BibTex RIS Kaynak Göster

Gen terapi yöntemleri: Fiziksel ve kimyasal metodlar

Yıl 2017, Cilt: 74 Sayı: 1, 103 - 112, 01.03.2017

Öz

Gen terapisi, genetik temeli bulunan hastalıkların tedavisinde stratejiler geliştirmek için kullanılan ve günümüzde tedavisi olmayan hastalıklar için umut vaat eden bir yöntemdir. Başarılı bir gen terapisi, ilgili transgenleri içeren plazmidlerin hedeflenmiş hücrelere transfeksiyonunu gerektirir. Gen tedavisi çalışmalarında karşılaşılan en önemli sorun olan DNA moleküllerinin hedef hücrelere ulaştırılması, bu alanda çalışan tüm araştırmacıları etkili bir yol bulmaya yöneltmiştir. DNA’nın hücrelere girme yeteneğinin kısıtlı oluşu ve DNA’nın enzimatik degredasyona uğrama ihtimali nedeniyle DNA transfeksiyonu çoğunlukla bir vektör aracılığıyla gerçekleştirilir. Bunlar, viral vektörler ve viral olmayan vektörler olarak iki gruba ayrılmaktadır. Adenovirüs, adeno-assosiye virüs, herpes simpleks ve retrovirüsler viral vektörlerin başta gelen örnekleridir. Viral olmayan vektörler ise kendi içinde fiziksel ve kimyasal olarak ayrılırlar. Fiziksel metotlar; mikroenjeksiyon, partikül bombardımanı gen tabancası, elektroporasyon, sonoporasyon, laser ışıması ve magnetofeksiyondur. Kimyasal metotlar ise viral vektörlere alternatif olarak ortaya çıkmış olan lipozomları kapsarlar. Bu vektörler, hücre çekirdeğine yapılacak gen transferini arttırmak amacıyla üç önemli özelliğe sahip olmalıdırlar. Bunlar DNA’nın negatif yükünü maskelemek, DNA molekülünü sıkıştırarak taşıyacağı kargoyu kompakt hale getirmek ve onu hücre içi nükleaz degredasyonundan korumaktır. Lipozomlar gibi viral olmayan transfeksiyon sistemleri virüslerden daha fazla tercih edilir. Çünkü bunlar immünojenik değildir, yapımı kolaydır ve endüstriyel üretim amacıyla ölçek büyütme işlemi daha basittir. Lipozomal taşıma araçları morfoloji ve salınım karakteristiği açısından çeşitlilik sağlar; doku hedeflemede kullanılabilir ve plazmid DNA’yı degredatif nükleazların saldırılarından koruyabilir. 1987’de potansiyel taşıma sistemi olarak tanımlanmalarından beri, DNA-katyonik lipit kompleksleri çeşitli hücre tiplerinde farklı DNA aktarım protokollerinde kullanılmıştır ve halen gen terapisinin klinik çalışmaları için araştırılmaktadır. Bu derleme, yeni ve gelecek vaat eden bir teknik olarak kanser ve genetik temelli hastalıkların tedavisinde kullanılması hedeflenen gen terapisindeki kimyasal ve fiziksel yöntemleri anlatmaktadır

Kaynakça

  • Mehier-Humbert S, Guy, RH. Physical methods for gene transfer: Improving the kinetics of gene delivery into cells. Adv Drug Deliv Rev, 2005; 57: 733-53. Doi:10.1016/j.addr.2004.12.007.
  • Chuah MK, Collen D, VandenDriessche T. Biosafety of adenoviral vectors. Curr Gene Ther, 2003; 6: 527-43. Doi:10.2174/1566523034578140.
  • Gallo-Penn AM, Shirley PS, Andrews JL, Tinlin S, Webster S, Cameron C, et al. Systemic delivery of an adenoviral vector encoding canine factor VIII results in short-term phenotypic correction, inhibitor development, and biphasic liver toxicity in hemophilia a dogs. Blood, 2001; 97: 107-13. Doi: 10.1182/blood.V97.1.107.
  • Lechardeur D, Sohn KJ, Haardt M, Joshi PB, Monck M, Graham RW, et al. Metabolic instability of plasmid DNA in the cytosol: A potential barrier to gene transfer. Gene Ther, 1999; 6: 482-97.
  • Ibraheem D, Elaissari A, Fessi H. Gene therapy and DNA delivery systems. Int J Pharm, 2014; 459: 70-83. Doi: 10.1016/j.ijpharm.2013.11.041.
  • Capecchi MR. High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell, 1980; 22: 479-88. Doi: 10.1016/0092-8674(80)90358-X.
  • Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH. Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci USA, 1980; 77: 7380-4.
  • Gordon JW, Ruddle FH. Gene transfer into mouse embryos: Production of transgenic mice by pronuclear injection. Methods Enzymol, 1983; 101: 411-33. Doi: 10.1016/0076-6879(83)01031- 9.
  • Auerbach AB. Production of functional transgenic mice by DNA pronuclear microinjection. Acta Biochim Pol, 2004; 51: 9-31.
  • Uchida M, Shimatsu Y, Onoe K, Matsuyama N, Niki R, Ikeda JE, et al. Production of transgenic miniature pigs by pronuclear microinjection. Transgenic Res, 2001; 10 (6): 577-82. Doi: 10.1023/A:1013059917280.
  • Hofmann A, Zakhartchenko V, Weppert M, Sebald H, Wenigerkind H, Brem G, et al. Generation of transgenic cattle by lentiviral gene transfer into oocytes. Biol Reprod, 2004; 71 (2): 405-9. Doi: 10.1095/ biolreprod.104.028472.
  • Klein TM, Wolf ED, Wu R, Sanford JC. High- velocity microprojectiles for delivering nucleic acids into living cells. Nature, 1987; 327: 70-3. Doi: 10.1038/327070a0.
  • Yang NS, Burkholder J, Roberts B, Martinell B, McCabe D. In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment. Proc Natl Acad Sci USA, 1990; 87 (24): 9568-72.
  • Williams RS, Johnston SA, Riedy M, DeVit MJ, McElligott SG, Sanford JC. Introduction of foreign genes into tissues of living mice by DNA- coated microprojectiles. Proc Natl Acad Sci USA, 1991; 88 (7): 2726-30.
  • Wang S, Joshi S, Lu S. Delivery of DNA to skin by particle bombardment. Methods Mol Biol, 2004; 245: 185-96. Doi: 10.1385/1-59259-649-5:185.
  • Lu B, Scott G, Goldsmith LA. A model or keratinocyte gene therapy: Preclinical and therapeutic considerations. Proc Assoc Am Physicians, 1996; 108 (2): 165-72.
  • Lin MT, Pulkkinen L, Uitto J, Yoon K. The gene gun: Current applications in cutaneous gene therapy. Int J Dermatol, 2000; 39 (3): 161-70. Doi: 10.1046/j.1365-4362.2000.00925.x.
  • Uchida M, Natsume H, Kobayashi D, Sugibayashi K, Morimoto Y. Effects of particle size, helium gas pressure and microparticle dose on the plasma concentration of indome thacin after bombardment of indomethacin-loaded poly-l lactic acid microspheres using a helios gun system. Biol Pharm Bull, 2002; 25 (5): 690-3. Doi: 10.1248/bpb.25.690.
  • Heller R, Jaroszeski M, Atkin A, Moradpour D, Gilbert R, Wands J, et al. In vivo gene electroinjection and expression in rat liver. FEBS Lett, 1996; 389 (3): 225-8. Doi: 10.1016/0014- 5793(96)00590-x.
  • Nishi T, Yoshizato K, Yamashiro S, Takeshima H, Sato K, Hamada K, et al. High-efficiency in vivo gene transfer using intraarterial plasmid DNA injection following in vivo electroporation. Cancer Res, 1996; 56 (5): 1050-5.
  • Rabussay D, Dev NB, Fewell J, Smith LC, Widera G, Zhang L. Enhancement of therapeutic drug and DNA delivery into cells by electroporation. J Phys D: Appl Phys, 2003; 36: 348-63. Doi: 10.1088/0022-3727/36/4/305.
  • Kim HJ, Greenleaf JF, Kinnick RR, Bronk JT, Bolander ME. Ultrasound-mediated transfection of mammalian cells. Hum Gene Ther, 1996; 7 (11): 1339-46. Doi: 10.1089/hum.1996.7.11-1339.
  • Bao S, Thrall BD, Miller DL. Transfection of a reporter plasmid into cultured cells by sonoporation in vitro. Ultrasound Med Biol, 1997; 23 (6): 953-9. Doi: 10.1016/S0301- 5629(97)00025-2.
  • Tao W, Wilkinson J, Stanbridge EJ, Berns MW. Direct gene transfer into human cultured cells facilitated by laser micropuncture of the cell membrane. Proc Natl Acad Sci USA, 1987; 84 (12): 4180-4.
  • Palumbo G, Caruso M, Crescenzi E, Tecce MF, Roberti G, Colasanti A. Targeted gene transfer in eucaryotic cells by dye-assisted laser optoporation. J Photochem Photobiol B: Biol, 1996; 36 (1): 41-6. Doi: 10.1016/S1011- 1344(96)07335-6.
  • Sagi S, Knoll T, Trojan L, Schaaf A, Alken P, Michel MS. Gene delivery into prostate cancer cells by holmium laser application. Prostate Cancer Prostatic Dis, 2003; 6 (2): 127-30. Doi: 10.1038/ sj.pcan.4500653.
  • Zeira E, Manevitch A, Khatchatouriants A, Pappo O, Hyam E, Darash-Yahana M, et al. Femtosecond infrared laser-an efficient and safe in vivo gene delivery system for prolonged expression. Molec Ther, 2003; 8 (2): 342-50. Doi: 10.1016/S1525- 0016(03)00184-9.
  • Kurata S, Tsukakoshi M, Kasuya T, Ikawa Y. The laser method for efficient introduction of foreign DNA into cultured cells. Exp Cell Res, 1986; 162 (2): 372-8. Doi: 10.1016/0014-4827(86)90342-3.
  • Scherer F, Anton M, Schillinger U, Henke J, Bergemann C, Kruger A, et al. Magnetofection: Enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther, 2002; 9 (2): 102-9. Doi: 10.1038/sj/gt/3301624.
  • Goodwin SC, Bittner CA, Peterson CL, Wong G. Singledose toxicity study of hepatic intra- arterial infusion of doxorubicin coupled to a novel magnetically targeted drug carrier. Toxicol Sci, 2001; 60 (1): 177-83. Doi: 10.1093/ toxsci/60.1.177.
  • Krötz F, Sohn HY, Gloe T, Plank C, Pohl U. Magnetofection potentiates gene delivery to cultured endothelial cells. J Vasc Res, 2003; 40 (5): 425-34. Doi: 10.1159/000073901.
  • Kedika B, Patri SV. Benzothiazole head group based cationic lipids: synthesis and application for gene delivery. Eur J Med Chem, 2014; 74: 703-716. Doi: 10.1016/j.ejmech.2013.08.034.
  • Renukuntla J, Vadlapudi AD, Patel A, Boddu SH, Mitra AK. Approaches for enhancing oral bioavailability of peptides and proteins. Int J Pharm, 2013; 447: 75-93. Doi: 10.1016/j. ijpharm.2013.02.030.
  • Hebert E. Improvement of exogenous DNA nuclear importation by nuclear localization signal-bearing vectors: a promising way for non- viral gene therapy. Biol Cell, 2003; 95 (2): 59-68. Doi: 10.1016/S0248-4900(03)00007-8.
  • Ciccarone V, Hawley-Nelson P, Jessee J. Cationic liposome-mediated transfection: Effect of serum on expression and efficiency. Focus, 1993; 15 (3): 80-3.
  • Balbino TA, Azzoni AR, de La Torre LG. Microfluidic devices for continuous production of pDNA/cationic liposome complexes for gene delivery and vaccine therapy. Colloids Surf B Biointerfaces, 2013; 111: 203-210. Doi: 10.1016/j.colsurfb.2013.04.003.
  • Fillion P, Desjardins A, Sayasith K, Lagace J. Encapsulation of DNA in negatively charged liposomes and inhibition of bacterial gene expression with fluid liposome-encapsulated antisense oligonucleotides. Biochim Biophys Acta, 2001; 1515: 44-54. Doi: 10.1016/S0005- 2736(01)00392-3.
  • Perrie Y, Gregoriadis G. Liposome-entrapped plasmid DNA: Characterization studies. Biochim Biophys Acta, 2000; 1475: 125-32. Doi: 10.1016/ S0304-4165(00)00055-6.
  • Attar A, Ogan A, Yucel S, Turan K. The potential of archaeosomes as carriers of pDNA into mammalian cells. Artif Cells Nanomed Biotechnol, 2016; 44: 710-6. Doi: 10.3109/21691401.2014.982800.
  • Ozgen M, Attar A, Elalmis Y, Birbir M, Yucel S. Enzymatic activity of a novel halotolerant lipase from Haloarcula hispanica 2TK2. Pol J Chem Tech, 2016; 18: 20-25. Doi: 10.1515/pjct-2016- 0024.
  • Benvegnu T, Rethore G, Brard M, Richter W, Plusquellec D. Archaeosomes based on novel synthetic tetraether-type lipids for the development of oral delivery systems. Chem Commun, 2005; 44: 5536-8. Doi: 10.1039/ B511440C.
  • Brard M, Laine C, Rethore, G, Laurent I, Neveu C, Lemiegre L, et al. Synthesis of archaeal bipolar lipid analogues: a way to versatile drug/ gene delivery systems. J Org Chem, 2007; 72: 8267-79. Doi: 10.1021/jo071181r.
  • Moghimipour E, Kargar M, Ramezani Z, Handali S. The potent in vitro skin permeation of archaeosome made from lipids extracted of sulfolobus acidocaldarius. Archaea, 2013; Article ID 782012, 7 pages. Doi: 10.1155/2013/782012.
  • Omri A, Agnew BJ, Patel GB. Short-term repeated-dose toxicity profile of archaeosomes administered to mice via intravenous and oral routes. Int J Toxicol, 2003; 22: 9-23. Doi: 10.1080/10915810305080.
  • Krishnan L, Dicaire CJ, Patel GB, Sprott GD. Archaeosome vaccine adjuvants induce strong humoral, cell-mediated, and memory responses: comparison to conventional liposomes and alum. Infect Immun, 2000; 68: 54-63. Doi: 10.1128/ IAI.68.1.54-63.2000.
  • Mumper RJ, Duguid JG, Anwer K, Barron MK, Nitta H, Rolland AP. Polyvinyl derivatives as novel interactive polymers for controlled gene delivery to muscle. Pharm Res, 1996; 13: 701-9. Doi: 10.1023/A:1016039330870.
  • Corsi K, Chellat F, Yahia L, Fernandes JC. Mesenchymal stem cells, MG63 and HEK293 transfection using chitosan-DNA nanoparticles. Biomaterials, 2003; 24: 1255-64. Doi: 10.1016/ S0142-9612(02)00507-0.
  • Singh M, Ariatti M. A cationic cytofectin with long spacer mediates favourable transfection in transformed human epithelial cells. Int J Pharm, 2006; 309: 189-98. Doi: 10.1016/j. ijpharm.2005.11.023.
  • Mansouri S, Lavigne P, Corsi K, Benderdour M, Beaumont E, Fernandes JC. Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: Strategies to improve transfection efficacy. Eur J Pharm Biopharm, 2004; 57: 1-8. Doi: 10.1016/S0939-6411(03)00155-3. Li Z,
  • Chen J, Sun W, Xu Y. Investigation of archaeosomes as carriers for oral delivery of peptides. Biochem Bioph Res Co, 2010; 394: 412- 7. Doi: 10.1016/j.bbrc.2010.03.041.
  • Danis O, Ogan A, Tatlican P, Attar A, Cakmakci E, Mertoglu B, et al. Preparation of poly(3- hydroxybutyrate-co-hydroxyvalerate) films from halophilic archaea and their potential use in drug delivery. Extremophiles, 2015; 19 (2), 515- 24. Doi: 10.1007/s00792-015-0735-4.

Gene therapy techniques: Physical and chemical methods

Yıl 2017, Cilt: 74 Sayı: 1, 103 - 112, 01.03.2017

Öz

Gene therapy is used for developing strategies for the treatment of genetic diseases and it is a promising technique for people with incurable diseases. A successful gene therapy includes the transfection of plasmids with related transgenes into the target cells. The transfer of the DNA molecule to target cell is the main problem of the gene therapy studies which directed researchers to find an effective way of transfection. The transfection of DNA is commonly achieved by a vector because of the limited insertion ability of the DNA into the cells and the possibility of enzymatic degradation of DNA molecule. These vectors are grouped into two categories as viral and non-viral. Adenovirus, adenoassociated virus, herpes simplex and retrovirus are the main examples of viral vectors. Non-viral vectors are grouped into two as physical and chemical methods. The physical methods are microinjection, particle bombardment - gene gun, electroporation, sonoporation, laser beam and magnetofection. The chemical methods are consisted of liposomes which developed as an alternative to the viral vectors. These vectors must have three important features for the transfer of the related gene into the cell nucleus. Those are disguising the negative charge of the DNA, condensing the DNA molecule and protecting it from the intracellular nuclease activity. içi nükleaz degredasyonundan korumaktır. Lipozomlar gibi viral olmayan transfeksiyon sistemleri virüslerden daha fazla tercih edilir. Çünkü bunlar immünojenik değildir, yapımı kolaydır ve endüstriyel üretim amacıyla ölçek büyütme işlemi daha basittir. Lipozomal taşıma araçları morfoloji ve salınım karakteristiği açısından çeşitlilik sağlar; doku hedeflemede kullanılabilir ve plazmid DNA’yı degredatif nükleazların saldırılarından koruyabilir. 1987’de potansiyel taşıma sistemi olarak tanımlanmalarından beri, DNA-katyonik lipit kompleksleri çeşitli hücre tiplerinde farklı DNA aktarım protokollerinde kullanılmıştır ve halen gen terapisinin klinik çalışmaları için araştırılmaktadır. Bu derleme, yeni ve gelecek vaat eden bir teknik olarak kanser ve genetik temelli hastalıkların tedavisinde kullanılması hedeflenen gen terapisindeki kimyasal ve fiziksel yöntemleri anlatmaktadır

Kaynakça

  • Mehier-Humbert S, Guy, RH. Physical methods for gene transfer: Improving the kinetics of gene delivery into cells. Adv Drug Deliv Rev, 2005; 57: 733-53. Doi:10.1016/j.addr.2004.12.007.
  • Chuah MK, Collen D, VandenDriessche T. Biosafety of adenoviral vectors. Curr Gene Ther, 2003; 6: 527-43. Doi:10.2174/1566523034578140.
  • Gallo-Penn AM, Shirley PS, Andrews JL, Tinlin S, Webster S, Cameron C, et al. Systemic delivery of an adenoviral vector encoding canine factor VIII results in short-term phenotypic correction, inhibitor development, and biphasic liver toxicity in hemophilia a dogs. Blood, 2001; 97: 107-13. Doi: 10.1182/blood.V97.1.107.
  • Lechardeur D, Sohn KJ, Haardt M, Joshi PB, Monck M, Graham RW, et al. Metabolic instability of plasmid DNA in the cytosol: A potential barrier to gene transfer. Gene Ther, 1999; 6: 482-97.
  • Ibraheem D, Elaissari A, Fessi H. Gene therapy and DNA delivery systems. Int J Pharm, 2014; 459: 70-83. Doi: 10.1016/j.ijpharm.2013.11.041.
  • Capecchi MR. High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell, 1980; 22: 479-88. Doi: 10.1016/0092-8674(80)90358-X.
  • Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH. Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci USA, 1980; 77: 7380-4.
  • Gordon JW, Ruddle FH. Gene transfer into mouse embryos: Production of transgenic mice by pronuclear injection. Methods Enzymol, 1983; 101: 411-33. Doi: 10.1016/0076-6879(83)01031- 9.
  • Auerbach AB. Production of functional transgenic mice by DNA pronuclear microinjection. Acta Biochim Pol, 2004; 51: 9-31.
  • Uchida M, Shimatsu Y, Onoe K, Matsuyama N, Niki R, Ikeda JE, et al. Production of transgenic miniature pigs by pronuclear microinjection. Transgenic Res, 2001; 10 (6): 577-82. Doi: 10.1023/A:1013059917280.
  • Hofmann A, Zakhartchenko V, Weppert M, Sebald H, Wenigerkind H, Brem G, et al. Generation of transgenic cattle by lentiviral gene transfer into oocytes. Biol Reprod, 2004; 71 (2): 405-9. Doi: 10.1095/ biolreprod.104.028472.
  • Klein TM, Wolf ED, Wu R, Sanford JC. High- velocity microprojectiles for delivering nucleic acids into living cells. Nature, 1987; 327: 70-3. Doi: 10.1038/327070a0.
  • Yang NS, Burkholder J, Roberts B, Martinell B, McCabe D. In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment. Proc Natl Acad Sci USA, 1990; 87 (24): 9568-72.
  • Williams RS, Johnston SA, Riedy M, DeVit MJ, McElligott SG, Sanford JC. Introduction of foreign genes into tissues of living mice by DNA- coated microprojectiles. Proc Natl Acad Sci USA, 1991; 88 (7): 2726-30.
  • Wang S, Joshi S, Lu S. Delivery of DNA to skin by particle bombardment. Methods Mol Biol, 2004; 245: 185-96. Doi: 10.1385/1-59259-649-5:185.
  • Lu B, Scott G, Goldsmith LA. A model or keratinocyte gene therapy: Preclinical and therapeutic considerations. Proc Assoc Am Physicians, 1996; 108 (2): 165-72.
  • Lin MT, Pulkkinen L, Uitto J, Yoon K. The gene gun: Current applications in cutaneous gene therapy. Int J Dermatol, 2000; 39 (3): 161-70. Doi: 10.1046/j.1365-4362.2000.00925.x.
  • Uchida M, Natsume H, Kobayashi D, Sugibayashi K, Morimoto Y. Effects of particle size, helium gas pressure and microparticle dose on the plasma concentration of indome thacin after bombardment of indomethacin-loaded poly-l lactic acid microspheres using a helios gun system. Biol Pharm Bull, 2002; 25 (5): 690-3. Doi: 10.1248/bpb.25.690.
  • Heller R, Jaroszeski M, Atkin A, Moradpour D, Gilbert R, Wands J, et al. In vivo gene electroinjection and expression in rat liver. FEBS Lett, 1996; 389 (3): 225-8. Doi: 10.1016/0014- 5793(96)00590-x.
  • Nishi T, Yoshizato K, Yamashiro S, Takeshima H, Sato K, Hamada K, et al. High-efficiency in vivo gene transfer using intraarterial plasmid DNA injection following in vivo electroporation. Cancer Res, 1996; 56 (5): 1050-5.
  • Rabussay D, Dev NB, Fewell J, Smith LC, Widera G, Zhang L. Enhancement of therapeutic drug and DNA delivery into cells by electroporation. J Phys D: Appl Phys, 2003; 36: 348-63. Doi: 10.1088/0022-3727/36/4/305.
  • Kim HJ, Greenleaf JF, Kinnick RR, Bronk JT, Bolander ME. Ultrasound-mediated transfection of mammalian cells. Hum Gene Ther, 1996; 7 (11): 1339-46. Doi: 10.1089/hum.1996.7.11-1339.
  • Bao S, Thrall BD, Miller DL. Transfection of a reporter plasmid into cultured cells by sonoporation in vitro. Ultrasound Med Biol, 1997; 23 (6): 953-9. Doi: 10.1016/S0301- 5629(97)00025-2.
  • Tao W, Wilkinson J, Stanbridge EJ, Berns MW. Direct gene transfer into human cultured cells facilitated by laser micropuncture of the cell membrane. Proc Natl Acad Sci USA, 1987; 84 (12): 4180-4.
  • Palumbo G, Caruso M, Crescenzi E, Tecce MF, Roberti G, Colasanti A. Targeted gene transfer in eucaryotic cells by dye-assisted laser optoporation. J Photochem Photobiol B: Biol, 1996; 36 (1): 41-6. Doi: 10.1016/S1011- 1344(96)07335-6.
  • Sagi S, Knoll T, Trojan L, Schaaf A, Alken P, Michel MS. Gene delivery into prostate cancer cells by holmium laser application. Prostate Cancer Prostatic Dis, 2003; 6 (2): 127-30. Doi: 10.1038/ sj.pcan.4500653.
  • Zeira E, Manevitch A, Khatchatouriants A, Pappo O, Hyam E, Darash-Yahana M, et al. Femtosecond infrared laser-an efficient and safe in vivo gene delivery system for prolonged expression. Molec Ther, 2003; 8 (2): 342-50. Doi: 10.1016/S1525- 0016(03)00184-9.
  • Kurata S, Tsukakoshi M, Kasuya T, Ikawa Y. The laser method for efficient introduction of foreign DNA into cultured cells. Exp Cell Res, 1986; 162 (2): 372-8. Doi: 10.1016/0014-4827(86)90342-3.
  • Scherer F, Anton M, Schillinger U, Henke J, Bergemann C, Kruger A, et al. Magnetofection: Enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther, 2002; 9 (2): 102-9. Doi: 10.1038/sj/gt/3301624.
  • Goodwin SC, Bittner CA, Peterson CL, Wong G. Singledose toxicity study of hepatic intra- arterial infusion of doxorubicin coupled to a novel magnetically targeted drug carrier. Toxicol Sci, 2001; 60 (1): 177-83. Doi: 10.1093/ toxsci/60.1.177.
  • Krötz F, Sohn HY, Gloe T, Plank C, Pohl U. Magnetofection potentiates gene delivery to cultured endothelial cells. J Vasc Res, 2003; 40 (5): 425-34. Doi: 10.1159/000073901.
  • Kedika B, Patri SV. Benzothiazole head group based cationic lipids: synthesis and application for gene delivery. Eur J Med Chem, 2014; 74: 703-716. Doi: 10.1016/j.ejmech.2013.08.034.
  • Renukuntla J, Vadlapudi AD, Patel A, Boddu SH, Mitra AK. Approaches for enhancing oral bioavailability of peptides and proteins. Int J Pharm, 2013; 447: 75-93. Doi: 10.1016/j. ijpharm.2013.02.030.
  • Hebert E. Improvement of exogenous DNA nuclear importation by nuclear localization signal-bearing vectors: a promising way for non- viral gene therapy. Biol Cell, 2003; 95 (2): 59-68. Doi: 10.1016/S0248-4900(03)00007-8.
  • Ciccarone V, Hawley-Nelson P, Jessee J. Cationic liposome-mediated transfection: Effect of serum on expression and efficiency. Focus, 1993; 15 (3): 80-3.
  • Balbino TA, Azzoni AR, de La Torre LG. Microfluidic devices for continuous production of pDNA/cationic liposome complexes for gene delivery and vaccine therapy. Colloids Surf B Biointerfaces, 2013; 111: 203-210. Doi: 10.1016/j.colsurfb.2013.04.003.
  • Fillion P, Desjardins A, Sayasith K, Lagace J. Encapsulation of DNA in negatively charged liposomes and inhibition of bacterial gene expression with fluid liposome-encapsulated antisense oligonucleotides. Biochim Biophys Acta, 2001; 1515: 44-54. Doi: 10.1016/S0005- 2736(01)00392-3.
  • Perrie Y, Gregoriadis G. Liposome-entrapped plasmid DNA: Characterization studies. Biochim Biophys Acta, 2000; 1475: 125-32. Doi: 10.1016/ S0304-4165(00)00055-6.
  • Attar A, Ogan A, Yucel S, Turan K. The potential of archaeosomes as carriers of pDNA into mammalian cells. Artif Cells Nanomed Biotechnol, 2016; 44: 710-6. Doi: 10.3109/21691401.2014.982800.
  • Ozgen M, Attar A, Elalmis Y, Birbir M, Yucel S. Enzymatic activity of a novel halotolerant lipase from Haloarcula hispanica 2TK2. Pol J Chem Tech, 2016; 18: 20-25. Doi: 10.1515/pjct-2016- 0024.
  • Benvegnu T, Rethore G, Brard M, Richter W, Plusquellec D. Archaeosomes based on novel synthetic tetraether-type lipids for the development of oral delivery systems. Chem Commun, 2005; 44: 5536-8. Doi: 10.1039/ B511440C.
  • Brard M, Laine C, Rethore, G, Laurent I, Neveu C, Lemiegre L, et al. Synthesis of archaeal bipolar lipid analogues: a way to versatile drug/ gene delivery systems. J Org Chem, 2007; 72: 8267-79. Doi: 10.1021/jo071181r.
  • Moghimipour E, Kargar M, Ramezani Z, Handali S. The potent in vitro skin permeation of archaeosome made from lipids extracted of sulfolobus acidocaldarius. Archaea, 2013; Article ID 782012, 7 pages. Doi: 10.1155/2013/782012.
  • Omri A, Agnew BJ, Patel GB. Short-term repeated-dose toxicity profile of archaeosomes administered to mice via intravenous and oral routes. Int J Toxicol, 2003; 22: 9-23. Doi: 10.1080/10915810305080.
  • Krishnan L, Dicaire CJ, Patel GB, Sprott GD. Archaeosome vaccine adjuvants induce strong humoral, cell-mediated, and memory responses: comparison to conventional liposomes and alum. Infect Immun, 2000; 68: 54-63. Doi: 10.1128/ IAI.68.1.54-63.2000.
  • Mumper RJ, Duguid JG, Anwer K, Barron MK, Nitta H, Rolland AP. Polyvinyl derivatives as novel interactive polymers for controlled gene delivery to muscle. Pharm Res, 1996; 13: 701-9. Doi: 10.1023/A:1016039330870.
  • Corsi K, Chellat F, Yahia L, Fernandes JC. Mesenchymal stem cells, MG63 and HEK293 transfection using chitosan-DNA nanoparticles. Biomaterials, 2003; 24: 1255-64. Doi: 10.1016/ S0142-9612(02)00507-0.
  • Singh M, Ariatti M. A cationic cytofectin with long spacer mediates favourable transfection in transformed human epithelial cells. Int J Pharm, 2006; 309: 189-98. Doi: 10.1016/j. ijpharm.2005.11.023.
  • Mansouri S, Lavigne P, Corsi K, Benderdour M, Beaumont E, Fernandes JC. Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: Strategies to improve transfection efficacy. Eur J Pharm Biopharm, 2004; 57: 1-8. Doi: 10.1016/S0939-6411(03)00155-3. Li Z,
  • Chen J, Sun W, Xu Y. Investigation of archaeosomes as carriers for oral delivery of peptides. Biochem Bioph Res Co, 2010; 394: 412- 7. Doi: 10.1016/j.bbrc.2010.03.041.
  • Danis O, Ogan A, Tatlican P, Attar A, Cakmakci E, Mertoglu B, et al. Preparation of poly(3- hydroxybutyrate-co-hydroxyvalerate) films from halophilic archaea and their potential use in drug delivery. Extremophiles, 2015; 19 (2), 515- 24. Doi: 10.1007/s00792-015-0735-4.
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Azade Attar Bu kişi benim

Yayımlanma Tarihi 1 Mart 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 74 Sayı: 1

Kaynak Göster

APA Attar, A. (2017). Gen terapi yöntemleri: Fiziksel ve kimyasal metodlar. Türk Hijyen Ve Deneysel Biyoloji Dergisi, 74(1), 103-112.
AMA Attar A. Gen terapi yöntemleri: Fiziksel ve kimyasal metodlar. Turk Hij Den Biyol Derg. Mart 2017;74(1):103-112.
Chicago Attar, Azade. “Gen Terapi yöntemleri: Fiziksel Ve Kimyasal Metodlar”. Türk Hijyen Ve Deneysel Biyoloji Dergisi 74, sy. 1 (Mart 2017): 103-12.
EndNote Attar A (01 Mart 2017) Gen terapi yöntemleri: Fiziksel ve kimyasal metodlar. Türk Hijyen ve Deneysel Biyoloji Dergisi 74 1 103–112.
IEEE A. Attar, “Gen terapi yöntemleri: Fiziksel ve kimyasal metodlar”, Turk Hij Den Biyol Derg, c. 74, sy. 1, ss. 103–112, 2017.
ISNAD Attar, Azade. “Gen Terapi yöntemleri: Fiziksel Ve Kimyasal Metodlar”. Türk Hijyen ve Deneysel Biyoloji Dergisi 74/1 (Mart 2017), 103-112.
JAMA Attar A. Gen terapi yöntemleri: Fiziksel ve kimyasal metodlar. Turk Hij Den Biyol Derg. 2017;74:103–112.
MLA Attar, Azade. “Gen Terapi yöntemleri: Fiziksel Ve Kimyasal Metodlar”. Türk Hijyen Ve Deneysel Biyoloji Dergisi, c. 74, sy. 1, 2017, ss. 103-12.
Vancouver Attar A. Gen terapi yöntemleri: Fiziksel ve kimyasal metodlar. Turk Hij Den Biyol Derg. 2017;74(1):103-12.