cansaran -duman, İ. Büyük, ve K. Derici, “Bitkilerde RNA interferans”, Turk Hij Den Biyol Derg, c. 72, sy. 3, ss. 255–262, 2015.
ISNAD Aras, Sümer vd. “Bitkilerde RNA Interferans”. Türk Hijyen ve Deneysel Biyoloji Dergisi 72/3 (Eylül 2015), 255-262.
JAMA Aras S, Soydam -aydın S, Fazlıoğlu A, Cansaran -duman D, Büyük İ, Derici K. Bitkilerde RNA interferans. Turk Hij Den Biyol Derg. 2015;72:255–262.
MLA Aras, Sümer vd. “Bitkilerde RNA Interferans”. Türk Hijyen Ve Deneysel Biyoloji Dergisi, c. 72, sy. 3, 2015, ss. 255-62.
Vancouver Aras S, Soydam -aydın S, Fazlıoğlu A, Cansaran -duman D, Büyük İ, Derici K. Bitkilerde RNA interferans. Turk Hij Den Biyol Derg. 2015;72(3):255-62.