BibTex RIS Kaynak Göster

Klinik bakteriyoloji tanısında moleküler teknikler

Yıl 2015, Cilt: 72 Sayı: 1, 63 - 72, 01.03.2015

Öz

Moleküler yöntemler enfeksiyon hastalıkların patogenezinin ve epidemiyolojisinin anlaşılmasında çok önemli katkıda bulunmuştur. Polimeraz zincir reaksiyonu PZR , en yaygın kullanılan hedef nükleik asit amplifikasyon yöntemidir. Bu yöntem ile tek bir nükleik asidin kopyası çok kısa bir süre içinde 107 kereden fazla çoğalır. Gerçek zamanlı PZR, sekanslama tekniği ve kütle spektrofotometresi gibi yeni teknolojiler klinik mikrobiyoloji laboratuvarında birçok uygulama alanı kazanmıştır. Gerçek zamanlı tekniklerin en büyük etkisi viroloji alanında olmuştur ve bu tekniklerin klinik örneklerde çeşitli virüslerin tespiti, kantitatif viral yükleri ve antiviral tedaviye yanıtı izlemek için kullanılmıştır. Bakteriyoloji alanında bakteriyel patojenler ve/veya antibiyotik direnç genlerinin hızlı tanımlanması, antibiyotiklerin uygun kullanımını sağlar, hastanede kalış süresini kısaltır ve dirençli suşların gelişme potansiyelini azaltır. Neisseria gonorrhoeae ve Chlamydia trachomatis tespiti için PZR teknolojisi kullanan ticari kitler geliştirilmiştir. Nükleik asit amplifikasyon testleri klinik örneklerde Mycobacterium tuberculosis kompleks’inin doğrudan tespitinde kullanılabilir. Bazı klinik laboratuvarlar, klinik örneklerden M. tuberculosis’i tespit etmek için PZR deneylerine dayalı kendi in-house deneylerini geliştirmiştir. Bazı çalışmalar hazır kitleri ve “in-house” yöntemleri karşılaştırmıştır ve benzer sonuçlar bulmuştur. In-house geliştirilen yöntemlere ek olarak bazı ticari amplifikasyon kitleri yaygın olarak kullanılmaktadır. Bu bölümde güncel DNA yöntemine dayalı moleküler tekniklerin temel ilkelerini ve klinik bakteriyoloji için uygulamaları açıklanmıştır

Kaynakça

  • 1. Phaller MA, Caliendo AM, Versalovic J. Molecular biology. In: Isenberg HD, Garcia LS, eds. Clinical Microbiology Procedures Handbook. Whashington DC. ASM Press, 2007.
  • 2. Lamoril J, Bogard M, Ameziane N, Deybach JC, Bouizegarène P. Molecular biology in clinical microbiology in 2007-Part 1. Immuno-Anal Biol Spec, 2007; 22 (1): 5-18.
  • 3. Nolte FS, Caliendo AM. Molecular microbiology. Manuel of Clinical Microbiology, Washington DC: ASM Pres, No: 10, 2011; 27-59.
  • 4. Greenwood D, Slack R, Peutherer J, Barer M. Medical Microbiology. 17th ed. Philadelphia: Churchill Livingstone, 2007.
  • 5. Forbes BA, Sahm DF, Weissfeld AS. Bailey & Scott’s Diagnostic Microbiology. 12th ed. Philadelphia: Mosby Inc, 2007.
  • 6. Chen SC, Kontoyiannis DP. New molecular and surrogate biomarker-based tests in the diagnosis of bacterial and fungal infection in febrile neutropenic patients. Curr Opin Infect Dis, 2010; 23 (6): 567-77.
  • 7. Cai HY, Archambault M, Gyles CL, Prescott JF. Molecular genetics methods in the veterinary clinical bacteriology laboratory: current usage and future applications. Anim Health Res Rev, 2003; 4 (2): 73-93.
  • 8. Drancourt M. Molecular identification of bacteria. Med Mal Infect, 1998; 28 (4): 380-2.
  • 9. Marcadé G. Rapid diagnostic tests for bacterial infections. Immuno-Anal Biol Spec, 2013; 28 (4): 167-73.
  • 10. Sibley CD, Peirano G, Church DL. Molecular methods for pathogen and microbial community detection and characterization: current and potential application in diagnostic microbiology. Infect Genet Evol, 2012; 12 (3): 505-21.
  • 11. Biron M, Berche P, Ferroni A. Contribution of the laboratory to the epidemiologic study of bacterial infections. Pathol Biol, 2001; 49 (2): 128-37.
  • 12. Meng QH. Mass Spectrometry applications in clinical diagnostics. J Clinic Experiment Pathol, 2013. S6: e001. doi:10.4172/2161-0681.S6-e001.
  • 13. Herida M, Michel A, Goulet V, Janier M, Sednaoui P, Dupin N, et al. Epidemiology of sexually transmitted infections in France. Med Mal Infect, 2005; 3 (5): 281-9.
  • 14. Miller WC, Ford CA, Morris M, Handcock MS, Schmitz JL, Hobbs MM, et al. Prevalence of chlamydial and gonococcal infections among young adults in United States. JAMA, 2004; 291 (18): 2229-36.
  • 15. Anaes - Haute Autorité de Santé. Ếvaluation du depistage des infection urogénitales basses à Chlamydia trachomatis en France. Rapport 2003. http://www.has-sante.fr/portail/upload/docs/ application/pdf/Chlamydia_tome2_synth.pdf. Erişim: 02.01.2015
  • 16. Anaes - Haute Autorité de Santé. Place des techniques de biologie moléculaire dans l’identification des infections urogénitales basses à Chlamydia trachomatis. Rapport; 2003. http://www.has-sante.fr/portail/upload/docs/ application/pdf/Chlamydia_tome1_synth.pdf. Erişim: 02.01.2015
  • 17. Lamoril J, Bogard M, Ameziane N, Deybach JC, Bouizegarène P. Molecular biology in clinical microbiology in 2007-Part 2. Immuno-Anal Biologie Spec, 2007; 22 (2): 73-94.
  • 18. Murray PR, Rosenthal KS, Pfaller, MA. Medical Microbiology. 7th ed. Philadelphia: Saunders, 2013.
  • 19. Hamdad F, Orfila J, Boulanger JC, Eb F. Chlamydia trachomatis urogenital infections in women. Best diagnostic approaches. Gynecol Obstet Fertil, 2004; 32(12): 1064-74.
  • 20. Gaydos CA, Roblin PM, Hammerschlag MR, Hyman CL, Eiden JJ, Schachter J, et al. Diagnostic utility of PCR-enzyme immunoassay, culture, and serology for detection of Chlamydia pneumoniae in symptomatic and asymptomatic patients. J Clin Microbiol, 1994; 32 (4): 903-5.
  • 21. Johnson RE, Green TA, Schachter J, Jones RB, Hook EW III, Black CM, et al. Evaluation of nucleic acid amplification tests as reference tests for Chlamydia trachomatis infections in asymptomatic men. J Clin Microbiol, 2000; 38 (12): 4382-6.
  • 22. Diemert D, Libman MD, Lebel P. Confirmation by 16S rRNA PCR of the cobas amplicor CT/NG test for diagnosis of Neisseria gonorrhoeae infection in a low-prevalence population. J Clin Microbiol, 2002; 40 (11): 4056-9.
  • 23. Cook RL, Hutchinson SL, Ostergaard L, Braithwaite RS, Ness RB. Systematic review: noninvasive testing for Chlamydia trachomatis and Neisseria gonorrhoeae. Ann Intern Med, 2005; 142 (11): 914-25.
  • 24. Mushahwar IK, McGrath LC, Drnec J, Overby LR. Radioimmunoassay for detection of hepatitis B e antigen and its antibody. Results of clinical evaluation. Am J Clin Pathol, 1981; 76 (5): 692-7.
  • 25. Olshen E, Shrier LA. Diagnostic tests for chlamydial and gonorrheal infections. Semin Pediatr Infect Dis, 2005; 16 (3): 192-8.
  • 26. Anonymous. CDC (Center for Disease Control). Screening tests to detect Chlamydia trachomatis and Neisseria gonorrhoeae infections-2002. morbidity and mortality weekly report 2002; 51. http://www.cdc.gov/std/labguidelines. Erişim: 02.01.2015.
  • 27. Koeck JL, Chakour M, Teyssou R. Apport de la biologie moléculaire au diagnostic bactériologique. Rev Franc Lab, 2001; 2001 (335): 37-41.
  • 28. Tsara V, Serasli E, Christaki P. Problems in diagnosis and treatment of tuberculosis infection. Hippokratia, 2009; 13 (1): 20-2.
  • 29. Heifets L. Gen-Probe test should not be considered final in Mycobacterium tuberculosis identification. J Clin Microbiol, 1989; 27 (1): 229.
  • 30. Winn WJR, Allen S, Janda W, Koneman E, Procop G, Schreckenberger P, et al. Koneman’s Color Atlas and Textbook of Diagnostic Microbiology. 6th ed. Philadelphia: Lippincott Williams & Wilkins, 2006.
  • 31. Nahid P, Pai M, Hopewell PC. Advances in the diagnosis and treatment of tuberculosis. Proc Am Thorac Soc, 2006; 3 (1): 103-10.
  • 32. Cheng VC, Yam WC, Hung IF, Woo PC, Lau SK, Tang BS, et al. Clinical evaluation of the polymerase chain reaction for the rapid diagnosis of tuberculosis. J Clin Pathol, 2004; 57 (3): 281-5.
  • 33. Truffot-Pernot C, Veziris N. Bacteriological tests for tuberculosis: standards and perspectives. Rev Mal Res, 2011; 28 (8): 1034-47.
  • 34. Brossier F, Veziris N, Aubry A, Jarlier V, Sougakoff W. Detection by GenoType MTBDRsl test of complex mechanisms of resistance to second-line drugs and ethambutol in multidrug-resistant Mycobacterium tuberculosis complex isolates. J Clin Microbiol, 2010; 48 (5): 1683-9.
  • 35. Vernet G, Jay C, Rodrigue M, Troesch A. Species differentiation and antibiotic susceptibility testing with DNA microarrays. J Appl Microbiol, 2004; 96 (1): 59-68.
  • 36. Hillemann D, Rüsh-Gerdes S, Richter E. Feasibility of the GenoType MTBDRsl assay for fluoroquinolone, amikacin-capreomycin, and ethambutol resistance testing of Mycobacterium tuberculosis strains and clinical specimens. J Clin Microbiol, 2009; 47 (6): 1767-72.
  • 37. Walters SB, Hana BA. Testing of susceptibility of Mycobacterium tuberculosis to isoniazid and rifampin by mycobacterium growth indicator tube method. J Clin Microbiol, 1996; 34 (6): 1565-7.
  • 38. Palomino JC, Traore H, Fissette K, Portaels F. Evaluation of Mycobacteria growth indicator tube (MGIT) for drug susceptibility testing of Mycobacterium tuberculosis. Int J Tuberc Lung Dis, 1999; 3 (4): 344-8.
  • 39. Cheng VC, Yew WW, Yuen KY. Molecular diagnostics in tuberculosis. Eur J Clin Microbiol Infect Dis, 2005; 24 (11): 711-20.
  • 40. Whelen AC, Felmlee TA, Hunt JM, Williams DL, Roberts GD, Stockman L, et al. Direct genotypic detection of Mycobacterium tuberculosis rifampin resistance in clinical specimens by using singletube heminested PCR. J Clin Microbiol, 1995; 33 (3): 556-61.
  • 41. Grisold AJ, Leitner E, Mühlbauer G, Marth E, Kessler HH. Detection of methicillin-resistant Staphylococcus aureus and simultaneous confirmation by automated nucleic acid extraction and real-time PCR. J Clin Microbiol, 2002; 40 (7): 2392-7.

Molecular techniques for clinical diagnostic bacteriology

Yıl 2015, Cilt: 72 Sayı: 1, 63 - 72, 01.03.2015

Öz

Molecular methods have contributed tremendously to the understanding of the pathogenesis and epidemiology of infectious diseases. The polymerase chain reaction PCR is the most widely used target nucleic acid amplification method. By this method, a single copy of a nucleic acid is multiplied to more than 107 times within a very short period. New technologies such as real-time PCR, sequencing and mass spectrophotometry have been described and have many applications in a clinical microbiology laboratory. The greatest impact of real-time assays was in the field of virology where they have been used to detect rapidly a range of viruses in human specimens and to monitor quantitatively viral loads and response to antiviral therapy. In bacteriology they are used for rapid detection of bacterial pathogens and/or antibiotic resistance genes can help to ensure the appropriate use of antibiotics, reduce the duration of hospital stay and minimize the potential for resistant strains of bacteria to emerge. Commercial kits employing PCR technology for detection of Neisseria gonorrhoeae and Chlamydia trachomatis have been developed. Nucleic acid amplification tests can be used directly to identify Mycobacterium tuberculosis complex in clinical specimens. Some clinical laboratories have developed their in-house assays based on PCR assays to detect M. tuberculosis in clinical specimens. Some studies have compared the kits and “in-house” methods and have found similar results. In addition to in-house developed assays, there are commercial amplification tests some of them that are widely used. This chapter describes the basic principles and applications of recently DNA-based molecular techniques for the clinical bacteriology

Kaynakça

  • 1. Phaller MA, Caliendo AM, Versalovic J. Molecular biology. In: Isenberg HD, Garcia LS, eds. Clinical Microbiology Procedures Handbook. Whashington DC. ASM Press, 2007.
  • 2. Lamoril J, Bogard M, Ameziane N, Deybach JC, Bouizegarène P. Molecular biology in clinical microbiology in 2007-Part 1. Immuno-Anal Biol Spec, 2007; 22 (1): 5-18.
  • 3. Nolte FS, Caliendo AM. Molecular microbiology. Manuel of Clinical Microbiology, Washington DC: ASM Pres, No: 10, 2011; 27-59.
  • 4. Greenwood D, Slack R, Peutherer J, Barer M. Medical Microbiology. 17th ed. Philadelphia: Churchill Livingstone, 2007.
  • 5. Forbes BA, Sahm DF, Weissfeld AS. Bailey & Scott’s Diagnostic Microbiology. 12th ed. Philadelphia: Mosby Inc, 2007.
  • 6. Chen SC, Kontoyiannis DP. New molecular and surrogate biomarker-based tests in the diagnosis of bacterial and fungal infection in febrile neutropenic patients. Curr Opin Infect Dis, 2010; 23 (6): 567-77.
  • 7. Cai HY, Archambault M, Gyles CL, Prescott JF. Molecular genetics methods in the veterinary clinical bacteriology laboratory: current usage and future applications. Anim Health Res Rev, 2003; 4 (2): 73-93.
  • 8. Drancourt M. Molecular identification of bacteria. Med Mal Infect, 1998; 28 (4): 380-2.
  • 9. Marcadé G. Rapid diagnostic tests for bacterial infections. Immuno-Anal Biol Spec, 2013; 28 (4): 167-73.
  • 10. Sibley CD, Peirano G, Church DL. Molecular methods for pathogen and microbial community detection and characterization: current and potential application in diagnostic microbiology. Infect Genet Evol, 2012; 12 (3): 505-21.
  • 11. Biron M, Berche P, Ferroni A. Contribution of the laboratory to the epidemiologic study of bacterial infections. Pathol Biol, 2001; 49 (2): 128-37.
  • 12. Meng QH. Mass Spectrometry applications in clinical diagnostics. J Clinic Experiment Pathol, 2013. S6: e001. doi:10.4172/2161-0681.S6-e001.
  • 13. Herida M, Michel A, Goulet V, Janier M, Sednaoui P, Dupin N, et al. Epidemiology of sexually transmitted infections in France. Med Mal Infect, 2005; 3 (5): 281-9.
  • 14. Miller WC, Ford CA, Morris M, Handcock MS, Schmitz JL, Hobbs MM, et al. Prevalence of chlamydial and gonococcal infections among young adults in United States. JAMA, 2004; 291 (18): 2229-36.
  • 15. Anaes - Haute Autorité de Santé. Ếvaluation du depistage des infection urogénitales basses à Chlamydia trachomatis en France. Rapport 2003. http://www.has-sante.fr/portail/upload/docs/ application/pdf/Chlamydia_tome2_synth.pdf. Erişim: 02.01.2015
  • 16. Anaes - Haute Autorité de Santé. Place des techniques de biologie moléculaire dans l’identification des infections urogénitales basses à Chlamydia trachomatis. Rapport; 2003. http://www.has-sante.fr/portail/upload/docs/ application/pdf/Chlamydia_tome1_synth.pdf. Erişim: 02.01.2015
  • 17. Lamoril J, Bogard M, Ameziane N, Deybach JC, Bouizegarène P. Molecular biology in clinical microbiology in 2007-Part 2. Immuno-Anal Biologie Spec, 2007; 22 (2): 73-94.
  • 18. Murray PR, Rosenthal KS, Pfaller, MA. Medical Microbiology. 7th ed. Philadelphia: Saunders, 2013.
  • 19. Hamdad F, Orfila J, Boulanger JC, Eb F. Chlamydia trachomatis urogenital infections in women. Best diagnostic approaches. Gynecol Obstet Fertil, 2004; 32(12): 1064-74.
  • 20. Gaydos CA, Roblin PM, Hammerschlag MR, Hyman CL, Eiden JJ, Schachter J, et al. Diagnostic utility of PCR-enzyme immunoassay, culture, and serology for detection of Chlamydia pneumoniae in symptomatic and asymptomatic patients. J Clin Microbiol, 1994; 32 (4): 903-5.
  • 21. Johnson RE, Green TA, Schachter J, Jones RB, Hook EW III, Black CM, et al. Evaluation of nucleic acid amplification tests as reference tests for Chlamydia trachomatis infections in asymptomatic men. J Clin Microbiol, 2000; 38 (12): 4382-6.
  • 22. Diemert D, Libman MD, Lebel P. Confirmation by 16S rRNA PCR of the cobas amplicor CT/NG test for diagnosis of Neisseria gonorrhoeae infection in a low-prevalence population. J Clin Microbiol, 2002; 40 (11): 4056-9.
  • 23. Cook RL, Hutchinson SL, Ostergaard L, Braithwaite RS, Ness RB. Systematic review: noninvasive testing for Chlamydia trachomatis and Neisseria gonorrhoeae. Ann Intern Med, 2005; 142 (11): 914-25.
  • 24. Mushahwar IK, McGrath LC, Drnec J, Overby LR. Radioimmunoassay for detection of hepatitis B e antigen and its antibody. Results of clinical evaluation. Am J Clin Pathol, 1981; 76 (5): 692-7.
  • 25. Olshen E, Shrier LA. Diagnostic tests for chlamydial and gonorrheal infections. Semin Pediatr Infect Dis, 2005; 16 (3): 192-8.
  • 26. Anonymous. CDC (Center for Disease Control). Screening tests to detect Chlamydia trachomatis and Neisseria gonorrhoeae infections-2002. morbidity and mortality weekly report 2002; 51. http://www.cdc.gov/std/labguidelines. Erişim: 02.01.2015.
  • 27. Koeck JL, Chakour M, Teyssou R. Apport de la biologie moléculaire au diagnostic bactériologique. Rev Franc Lab, 2001; 2001 (335): 37-41.
  • 28. Tsara V, Serasli E, Christaki P. Problems in diagnosis and treatment of tuberculosis infection. Hippokratia, 2009; 13 (1): 20-2.
  • 29. Heifets L. Gen-Probe test should not be considered final in Mycobacterium tuberculosis identification. J Clin Microbiol, 1989; 27 (1): 229.
  • 30. Winn WJR, Allen S, Janda W, Koneman E, Procop G, Schreckenberger P, et al. Koneman’s Color Atlas and Textbook of Diagnostic Microbiology. 6th ed. Philadelphia: Lippincott Williams & Wilkins, 2006.
  • 31. Nahid P, Pai M, Hopewell PC. Advances in the diagnosis and treatment of tuberculosis. Proc Am Thorac Soc, 2006; 3 (1): 103-10.
  • 32. Cheng VC, Yam WC, Hung IF, Woo PC, Lau SK, Tang BS, et al. Clinical evaluation of the polymerase chain reaction for the rapid diagnosis of tuberculosis. J Clin Pathol, 2004; 57 (3): 281-5.
  • 33. Truffot-Pernot C, Veziris N. Bacteriological tests for tuberculosis: standards and perspectives. Rev Mal Res, 2011; 28 (8): 1034-47.
  • 34. Brossier F, Veziris N, Aubry A, Jarlier V, Sougakoff W. Detection by GenoType MTBDRsl test of complex mechanisms of resistance to second-line drugs and ethambutol in multidrug-resistant Mycobacterium tuberculosis complex isolates. J Clin Microbiol, 2010; 48 (5): 1683-9.
  • 35. Vernet G, Jay C, Rodrigue M, Troesch A. Species differentiation and antibiotic susceptibility testing with DNA microarrays. J Appl Microbiol, 2004; 96 (1): 59-68.
  • 36. Hillemann D, Rüsh-Gerdes S, Richter E. Feasibility of the GenoType MTBDRsl assay for fluoroquinolone, amikacin-capreomycin, and ethambutol resistance testing of Mycobacterium tuberculosis strains and clinical specimens. J Clin Microbiol, 2009; 47 (6): 1767-72.
  • 37. Walters SB, Hana BA. Testing of susceptibility of Mycobacterium tuberculosis to isoniazid and rifampin by mycobacterium growth indicator tube method. J Clin Microbiol, 1996; 34 (6): 1565-7.
  • 38. Palomino JC, Traore H, Fissette K, Portaels F. Evaluation of Mycobacteria growth indicator tube (MGIT) for drug susceptibility testing of Mycobacterium tuberculosis. Int J Tuberc Lung Dis, 1999; 3 (4): 344-8.
  • 39. Cheng VC, Yew WW, Yuen KY. Molecular diagnostics in tuberculosis. Eur J Clin Microbiol Infect Dis, 2005; 24 (11): 711-20.
  • 40. Whelen AC, Felmlee TA, Hunt JM, Williams DL, Roberts GD, Stockman L, et al. Direct genotypic detection of Mycobacterium tuberculosis rifampin resistance in clinical specimens by using singletube heminested PCR. J Clin Microbiol, 1995; 33 (3): 556-61.
  • 41. Grisold AJ, Leitner E, Mühlbauer G, Marth E, Kessler HH. Detection of methicillin-resistant Staphylococcus aureus and simultaneous confirmation by automated nucleic acid extraction and real-time PCR. J Clin Microbiol, 2002; 40 (7): 2392-7.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Derleme
Yazarlar

Nevriye Gönüllü Bu kişi benim

Yayımlanma Tarihi 1 Mart 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 72 Sayı: 1

Kaynak Göster

APA Gönüllü, N. (2015). Klinik bakteriyoloji tanısında moleküler teknikler. Türk Hijyen Ve Deneysel Biyoloji Dergisi, 72(1), 63-72.
AMA Gönüllü N. Klinik bakteriyoloji tanısında moleküler teknikler. Turk Hij Den Biyol Derg. Mart 2015;72(1):63-72.
Chicago Gönüllü, Nevriye. “Klinik Bakteriyoloji tanısında moleküler Teknikler”. Türk Hijyen Ve Deneysel Biyoloji Dergisi 72, sy. 1 (Mart 2015): 63-72.
EndNote Gönüllü N (01 Mart 2015) Klinik bakteriyoloji tanısında moleküler teknikler. Türk Hijyen ve Deneysel Biyoloji Dergisi 72 1 63–72.
IEEE N. Gönüllü, “Klinik bakteriyoloji tanısında moleküler teknikler”, Turk Hij Den Biyol Derg, c. 72, sy. 1, ss. 63–72, 2015.
ISNAD Gönüllü, Nevriye. “Klinik Bakteriyoloji tanısında moleküler Teknikler”. Türk Hijyen ve Deneysel Biyoloji Dergisi 72/1 (Mart 2015), 63-72.
JAMA Gönüllü N. Klinik bakteriyoloji tanısında moleküler teknikler. Turk Hij Den Biyol Derg. 2015;72:63–72.
MLA Gönüllü, Nevriye. “Klinik Bakteriyoloji tanısında moleküler Teknikler”. Türk Hijyen Ve Deneysel Biyoloji Dergisi, c. 72, sy. 1, 2015, ss. 63-72.
Vancouver Gönüllü N. Klinik bakteriyoloji tanısında moleküler teknikler. Turk Hij Den Biyol Derg. 2015;72(1):63-72.