Amaç: Pseudomonas aeruginosa hastane enfeksiyonları ile ilişkili önemli bir patojen olup patojenitesi çoğunlukla quorum sensing QS sistemi ile ilişkilidir. Bu çalışmanın amacı, vajinal Lactobacillus izolatlarının metabolitlerinin anti-QS aktivitelerinin değerlendirilmesi ve metabolitlerin P. aeruginosa PAO1’in QS ilişkili genlerinin transkripsiyonel regülasyonu üzerindeki etkilerinin araştırılmasıdır.Yöntem: Çalışmamızda daha önce 16S rRNA gen dizi analizi ile tanımlanmış olan 13 adet Lactobacillus izolatı kullanılmıştır. Bu izolatların metabolitlerinin, Chromobacterium violaceum CV12472 suşu kullanılarak anti-QS aktiviteleri değerlendirilmiştir. Metabolitlerin QS ile ilişkili genlerin ekspresyonları üzerindeki etkisi kantitatif revers transkriptaz polimeraz zincir reaksiyonu RT-qPZR ile araştırılmıştır. Bulgular: Test edilen tüm metabolitler C. violaceum’un şeffaf zon bölgesi görünümü ile karakterize edilen anti-QS aktivite göstermişlerdir. Metabolitlerle temas sonrasında P. aeruginosa PAO1’de, test edilen tüm quorum sensing ilişkili genler lasI, lasR, rhlR ve mvfR anlamlı bir down-regülasyon göstermişlerdir. Sonuç: Antibakteriyel direncin artması nedeniyle farklı etki mekanizmasına sahip doğal kaynaklardan köken alan, enfeksiyonlara karşı yeni ajanlar gerekmektedir. Çalışmamız, in vitro Pseudomonas biyofilmlerinin kontrolünde Lactobacillus metabolitlerinin olası anti-QS ajanı olarak kullanılabileceklerini vurgulamaktadır
1. Gomez MI, Prince A. Opportunistic infections in
lung disease: Pseudomonas infections in cystic
fibrosis. Curr Opin Pharmacol, 2007; 7(3): 244-51.
doi:10.1016/j.coph.2006.12.005. 2007.
2. Fuqua WC, Winans SC, Greenberg EP. Quorum
Sensing in Bacteria - the Luxr-Luxi Family of Cell
Density-Responsive Transcriptional Regulators. J
Bacteriol, 1994; 176(2): 269-75.
3. Rajkumari J, Borkotoky S, Reddy D, Mohanty SK,
Kumavath R, Murali A, et al. Anti-quorum sensing
and anti-biofilm activity of 5-hydroxymethylfurfural
against Pseudomonas aeruginosa PAO1: Insights
from in vitro, in vivo and in silico studies.
Microbiol Res, 2019; 226: 19-26. doi:10.1016/j.
micres.2019.05.001.
4. Pearson JP, Gray KM, Passador L, Tucker KD,
Eberhard A, Iglewski BH, et al. Structure of
the Autoinducer Required for Expression of
Pseudomonas-Aeruginosa Virulence Genes. P Natl
Acad Sci USA, 1994; 91(1): 197-201. doi: 10.1073/
pnas.91.1.197.
5. Sankar Ganesh P, Ravishankar Rai V. Attenuation
of quorum-sensing-dependent virulence factors
and biofilm formation by medicinal plants against
antibiotic resistant Pseudomonas aeruginosa.
J Tradit Complement Med, 2018; 8(1): 170-7.
doi:10.1016/j.jtcme.2017.05.008.
6. Pearson JP, Passador L, Iglewski BH, Greenberg EP.
A second N-acylhomoserine lactone signal produced
by Pseudomonas aeruginosa. Proc Natl Acad Sci USA,
1995; 92(5): 1490-4. doi:10.1073/pnas.92.5.1490.
7. Pearson JP, Pesci EC, Iglewski BH. Roles of
Pseudomonas aeruginosa las and rhl quorum-sensing
systems in control of elastase and rhamnolipid
biosynthesis genes. J Bacteriol, 1997; 179(18):
5756-67. doi:10.1128/jb.179.18.5756-5767.1997.
8. Sawa T, Ohara M, Kurahashi K, Twining SS, Frank
DW, Doroques DB, et al. In vitro cellular toxicity
predicts Pseudomonas aeruginosa virulence in lung
infections. Infect Immun, 1998; 66(7): 3242-9.
9. Shukla V, Bhathena Z. Broad Spectrum Anti-Quorum
Sensing Activity of Tannin-Rich Crude Extracts of
Indian Medicinal Plants. Scientifica, 2016. doi:582
301310.1155/2016/5823013.
10. Davoodabadi A, Dallal MMS, Lashani E, Ebrahimi MT.
Antimicrobial Activity of Lactobacillus spp. Isolated
From Fecal Flora of Healthy Breast-Fed Infants
Against Diarrheagenic Escherichia coli. Jundishapur
J Microb, 2015; 8(12). doi: e2785210.5812/
jjm.27852.
11. Eryilmaz M, Gurpinar SS, Palabiyik IM, Guriz
H, Gerceker D. Molecular Identification and
Antimicrobial Activity of Vaginal Lactobacillus sp.
Curr Pharm Biotechno, 2018; 19(15): 1241-7. doi:10
.2174/1389201020666190110164123.
12. Eryılmaz M, Kart D, Gürpınar SS. Investigation
of Antibiofilm Activities of Lactobacillus sp.
Metabolites Isolated from Vaginal Flora. Journal of
Turkish Society of Microbiology, 2019; 49(3): 169-
74.
13. Melo TA, dos Santos TF, de Almeida ME, Fontes
LAG, Andrade EF, Rezende RP, et al. Inhibition of
Staphylococcus aureus biofilm by Lactobacillus
isolated from fine cocoa. BMC Microbiol, 2016.
doi:25010.1186/s12866-016-0871-8.
14. Shokri D, Khorasgani MR, Mohkam M, Fatemi SM,
Ghasemi Y, Taheri-Kafrani A. The Inhibition Effect of
Lactobacilli Against Growth and Biofilm Formation
of Pseudomonas aeruginosa. Probiotics Antimicro,
2018; 10(1): 34-42. doi:10.1007/s12602-017-9267-
9.
15. Stoyancheva G, Marzotto M, Dellaglio F, Torriani
S. Bacteriocin production and gene sequencing
analysis from vaginal Lactobacillus strains. Arch
Microbiol, 2014; 196: 645-53.
16. Kart D, Tavernier S, Van Acker H, Nelis HJ, Coenye
T. Activity of disinfectants against multispecies
biofilms formed by Staphylococcus aureus, Candida
albicans and Pseudomonas aeruginosa. Biofouling,
2014; 30(3): 377-83. doi:10.1080/08927014.2013.8
78333.
17. Qu L, She PF, Wang YX, Liu FX, Zhang D, Chen LH,
et al. Effects of norspermidine on Pseudomonas
aeruginosa biofilm formation and eradication.
Microbiologyopen, 2016; 5(3): 402-12. doi:10.1002/
mbo3.338.
18. Livak KJ, Schmittgen TD. Analysis of relative gene
expression data using real-time quantitative PCR and
the 2(T)(-Delta Delta C) method. Methods.,2001;
25(4): 402-8. doi:10.1006/meth.2001.1262.
20. Brackman G, Hillaert U, Van Calenbergh S, Nelis
HJ, Coenye T. Use of quorum sensing inhibitors to
interfere with biofilm formation and development
in Burkholderia multivorans and Burkholderia
cenocepacia. Res Microbiol, 2009; 160(2): 144-51.
doi:10.1016/j.resmic.2008.12.003.
21. Musk DJ, Hergenrother PJ. Chemical
countermeasures for the control of bacterial
biofilms: Effective compounds and promising
targets. Curr Med Chem, 2006; 13(18): 2163-77.
doi:10.2174/092986706777935212.
22. Abraham SVPI, Palani A, Ramaswamy BR,
Shunmugiah KP, Arumugam VR. Antiquorum Sensing
and Antibiofilm Potential of Capparis spinosa.
Arch Med Res, 2011; 42(8): 658-8. doi:10.1016/j.
arcmed.2011.12.002.
23. Khiralla GM, Mohamed EAH, Farag AG, Elhariry H.
Antibiofilm effect of Lactobacillus pentosus and
Lactobacillus plantarum cell-free supernatants
against some bacterial pathogens. J Biotech Res,
2015; 6: 86-95.
24. Ganchev I. Antibiofilm activity of Lactobacillus
strains. Sci J Chem, 2018; 6(5):77-82. doi.
org:10.11648/j.sjc.20180605.11.
25. Hentzer M, Riedel K, Rasmussen TB, Heydorn A,
Andersen JB, Parsek MR et al. Inhibition of quorum
sensing in Pseudomonas aeruginosa biofilm bacteria
by a halogenated furanone compound. MicrobiolSgm, 2002; 148: 87-102. doi:10.1099/00221287-
148-1-87.
26. Soheili V, Tajani AS, Ghodsi R, Bazzaz BSF. AntiPqsR compounds as next-generation antibacterial
agents against Pseudomonas aeruginosa: A review.
Eur J Med Chem, 2019; 172: 26-35. doi:10.1016/j.
ejmech.2019.03.049.
27. Li JP, Yang XY, Shi GC, Chang J, Liu ZY, Zeng MY.
Cooperation of lactic acid bacteria regulated by the
AI-2/LuxS system involve in the biopreservation of
refrigerated shrimp. Food Res Int, 2019; 120:679-
87. doi:10.1016/j.foodres.2018.11.025.
Assessment of the anti-quorum sensing effect of Lactobacillus sp. metabolites on expression levels of QS-related genes in Pseudomonas aeruginosa PAO1
Objective: Pseudomonas aeruginosa is an important pathogen associated with nosocomial infections and its pathogenicity is mostly linked with the quorum sensing QS system. The aim of this study was to evaluate the anti-QS activity of the metabolites of vaginal Lactobacillus isolates and to investigate the effect of these metabolites on transcriptional regulation of QS related genes in P. aeruginosa PAO1.Methods: In this study, 13 Lactobacillus isolates that were previously identified by 16S rRNA gene sequence analysis were used. Metabolites of these isolates were assessed for the anti-QS activity by using Chromobacterium violaceum CV12472. The influence of metabolites on the expression of QS related genes was also examined by reverse transcription-quantitative polymerase chain reaction RT-qPCR .Results: All tested metabolites exhibited anti-QS activity with the appearance of a non-pigmented zone of C. violaceum. All tested quorum sensing-related genes lasI, lasR, rhlR and mvfR in P. aeruginosa PAO1 showed significant down-regulation after treating with the metabolites Conclusion: New anti-infection agents from natural resources with a different mode of action are necessary due to the increasing occurrence of antibacterial resistance. Our study highlights the possible usage of Lactobacillus metabolites as an anti-QS agent against P. aeruginosa biofilm cells in vitro.
1. Gomez MI, Prince A. Opportunistic infections in
lung disease: Pseudomonas infections in cystic
fibrosis. Curr Opin Pharmacol, 2007; 7(3): 244-51.
doi:10.1016/j.coph.2006.12.005. 2007.
2. Fuqua WC, Winans SC, Greenberg EP. Quorum
Sensing in Bacteria - the Luxr-Luxi Family of Cell
Density-Responsive Transcriptional Regulators. J
Bacteriol, 1994; 176(2): 269-75.
3. Rajkumari J, Borkotoky S, Reddy D, Mohanty SK,
Kumavath R, Murali A, et al. Anti-quorum sensing
and anti-biofilm activity of 5-hydroxymethylfurfural
against Pseudomonas aeruginosa PAO1: Insights
from in vitro, in vivo and in silico studies.
Microbiol Res, 2019; 226: 19-26. doi:10.1016/j.
micres.2019.05.001.
4. Pearson JP, Gray KM, Passador L, Tucker KD,
Eberhard A, Iglewski BH, et al. Structure of
the Autoinducer Required for Expression of
Pseudomonas-Aeruginosa Virulence Genes. P Natl
Acad Sci USA, 1994; 91(1): 197-201. doi: 10.1073/
pnas.91.1.197.
5. Sankar Ganesh P, Ravishankar Rai V. Attenuation
of quorum-sensing-dependent virulence factors
and biofilm formation by medicinal plants against
antibiotic resistant Pseudomonas aeruginosa.
J Tradit Complement Med, 2018; 8(1): 170-7.
doi:10.1016/j.jtcme.2017.05.008.
6. Pearson JP, Passador L, Iglewski BH, Greenberg EP.
A second N-acylhomoserine lactone signal produced
by Pseudomonas aeruginosa. Proc Natl Acad Sci USA,
1995; 92(5): 1490-4. doi:10.1073/pnas.92.5.1490.
7. Pearson JP, Pesci EC, Iglewski BH. Roles of
Pseudomonas aeruginosa las and rhl quorum-sensing
systems in control of elastase and rhamnolipid
biosynthesis genes. J Bacteriol, 1997; 179(18):
5756-67. doi:10.1128/jb.179.18.5756-5767.1997.
8. Sawa T, Ohara M, Kurahashi K, Twining SS, Frank
DW, Doroques DB, et al. In vitro cellular toxicity
predicts Pseudomonas aeruginosa virulence in lung
infections. Infect Immun, 1998; 66(7): 3242-9.
9. Shukla V, Bhathena Z. Broad Spectrum Anti-Quorum
Sensing Activity of Tannin-Rich Crude Extracts of
Indian Medicinal Plants. Scientifica, 2016. doi:582
301310.1155/2016/5823013.
10. Davoodabadi A, Dallal MMS, Lashani E, Ebrahimi MT.
Antimicrobial Activity of Lactobacillus spp. Isolated
From Fecal Flora of Healthy Breast-Fed Infants
Against Diarrheagenic Escherichia coli. Jundishapur
J Microb, 2015; 8(12). doi: e2785210.5812/
jjm.27852.
11. Eryilmaz M, Gurpinar SS, Palabiyik IM, Guriz
H, Gerceker D. Molecular Identification and
Antimicrobial Activity of Vaginal Lactobacillus sp.
Curr Pharm Biotechno, 2018; 19(15): 1241-7. doi:10
.2174/1389201020666190110164123.
12. Eryılmaz M, Kart D, Gürpınar SS. Investigation
of Antibiofilm Activities of Lactobacillus sp.
Metabolites Isolated from Vaginal Flora. Journal of
Turkish Society of Microbiology, 2019; 49(3): 169-
74.
13. Melo TA, dos Santos TF, de Almeida ME, Fontes
LAG, Andrade EF, Rezende RP, et al. Inhibition of
Staphylococcus aureus biofilm by Lactobacillus
isolated from fine cocoa. BMC Microbiol, 2016.
doi:25010.1186/s12866-016-0871-8.
14. Shokri D, Khorasgani MR, Mohkam M, Fatemi SM,
Ghasemi Y, Taheri-Kafrani A. The Inhibition Effect of
Lactobacilli Against Growth and Biofilm Formation
of Pseudomonas aeruginosa. Probiotics Antimicro,
2018; 10(1): 34-42. doi:10.1007/s12602-017-9267-
9.
15. Stoyancheva G, Marzotto M, Dellaglio F, Torriani
S. Bacteriocin production and gene sequencing
analysis from vaginal Lactobacillus strains. Arch
Microbiol, 2014; 196: 645-53.
16. Kart D, Tavernier S, Van Acker H, Nelis HJ, Coenye
T. Activity of disinfectants against multispecies
biofilms formed by Staphylococcus aureus, Candida
albicans and Pseudomonas aeruginosa. Biofouling,
2014; 30(3): 377-83. doi:10.1080/08927014.2013.8
78333.
17. Qu L, She PF, Wang YX, Liu FX, Zhang D, Chen LH,
et al. Effects of norspermidine on Pseudomonas
aeruginosa biofilm formation and eradication.
Microbiologyopen, 2016; 5(3): 402-12. doi:10.1002/
mbo3.338.
18. Livak KJ, Schmittgen TD. Analysis of relative gene
expression data using real-time quantitative PCR and
the 2(T)(-Delta Delta C) method. Methods.,2001;
25(4): 402-8. doi:10.1006/meth.2001.1262.
20. Brackman G, Hillaert U, Van Calenbergh S, Nelis
HJ, Coenye T. Use of quorum sensing inhibitors to
interfere with biofilm formation and development
in Burkholderia multivorans and Burkholderia
cenocepacia. Res Microbiol, 2009; 160(2): 144-51.
doi:10.1016/j.resmic.2008.12.003.
21. Musk DJ, Hergenrother PJ. Chemical
countermeasures for the control of bacterial
biofilms: Effective compounds and promising
targets. Curr Med Chem, 2006; 13(18): 2163-77.
doi:10.2174/092986706777935212.
22. Abraham SVPI, Palani A, Ramaswamy BR,
Shunmugiah KP, Arumugam VR. Antiquorum Sensing
and Antibiofilm Potential of Capparis spinosa.
Arch Med Res, 2011; 42(8): 658-8. doi:10.1016/j.
arcmed.2011.12.002.
23. Khiralla GM, Mohamed EAH, Farag AG, Elhariry H.
Antibiofilm effect of Lactobacillus pentosus and
Lactobacillus plantarum cell-free supernatants
against some bacterial pathogens. J Biotech Res,
2015; 6: 86-95.
24. Ganchev I. Antibiofilm activity of Lactobacillus
strains. Sci J Chem, 2018; 6(5):77-82. doi.
org:10.11648/j.sjc.20180605.11.
25. Hentzer M, Riedel K, Rasmussen TB, Heydorn A,
Andersen JB, Parsek MR et al. Inhibition of quorum
sensing in Pseudomonas aeruginosa biofilm bacteria
by a halogenated furanone compound. MicrobiolSgm, 2002; 148: 87-102. doi:10.1099/00221287-
148-1-87.
26. Soheili V, Tajani AS, Ghodsi R, Bazzaz BSF. AntiPqsR compounds as next-generation antibacterial
agents against Pseudomonas aeruginosa: A review.
Eur J Med Chem, 2019; 172: 26-35. doi:10.1016/j.
ejmech.2019.03.049.
27. Li JP, Yang XY, Shi GC, Chang J, Liu ZY, Zeng MY.
Cooperation of lactic acid bacteria regulated by the
AI-2/LuxS system involve in the biopreservation of
refrigerated shrimp. Food Res Int, 2019; 120:679-
87. doi:10.1016/j.foodres.2018.11.025.
Kart, D., Gürpınar, S. S., & Eryılmaz, M. (2020). Assessment of the anti-quorum sensing effect of Lactobacillus sp. metabolites on expression levels of QS-related genes in Pseudomonas aeruginosa PAO1. Türk Hijyen Ve Deneysel Biyoloji Dergisi, 77(3), 311-318.
AMA
Kart D, Gürpınar SS, Eryılmaz M. Assessment of the anti-quorum sensing effect of Lactobacillus sp. metabolites on expression levels of QS-related genes in Pseudomonas aeruginosa PAO1. Turk Hij Den Biyol Derg. Eylül 2020;77(3):311-318.
Chicago
Kart, Didem, Suna Sibel Gürpınar, ve Müjde Eryılmaz. “Assessment of the Anti-Quorum Sensing Effect of Lactobacillus Sp. Metabolites on Expression Levels of QS-Related Genes in Pseudomonas Aeruginosa PAO1”. Türk Hijyen Ve Deneysel Biyoloji Dergisi 77, sy. 3 (Eylül 2020): 311-18.
EndNote
Kart D, Gürpınar SS, Eryılmaz M (01 Eylül 2020) Assessment of the anti-quorum sensing effect of Lactobacillus sp. metabolites on expression levels of QS-related genes in Pseudomonas aeruginosa PAO1. Türk Hijyen ve Deneysel Biyoloji Dergisi 77 3 311–318.
IEEE
D. Kart, S. S. Gürpınar, ve M. Eryılmaz, “Assessment of the anti-quorum sensing effect of Lactobacillus sp. metabolites on expression levels of QS-related genes in Pseudomonas aeruginosa PAO1”, Turk Hij Den Biyol Derg, c. 77, sy. 3, ss. 311–318, 2020.
ISNAD
Kart, Didem vd. “Assessment of the Anti-Quorum Sensing Effect of Lactobacillus Sp. Metabolites on Expression Levels of QS-Related Genes in Pseudomonas Aeruginosa PAO1”. Türk Hijyen ve Deneysel Biyoloji Dergisi 77/3 (Eylül 2020), 311-318.
JAMA
Kart D, Gürpınar SS, Eryılmaz M. Assessment of the anti-quorum sensing effect of Lactobacillus sp. metabolites on expression levels of QS-related genes in Pseudomonas aeruginosa PAO1. Turk Hij Den Biyol Derg. 2020;77:311–318.
MLA
Kart, Didem vd. “Assessment of the Anti-Quorum Sensing Effect of Lactobacillus Sp. Metabolites on Expression Levels of QS-Related Genes in Pseudomonas Aeruginosa PAO1”. Türk Hijyen Ve Deneysel Biyoloji Dergisi, c. 77, sy. 3, 2020, ss. 311-8.
Vancouver
Kart D, Gürpınar SS, Eryılmaz M. Assessment of the anti-quorum sensing effect of Lactobacillus sp. metabolites on expression levels of QS-related genes in Pseudomonas aeruginosa PAO1. Turk Hij Den Biyol Derg. 2020;77(3):311-8.