BibTex RIS Kaynak Göster

Besin kaynaklı hastalıklarda intestinal mikrobiyotanın önemi

Yıl 2020, Cilt: 77 Sayı: 4, 497 - 508, 01.12.2020

Öz

Gıda kaynaklı patojenlerin neden olduğu hastalıklar her yıl milyonlarca kişiyi etkileyen ve özellikle çocuk ölümlerine neden olan önemli bir sağlık sorunudur. Gıdaların üretimi, hazırlığı, pişirilmesi ve tüketimi esnasında yapılan yanlış uygulamalar ve meydana gelen patojen kontaminasyonu gıda kaynaklı patojenlerin neden olduğu hastalıklara yol açmaktadır. Gıda kaynaklı birçok patojen vardır fakat bu hastalıkların çoğu bakteriyel kaynaklıdır. İnsan gastrointestinal sistem mikrobiyotası da trilyonlarca bakteri ile kolonize olmasına rağmen bu bakteriler konak ile simbiyotik bir ilişki içerisindedir. Vücutta ek bir organ olarak düşünülecek kadar fonksiyona sahip olan bağırsak mikrobiyotası, gastrointestinal sisteme alınan patojen bakterilerin çoğalmasının ve enfeksiyona neden olmasının önlenmesi için sahip olduğu kolonizasyon direnci mekanizmaları ile konak savunmasına katkıda bulunur. Sağlıklı bağırsak mikrobiyotası patojen bakteriler ile antibakteriyel bileşikler ve inhibitör metabolitler üreterek ve temasa bağlı öldürme yoluyla patojen virülansına müdahale ederek fiziksel alan, eser elementler, vitaminler, karbon kaynakları gibi gıda kaynakları ve metabolitler için yarışa girerek doğrudan mücadele etmektedir. Ayrıca hem bağırsak epitel bariyerini hem de ilişkili immün doku fonksiyonlarını koruyarak konağın bağırsak epitel hücre fonksiyonunun düzenlenmesi, doğuştan gelen bağışıklığın uyarılması ve kazanılmış bağışıklık yanıtlarını, B hücrelerini, T hücrelerini ve doğrudan antijen sunumunu modüle ederek de dolaylı yoldan mücadele etmekte ve böylece patojenlerin bağırsak yüzeylerine bağlanmasını ve çoğalarak enfeksiyon oluşturmasını önlemektedir. Bağırsak mikrobiyotası başta diyet ve antibiyotik kullanımı olmak üzere birçok faktörden etkilenmektedir. Sağlıklı bağırsak mikrobiyotasının bozulması ise kolonizasyon direncinde azalmaya ve bununla beraber patojenlere karşı duyarlılıkta artışa neden olmaktadır. Bu nedenle gıda kaynaklı patojenlerin neden olduğu hastalıklarda bağırsak mikrobiyotası oldukça önemlidir

Kaynakça

  • Ahmer BMM, Gunn JS. Interaction of Salmonella spp. with the intestinal microbiota. Front Microbiol, 2011; 2: 101.
  • Kim S, Covington A, Pamer EG. The intestinal microbiota: antibiotics, colonization resistance, and enteric pathogens. Immunol Rev, 2017; 279 (1): 90-105.
  • Pickard JM, Zeng MY, Caruso R, Nunez G. Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev, 2017; 279 (1):70-89.
  • Sassone-Corsi M, Raffatellu M. No vacancy: how beneficial microbes cooperate with immunity to provide colonization resistance to pathogens. J Immunol, 2015; 194 (9):4081-87.
  • Mukherjee S, Hooper LV. Antimicrobial Defense of the Intestine. Immunity, 2015; 42(1): 28-39.
  • Josephs-Spaulding J, Beeler E, Singh OV. Human microbiome versus food-borne pathogens: friend or foe. Appl Microbiol Biotechnol, ;100 (11): 4845-3.
  • Ünüvar S. Microbial foodborne diseases. In: Holban AM, Grumezescu AM, eds. Foodborne Diseases.1st ed. Massachusetts: Academic Press Elsevier, 2018:1-31.
  • Kalyoussef S, Feja KN. Foodborne illnesses. Adv Pediatr, 2014; 61 (1): 287-312.
  • Bhaskar SV. Foodborne diseases - disease burden. In: Gupta RK, Dudeja, Singh M, eds. Food Safety in the 21st Century.1st ed. Massachusetts: Academic Press Elsevier, 2017: 1-10.
  • Özdemir A, Dikmen D. Gıda savunmasında yeni yaklaşımlar: risk yönetim metodolojileri. Turk Hij Den Biyol Derg, 2018; 75(1): 93-100.
  • WHO, Food Safety. World Health Organization. https://www.who.int/news-room/fact-sheets/ detail/food-safety, (Erişim tarihi: 22.01.2019.).
  • Dodd CE, Aldsworth TG, Stein RA. Foodborne iseases. 3rd ed. Massachusetts: Academic Press Elsevier, 2017.
  • Sharif MK, Javed K, Nasir A. Foodborne illness: threats and control. In: Holban AM, Grumezescu AM, eds. Foodborne Diseases. 1st ed. Massachusetts: Academic Press Elsevier, 2018: 501-523.
  • Libertucci J, Young VB. The role of the microbiota in infectious diseases. Nat Microbiol, 2019; 4(1): 35-45.
  • Bevins CL, Salzman NH. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol, 2011; 9 (5): 356-368.
  • Stecher B, Hardt W-D. Mechanisms controlling pathogen colonization of the gut. Curr Opin Microbiol, 2011; 14 (1): 82-91.
  • Nardi R, Silva M, Vieira E, Bambirra E, Nicoli J. Intragastric infection of germfree and conventional mice with Salmonella typhimurium. Braz J Med Biol Res, 1989; 22 (11): 1389-92.
  • Zachar Z, Savage DC. Microbial interference and colonization of the murine gastrointestinal tract by Listeria monocytogenes. Infect Immun, 1979; 23(1):168-174.
  • Sprinz H, Kundel DW, Dammin GJ, Horowitz RE, Schneider H, Formal SB. The response of the germfree guinea pig to oral bacterial challenge with Escherichia coli and Shigella flexneri. Am J Pathol, 1961; 39: 681-695.
  • Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe, ;17(5): 690-703.
  • Moles L, Gomez M, Heilig H, Bustos G, Fuentes S, de Vos W, et al. Bacterial diversity in meconium of preterm neonates and evolution of their fecal microbiota during the first month of life. PLoS One, 2013; 8(6): e66986.
  • Biedermann L, Rogler G. The intestinal microbiota: its role in health and disease. Eur J Pediatr, 2015; 174(2):151-167.
  • Peng M, Biswas D. Short chain and polyunsaturated fatty acids in host gut health and foodborne bacterial pathogen inhibition. Crit Rev in Food Sci and Nutr, 2017; 57(18): 3987-4002.
  • Becattini S, Taur Y, Pamer EG. Antibiotic induced changes in the intestinal microbiota and disease. Trends Mol Med, 2016; 22(6): 458- 78.
  • Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Reddy DN. Role of the normal gut microbiota. Word J Gastroenterol, ; 21(29): 8787-8803.
  • Shin NR, Whon TW, Bae JW. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol, 2015; 33(9): 496-503.
  • Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Eng J Med, 2016; 375 (24): 2369-79.
  • Becattini S, Pamer EG. Multifaceted defense against Listeria monocytogenes in the gastro intestinal lumen. Pathogens, 2018; 7(1):13.
  • Lustri BC, Sperandio V, Moreira CG. Bacterial chat: intestinal metabolites and signals in host-microbiota-pathogen interactions. Am Soc Microbiol, 2017; 85(12): 14.
  • Bhunia AK. Foodborne microbial pathogens: mechanisms and pathogenesis. New York: Springer, 2018. 31.Ramanan D, Cadwell K. Intrinsic defense mechanisms of the intestinal epithelium. Cell Host Microbe, 2016; 19(4): 434-41.
  • .Jacobson A, Lam L, Rajendram M, Tamburini F, Honeycutt J, Pham T, et al. A Gut commensal produced metabolite mediates colonization resistance to salmonella infection. Cell Host Microbe, 2018; 24(2): 296-307.
  • Rangan KJ, Hang HC. Biochemical mechanisms of pathogen restriction by intestinal bacteria. Trends Biochem Sci, 2017; 42(11): 887-98.
  • Deriu E, Liu JZ, Pezeshki M, Edwards RA, Ochoa RJ, Contreras H, et al. Probiotic bacteria reduce Salmonella typhimurium intestinal colonization by competing for iron. Cell Host Microbe, 2013; 14(1): 26-37.
  • Maltby R, Leatham-Jensen MP, Gibson T, Cohen PS, Conway T. Nutritional basis for colonization resistance by human commensal Escherichia coli strains HS and Nissle 1917 against E. coli O157: H7 in the mouse intestine. PLoS One, 2013; 8(1): e53957.
  • Pickard JM, Zeng MY, Caruso R, Nşñez G. Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev, 2017; 279(1): 70-89.
  • Ubeda C, Djukovic A, Isaac S. Roles of the intestinal microbiota in pathogen protection. Clin Transl Immunology, 2017; 6(2):e128.
  • Kommineni S, Bretl DJ, Lam V, Chakraborty R, Hayward M, Simpson P, et al. Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract. Nature, 2015; 526: 719-22.
  • Abt MC, Pamer EG. Commensal bacteria mediated defenses against pathogens. Curr Opin Immunol, 2014; 29:16-22.
  • Sassone-Corsi M, Nuccio SP, Liu H, Hernandez D, Vu CT, Takahashi AA, et al. Microcins mediate competition among Enterobacteriaceae in the inflamed gut. Nature, 2016; 540 (7632):280.
  • Rolhion N, Chassaing B. When pathogenic bacteria meet the intestinal microbiota. Philos Trans R Soc Lond B Biol Sci, 2016.
  • .Sorbara MT, Pamer EG. Interbacterial mechanisms of colonization resistance and the strategies pathogens use to overcome them. Mucosal Immunology, 2019; 12(1):1-9.
  • Rivera-Chávez F, Zhang LF, Faber F, Lopez CA, Byndloss MX, Olsan EE, et al. Depletion of butyrate-producing clostridia from the gut microbiota drives an aerobic luminal expansion of salmonella. Cell Host Microbe, 2016; 19(4): 443-54.
  • Bolton DJ. Campylobacter virulence and survival factors. Food Microbiol, 2015; 48: 99-108.
  • Kampmann C, Dicksved J, Engstrand L, Rautelin H. Composition of human faecal microbiota in resistance to Campylobacter infection.Clin Microbiol Infect, 2016; 22(1):61.
  • Sperandio V, Nguyen Y, Enterohemorrhagic E. coli (EHEC) pathogenesis. Front Cell Infect Microbiol, 2012; 2 (90).
  • Archambaud C, Nahori MA, Soubigou G, Bécavin C, Laval L, Lechat P, et al. Impact of lactobacilli on orally acquired listeriosis. Proc Natl Acad Sci USA, 2012; 109 (41): 16684-9.
  • Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature, 2011; 469 (7331):543.
  • Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell, 2016; 167(5):1339-53.
  • Wang S, A Thacker P, Watford M, Qiao S. Functions of antimicrobial peptides in gut homeostasis. Curr Protein Pept Sci, 2015;16(7): 582-91.
  • Byndloss MX, Olsan EE, Rivera-Chávez F, Tiffany CR, Cevallos SA, Lokken KL, et al. Microbiota activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae ;357 (6351): 570-5.
  • Science, 52.Kim M, Qie Y, Park J, Kim CH. Gut microbial metabolites fuel host antibody responses. Cell Host Microbe, 2016; 20(2): 202-214.
  • Zeng MY, Cisalpino D, Varadarajan S, Hellman J, Warren HS, Cascalho M, et al. Gut microbiota induced immuno globulin g controls systemic infection by symbiotic bacteria and pathogens. Immunity, 2016; 44(3): 647-58.
  • .O’Toole PW, Jeffery IB. Gut microbiota and aging. Science, 2015; 350 (6265):1214-15.
  • Conlon M, Bird A. The impact of diet and lifestyle on gut microbiota and human health. Nutrients, 2015;7(1): 17-44.
  • Haro C, Rangel-Zşñiga OA, Alcalá-Díaz JF, Gómez-Delgado F, Pérez-Martínez P, Delgado Lista J, et al. Intestinal microbiota is influenced by gender and body mass index. PLoS One, ;11(5): e0154090.
  • Erdinc AS, Aksoy EK, Sapmaz FP, Dikmen D. The effect of low-fodmap diet on the quality of life of patients with constipation-predominant irritable bowel syndrome. Clin Nutr, 2018; 37:S107.
  • Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med, 2009;1(6).
  • Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL. Diet-induced extinctions in the gut microbiota compound over generations. Nature, 2016; 529 (7585): 212.
  • Modi SR, Collins JJ, Relman DA. Antibiotics and the gut microbiota. J Clin Invest, 2014; 124 (10): 4212-18.

Importance of intestinal microbiota in foodborne diseases

Yıl 2020, Cilt: 77 Sayı: 4, 497 - 508, 01.12.2020

Öz

Foodborne diseases are an important health problem that affect millions of people every year and especially lead to children mortality. Malpractices did during the production, preparation, cooking, and consumption of foods and the occurrence of pathogen contamination lead to diseases caused foodborne disease. There are many foodborne pathogens, but most of these diseases occur from bacterial sources. Although the microbiota of the human gastrointestinal system is colonized by trillions of bacteria, these bacteria are in a symbiotic relationship with the host. The intestinal microbiota with enough function to be considered as an additional organ in the body contributes to host defense with the mechanisms of colonization resistance, to prevent the colonization of pathogenic bacteria enter to the gastrointestinal system and prevent to develop infection by pathogenic bacteria. The healthy intestinal microbiota fights directly against pathogen bacteria by producing antibacterial compounds and inhibitory metabolites and by contact-dependent killing; by interfering with pathogen virulence; entering the race for the physical area, food sources and metabolites such as trace elements, vitamins, carbon sources. In addition, regulation of the intestinal epithelial cell bariyerini hem de ilişkili immün doku fonksiyonlarını koruyarak konağın bağırsak epitel hücre fonksiyonunun düzenlenmesi, doğuştan gelen bağışıklığın uyarılması ve kazanılmış bağışıklık yanıtlarını, B hücrelerini, T hücrelerini ve doğrudan antijen sunumunu modüle ederek de dolaylı yoldan mücadele etmekte ve böylece patojenlerin bağırsak yüzeylerine bağlanmasını ve çoğalarak enfeksiyon oluşturmasını önlemektedir. Bağırsak mikrobiyotası başta diyet ve antibiyotik kullanımı olmak üzere birçok faktörden etkilenmektedir. Sağlıklı bağırsak mikrobiyotasının bozulması ise kolonizasyon direncinde azalmaya ve bununla beraber patojenlere karşı duyarlılıkta artışa neden olmaktadır. Bu nedenle gıda kaynaklı patojenlerin neden olduğu hastalıklarda bağırsak mikrobiyotası oldukça önemlidir

Kaynakça

  • Ahmer BMM, Gunn JS. Interaction of Salmonella spp. with the intestinal microbiota. Front Microbiol, 2011; 2: 101.
  • Kim S, Covington A, Pamer EG. The intestinal microbiota: antibiotics, colonization resistance, and enteric pathogens. Immunol Rev, 2017; 279 (1): 90-105.
  • Pickard JM, Zeng MY, Caruso R, Nunez G. Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev, 2017; 279 (1):70-89.
  • Sassone-Corsi M, Raffatellu M. No vacancy: how beneficial microbes cooperate with immunity to provide colonization resistance to pathogens. J Immunol, 2015; 194 (9):4081-87.
  • Mukherjee S, Hooper LV. Antimicrobial Defense of the Intestine. Immunity, 2015; 42(1): 28-39.
  • Josephs-Spaulding J, Beeler E, Singh OV. Human microbiome versus food-borne pathogens: friend or foe. Appl Microbiol Biotechnol, ;100 (11): 4845-3.
  • Ünüvar S. Microbial foodborne diseases. In: Holban AM, Grumezescu AM, eds. Foodborne Diseases.1st ed. Massachusetts: Academic Press Elsevier, 2018:1-31.
  • Kalyoussef S, Feja KN. Foodborne illnesses. Adv Pediatr, 2014; 61 (1): 287-312.
  • Bhaskar SV. Foodborne diseases - disease burden. In: Gupta RK, Dudeja, Singh M, eds. Food Safety in the 21st Century.1st ed. Massachusetts: Academic Press Elsevier, 2017: 1-10.
  • Özdemir A, Dikmen D. Gıda savunmasında yeni yaklaşımlar: risk yönetim metodolojileri. Turk Hij Den Biyol Derg, 2018; 75(1): 93-100.
  • WHO, Food Safety. World Health Organization. https://www.who.int/news-room/fact-sheets/ detail/food-safety, (Erişim tarihi: 22.01.2019.).
  • Dodd CE, Aldsworth TG, Stein RA. Foodborne iseases. 3rd ed. Massachusetts: Academic Press Elsevier, 2017.
  • Sharif MK, Javed K, Nasir A. Foodborne illness: threats and control. In: Holban AM, Grumezescu AM, eds. Foodborne Diseases. 1st ed. Massachusetts: Academic Press Elsevier, 2018: 501-523.
  • Libertucci J, Young VB. The role of the microbiota in infectious diseases. Nat Microbiol, 2019; 4(1): 35-45.
  • Bevins CL, Salzman NH. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol, 2011; 9 (5): 356-368.
  • Stecher B, Hardt W-D. Mechanisms controlling pathogen colonization of the gut. Curr Opin Microbiol, 2011; 14 (1): 82-91.
  • Nardi R, Silva M, Vieira E, Bambirra E, Nicoli J. Intragastric infection of germfree and conventional mice with Salmonella typhimurium. Braz J Med Biol Res, 1989; 22 (11): 1389-92.
  • Zachar Z, Savage DC. Microbial interference and colonization of the murine gastrointestinal tract by Listeria monocytogenes. Infect Immun, 1979; 23(1):168-174.
  • Sprinz H, Kundel DW, Dammin GJ, Horowitz RE, Schneider H, Formal SB. The response of the germfree guinea pig to oral bacterial challenge with Escherichia coli and Shigella flexneri. Am J Pathol, 1961; 39: 681-695.
  • Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe, ;17(5): 690-703.
  • Moles L, Gomez M, Heilig H, Bustos G, Fuentes S, de Vos W, et al. Bacterial diversity in meconium of preterm neonates and evolution of their fecal microbiota during the first month of life. PLoS One, 2013; 8(6): e66986.
  • Biedermann L, Rogler G. The intestinal microbiota: its role in health and disease. Eur J Pediatr, 2015; 174(2):151-167.
  • Peng M, Biswas D. Short chain and polyunsaturated fatty acids in host gut health and foodborne bacterial pathogen inhibition. Crit Rev in Food Sci and Nutr, 2017; 57(18): 3987-4002.
  • Becattini S, Taur Y, Pamer EG. Antibiotic induced changes in the intestinal microbiota and disease. Trends Mol Med, 2016; 22(6): 458- 78.
  • Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Reddy DN. Role of the normal gut microbiota. Word J Gastroenterol, ; 21(29): 8787-8803.
  • Shin NR, Whon TW, Bae JW. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol, 2015; 33(9): 496-503.
  • Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Eng J Med, 2016; 375 (24): 2369-79.
  • Becattini S, Pamer EG. Multifaceted defense against Listeria monocytogenes in the gastro intestinal lumen. Pathogens, 2018; 7(1):13.
  • Lustri BC, Sperandio V, Moreira CG. Bacterial chat: intestinal metabolites and signals in host-microbiota-pathogen interactions. Am Soc Microbiol, 2017; 85(12): 14.
  • Bhunia AK. Foodborne microbial pathogens: mechanisms and pathogenesis. New York: Springer, 2018. 31.Ramanan D, Cadwell K. Intrinsic defense mechanisms of the intestinal epithelium. Cell Host Microbe, 2016; 19(4): 434-41.
  • .Jacobson A, Lam L, Rajendram M, Tamburini F, Honeycutt J, Pham T, et al. A Gut commensal produced metabolite mediates colonization resistance to salmonella infection. Cell Host Microbe, 2018; 24(2): 296-307.
  • Rangan KJ, Hang HC. Biochemical mechanisms of pathogen restriction by intestinal bacteria. Trends Biochem Sci, 2017; 42(11): 887-98.
  • Deriu E, Liu JZ, Pezeshki M, Edwards RA, Ochoa RJ, Contreras H, et al. Probiotic bacteria reduce Salmonella typhimurium intestinal colonization by competing for iron. Cell Host Microbe, 2013; 14(1): 26-37.
  • Maltby R, Leatham-Jensen MP, Gibson T, Cohen PS, Conway T. Nutritional basis for colonization resistance by human commensal Escherichia coli strains HS and Nissle 1917 against E. coli O157: H7 in the mouse intestine. PLoS One, 2013; 8(1): e53957.
  • Pickard JM, Zeng MY, Caruso R, Nşñez G. Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev, 2017; 279(1): 70-89.
  • Ubeda C, Djukovic A, Isaac S. Roles of the intestinal microbiota in pathogen protection. Clin Transl Immunology, 2017; 6(2):e128.
  • Kommineni S, Bretl DJ, Lam V, Chakraborty R, Hayward M, Simpson P, et al. Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract. Nature, 2015; 526: 719-22.
  • Abt MC, Pamer EG. Commensal bacteria mediated defenses against pathogens. Curr Opin Immunol, 2014; 29:16-22.
  • Sassone-Corsi M, Nuccio SP, Liu H, Hernandez D, Vu CT, Takahashi AA, et al. Microcins mediate competition among Enterobacteriaceae in the inflamed gut. Nature, 2016; 540 (7632):280.
  • Rolhion N, Chassaing B. When pathogenic bacteria meet the intestinal microbiota. Philos Trans R Soc Lond B Biol Sci, 2016.
  • .Sorbara MT, Pamer EG. Interbacterial mechanisms of colonization resistance and the strategies pathogens use to overcome them. Mucosal Immunology, 2019; 12(1):1-9.
  • Rivera-Chávez F, Zhang LF, Faber F, Lopez CA, Byndloss MX, Olsan EE, et al. Depletion of butyrate-producing clostridia from the gut microbiota drives an aerobic luminal expansion of salmonella. Cell Host Microbe, 2016; 19(4): 443-54.
  • Bolton DJ. Campylobacter virulence and survival factors. Food Microbiol, 2015; 48: 99-108.
  • Kampmann C, Dicksved J, Engstrand L, Rautelin H. Composition of human faecal microbiota in resistance to Campylobacter infection.Clin Microbiol Infect, 2016; 22(1):61.
  • Sperandio V, Nguyen Y, Enterohemorrhagic E. coli (EHEC) pathogenesis. Front Cell Infect Microbiol, 2012; 2 (90).
  • Archambaud C, Nahori MA, Soubigou G, Bécavin C, Laval L, Lechat P, et al. Impact of lactobacilli on orally acquired listeriosis. Proc Natl Acad Sci USA, 2012; 109 (41): 16684-9.
  • Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature, 2011; 469 (7331):543.
  • Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell, 2016; 167(5):1339-53.
  • Wang S, A Thacker P, Watford M, Qiao S. Functions of antimicrobial peptides in gut homeostasis. Curr Protein Pept Sci, 2015;16(7): 582-91.
  • Byndloss MX, Olsan EE, Rivera-Chávez F, Tiffany CR, Cevallos SA, Lokken KL, et al. Microbiota activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae ;357 (6351): 570-5.
  • Science, 52.Kim M, Qie Y, Park J, Kim CH. Gut microbial metabolites fuel host antibody responses. Cell Host Microbe, 2016; 20(2): 202-214.
  • Zeng MY, Cisalpino D, Varadarajan S, Hellman J, Warren HS, Cascalho M, et al. Gut microbiota induced immuno globulin g controls systemic infection by symbiotic bacteria and pathogens. Immunity, 2016; 44(3): 647-58.
  • .O’Toole PW, Jeffery IB. Gut microbiota and aging. Science, 2015; 350 (6265):1214-15.
  • Conlon M, Bird A. The impact of diet and lifestyle on gut microbiota and human health. Nutrients, 2015;7(1): 17-44.
  • Haro C, Rangel-Zşñiga OA, Alcalá-Díaz JF, Gómez-Delgado F, Pérez-Martínez P, Delgado Lista J, et al. Intestinal microbiota is influenced by gender and body mass index. PLoS One, ;11(5): e0154090.
  • Erdinc AS, Aksoy EK, Sapmaz FP, Dikmen D. The effect of low-fodmap diet on the quality of life of patients with constipation-predominant irritable bowel syndrome. Clin Nutr, 2018; 37:S107.
  • Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med, 2009;1(6).
  • Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL. Diet-induced extinctions in the gut microbiota compound over generations. Nature, 2016; 529 (7585): 212.
  • Modi SR, Collins JJ, Relman DA. Antibiotics and the gut microbiota. J Clin Invest, 2014; 124 (10): 4212-18.
Toplam 59 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Derleme
Yazarlar

Lütfiye Parlak Bu kişi benim

Derya Dikmen Bu kişi benim

Yayımlanma Tarihi 1 Aralık 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 77 Sayı: 4

Kaynak Göster

APA Parlak, L., & Dikmen, D. (2020). Besin kaynaklı hastalıklarda intestinal mikrobiyotanın önemi. Türk Hijyen Ve Deneysel Biyoloji Dergisi, 77(4), 497-508.
AMA Parlak L, Dikmen D. Besin kaynaklı hastalıklarda intestinal mikrobiyotanın önemi. Turk Hij Den Biyol Derg. Aralık 2020;77(4):497-508.
Chicago Parlak, Lütfiye, ve Derya Dikmen. “Besin Kaynaklı hastalıklarda Intestinal mikrobiyotanın önemi”. Türk Hijyen Ve Deneysel Biyoloji Dergisi 77, sy. 4 (Aralık 2020): 497-508.
EndNote Parlak L, Dikmen D (01 Aralık 2020) Besin kaynaklı hastalıklarda intestinal mikrobiyotanın önemi. Türk Hijyen ve Deneysel Biyoloji Dergisi 77 4 497–508.
IEEE L. Parlak ve D. Dikmen, “Besin kaynaklı hastalıklarda intestinal mikrobiyotanın önemi”, Turk Hij Den Biyol Derg, c. 77, sy. 4, ss. 497–508, 2020.
ISNAD Parlak, Lütfiye - Dikmen, Derya. “Besin Kaynaklı hastalıklarda Intestinal mikrobiyotanın önemi”. Türk Hijyen ve Deneysel Biyoloji Dergisi 77/4 (Aralık 2020), 497-508.
JAMA Parlak L, Dikmen D. Besin kaynaklı hastalıklarda intestinal mikrobiyotanın önemi. Turk Hij Den Biyol Derg. 2020;77:497–508.
MLA Parlak, Lütfiye ve Derya Dikmen. “Besin Kaynaklı hastalıklarda Intestinal mikrobiyotanın önemi”. Türk Hijyen Ve Deneysel Biyoloji Dergisi, c. 77, sy. 4, 2020, ss. 497-08.
Vancouver Parlak L, Dikmen D. Besin kaynaklı hastalıklarda intestinal mikrobiyotanın önemi. Turk Hij Den Biyol Derg. 2020;77(4):497-508.