Derleme
BibTex RIS Kaynak Göster

Reviewing the enhancement optimum performance characteristics of horizontal axis wind turbine blades using add-on of suitable aerodynamic properties

Yıl 2024, Cilt: 10 Sayı: 4, 1092 - 1106, 29.07.2024

Öz

Standard horizontal-axis wind turbine blades are characterized by operational noise and low power output. Therefore, it is crucial to integrate mechanical components within the wind turbines to enhance their peak power output while simultaneously reducing their noise emissions. This article reviews enhancing optimum performance characteristics of horizontal axis wind turbine blades using various geometrical inbuilt Add-On mechanical devices of suitable aerodynamic properties. Evaluation of torque, thrust, and blades’ aerodynamic properties, which enhance efficiency, were investigated to understand the performance of aerodynamic add-ons on rotor blades. The current work showed that adding aerodynamic add-ons to wind turbine blades can improve the performance and efficiency of the blades, as well as increase the power output of the blades. This study also considered the performance and efficiency of blades in turbulence and high wind speeds. Various turbulence-inbuilt models of numerical fluid dynamics modules were investigated and analyzed to predict the motion surrounding the horizontal axis wind turbine. Numerical outputs showed that Add-Ons on horizontal wind turbine significantly enhances the efficiency and performance with expected reduced noise.

Kaynakça

  • [1] Chen J, Yang H, Yang M, Xu H. The effect of the opening ratio and location on the performance of a novel vertical axis Darrieus turbine. Energy 2015;89:819−834. [CrossRef]
  • [2] Khlaifat N, Altaee A, Zhou J, Huang Y. A review of the key sensitive parameters on the aerodynamic performance of a horizontal wind turbine using Computational Fluid Dynamics modelling. Energy 2020;8:493−524. [CrossRef]
  • [3] Adeaga OA, Alabi OO, Akintola AS. Experimental investigation of the potential of liquified. Lautech J Engineer Technol 2023;17:1−7.
  • [4] Kundu P. Hydrodynamic performance improvement on small horizontal axis current turbine blade using different tube slots configurations. Appl Ocean Res 2019;91:101873. [CrossRef]
  • [5] Ajay V. A review on fabrication and performance evaluation of small wind turbine blades. Energy 2018;9:240−265.
  • [6] Hu L, Zhu X, Hu C, Chen J, Du Z. Wind turbines ice distribution and load response under icing con- ditions. Renew Energy 2017;113:608−619. [CrossRef]
  • [7] Scungio M, Arpino F, Focanti V, Profili M, Rotondi M. Wind tunnel testing of scaled models of a newly developed Darrieus-style vertical axis wind tur- bine with auxiliary straight blades. Energy Conver Manage 2016;130:60−70. [CrossRef] [8] Borg M, Shires A, Collu M. Offshore floating verti- cal axis wind turbines, dynamics modelling state of the art. Part I: Aerodynamics. Renew Sustain Energy Rev 2019;39:1214−1225. [CrossRef]
  • [9] Gao Z, Qian X, Wang T. Spectral partition charac- teristics of wind turbine load response under differ- ent atmospheric stability. Sustain Energy Technol Assess 2021;47:101421. [CrossRef]
  • [10] Akhter Z, Omar FH. Review of flow-control devices for wind-turbine performance enhancement. Energy 2021;14:1268. [CrossRef]
  • [11] Rehman S, Alam M, Alhems LM, Rafique MM. Horizontal axis wind turbine blade design meth- odologies for efficiency enhancement - A review. Energy 2018;11:506. [CrossRef]
  • [12] Sudhanshu SM, Sourabh DR, Sanjay NH, Shubhanga VK, Yash AK. Horizontal axis wind turbines pas- sive flow control methods: A review. Energy 2021;1136:012022. [CrossRef]
  • [13] Pytel K, Szpin S, Hudy W, Piaskowska-Silarska M, Gumula S. Analysis of the suitability of using the selected wind turbine blades for wind power appli- ances based on numerical analyses. Matec Web Conf 2018;46:00006. [CrossRef]
  • [14] Bashir MBA. Principle parameters and environ- mental impacts that affect the performance of wind turbine: An overview. Arab J Sci Engineer 2022;47:7891−7909. [CrossRef]
  • [15] Adeaga OA. Towards numerical modelling of veloc- ity variation on thin ellipsoidal aerofoil (NACA 3520) using surface vorticity method. Proceedings of the IEEE International Conference on Science, Engineering and Business for Sustainable Development Goals; 2023 Apr 5-7; Omu-Aran, Kwara State, Nigeria; 2023. [CrossRef]
  • [16] Ebrahimi A, Movahhedi M. Wind turbine power improvement utilizing passive flow control with microtab. Energy 2018;150:575−582. [CrossRef]
  • [17] Erkan O, Özkan M, Karakoç TH, Garrett SJ, Thomas PJ. Investigation of aerodynamic perfor- mance characteristics of a wind-turbine-blade pro- file using the finite-volume method. Renew Energy 2020;161:1359−1367. [CrossRef]
  • [18] Oukassou K, Mouhsine SE, Hajjaji AE, Kharbouch B. Comparison of the power, lift, and drag coeffi- cients of wind turbine blade from aerodynamics characteristics of Naca0012 and Naca2412. Procedia Manuf 2019;32:983−990. [CrossRef]
  • [19] Nakhchi ME, Naung SW, Rahmati M. High- resolution direct numerical simulations of flow structure and aerodynamic performance of wind turbine airfoil at wide range of Reynolds numbers. Energy 2021;225:120261. [CrossRef]
  • [20] Jayanarasimhan K., Subramani-Mahalakshmi V. Wind turbine aerodynamics and flow control. In: Maalawi K, ed. Wind Turbines - Advances and Challenges in Design, Manufacture and Operation. IntechOpen; 2022. [CrossRef]
  • [21] Kelele HK, Frøyd L, Kahsay MB, Nielsen TK. Characterization of aerodynamics of small wind turbine blade for enhanced performance and low cost of energy. Energy 2022;15:8111. [CrossRef]
  • [22] Almukhtar EAH. Effect of drag on the performance for an efficient wind turbine blade design. Energy Procedia 2018;18:404−415. [CrossRef]
  • [23] Li Q, Kamada Y, Takao M, Nishida Y. Experimental investigations of boundary layer impact on the airfoil aerodynamic forces of horizontal axis wind turbine in turbulent inflows. Energy 2017;135:799−810. [CrossRef]
  • [24] Li Q, Xu J, Kamada Y, Takao M, Nishimura S, Wu G, et al. Experimental investigations of airfoil sur- face flow of a horizontal axis wind turbine with LDV measurements. Energy 2020;191:116558. [CrossRef]
  • [25] Akbari V, Naghashzadegan M, Kouhikamali R, Afsharpanah F, Yaïci W. Multi-objective optimi- zation and optimal airfoil blade selection for a small horizontal-axis wind turbine (HAWT) for application in regions with various wind potential. Machines 2022;10:687. [CrossRef]
  • [26] Chen K, Yao W, Wei J, Gao R, Li Y. Bionic cou- pling design and aerodynamic analysis of horizon- tal axis wind turbine blades. Energy Sci Engineer 2021;9:1826−1838. [CrossRef]
  • [27] Zongheng H, Tao Y, Guanyu C, Xiangrui L, Yu H. Simulation analysis on the blade airfoil of small wind turbine. IOP Conf Ser Earth Environ Sci 2019;295:012079. [CrossRef]
  • [28] D'Alessandro V, Clementi G, Giammichele L, Ricci R. Assessment of the dimples as passive boundary layer control technique for laminar airfoils operating at wind turbine blades root region typical Reynolds numbers. Energy 2019;170:102−111. [CrossRef]
  • [29] Wang Y, Li G, Shen S, Huang D, Zheng ZC. Investigation on aerodynamic performance of horizontal axis wind turbine by setting micro-cyl- inder in front of the blade leading edge. Energy 2018;143:1107−1124. [CrossRef]
  • [30] Muheisen AH, Yass MAR, Irthiea IK. Enhancement of horizontal wind turbine blade performance using multiple airfoils sections and fences. J King Saud Univ Engineer Sci 2023;35:69−81. [CrossRef]
  • [31] Chamorro LP, Arndt REA, Sotiropoulos F. Drag reduction of large wind turbine blades through riblets: Evaluation of riblet geometry and application strate- gies. Renew Energy 2013;50:1095−1105. [CrossRef]
  • [32] Ma J, Duan Y, Zhao M, Lv W, Wang J, Meng Ke Q, et al. Effect of airfoil concavity on wind turbine blade performances. Shock Vib 2019;6405153. [CrossRef]
  • [33] Elsakka MM, Ingham DB, Ma L, Pourkashanian M. CFD analysis of the angle of attack for a verti- cal axis wind turbine blade. Energy Conver Manage 2019;182:154−165. [CrossRef] [34] Gueraiche D, Popov S. Winglet geometry impact on DLR-F4 aerodynamics and an analysis of a hyper- bolic winglet concept. Aerospace 2017;4:60. [CrossRef]
  • [35] Zhang T, Elsakka M, Huang W, Wang Z, Ingham DB, Ma L, et al. Winglet design for vertical axis wind turbines based on a design of experiment and CFD approach. Energy Convers Manag 2019;195:712−726. [CrossRef]
  • [36] Sedighi H, Akbarzadeh P, Salavatipour A. Aerodynamic performance enhancement of hor- izontal axis wind turbines by dimples on blades: Numerical investigation. Energy 2020;195:117056. [CrossRef]
  • [37] Khaled M, Ibrahim MM, Hamed HEA, Abdelgwad AF. Investigation of a small horizontal-axis wind turbine performance with and without winglet. Energy 2019;187:115921. [CrossRef]
  • [38] Hua X, Zhang C, Wei J, Hu X, Wei H. Wind tur- bine bionic blade design and performance analysis. J Vis Commun Image Represent 2019;60:258−265. [CrossRef]
  • [39] Reddy SR, Dulikravich GS, Sobieczky H, Gonzale M. Bladelets - winglets on blades of wind turbines: A multiobjective design optimization study. Energy 2019;141:061003. [CrossRef]
  • [40] Gaheen OA, Aziz MA, Hamza M, Kashkoush H, Khalifa MA. Fluid and structure analysis of wind turbine blade with winglet. Energy 2022;90:80−101. [CrossRef]
  • [41] Mourad MG, Mekhail TA, Shahin I, Abdellatif OE, Mekhail TA. Effect of winglet geometry on hor- izontal axis wind turbine performance. Energy 2020;2:e12101. [CrossRef]
  • [42] Khan T, Singh B, Sultan MTBH, Ahmad KA. Performance of a HAWT rotor with a modified blade configuration. Energy 2019;30:201−220. [CrossRef]
  • [43] Zhu B, Sun X, Wang Y, Huang D. Performance char- acteristics of a horizontal axis turbine with fusion winglet. Energy 2017;120:431−440. [CrossRef]
  • [44] Satwika NA, Hantoro R. Investigation flow on horizontal axis wind turbine with betz chord dis- tribution, twist, and winglet. In proceedings of the 4th International Conference on Science and Technology; 2018 Agu 7-8; Yogyakarta, Indonesia; 2018. [CrossRef]
  • [45] Satwika NA, Hantoro R, Sarwono S, Nugroho G. Experimental investigation and numerical analysis on horizontal axis wind turbine with winglet and pitch variations. Energy 2019;23:345−360. [CrossRef]
  • [46] Verma S, Paul AR, Jain A, Alam F. Numerical inves- tigation of stall characteristics for winglet blade of a horizontal axis wind turbine. Energy 2021;32:03004. [CrossRef]
  • [47] Hansen TH, Mühle F. Winglet optimization for a model-scale wind turbine. Wind Energy 2018;21:634−649. [CrossRef] [48] Sessarego M, Ramos-Garcia N, Shen WZ. Analysis of winglets and sweep on wind turbine blades using a lifting line vortex particle method in complex inflow conditions. Energy 2018;1037:022021. [CrossRef]
  • [49] Khalafallah MG, Ahmed AM, Emam MK. The effect of using winglets to enhance the performance of swept blades of a horizontal axis wind turbine. J Renew Sustain Energy Rev 2019;11. [CrossRef]
  • [50] Chen J, Yang H, Yang M, Xu H, Hu Z. A compre- hensive review of the theoretical approaches for the airfoil design of lift-type vertical axis wind turbine. Renew Sustain Energy Rev 2015;51:1709−1720. [CrossRef]
  • [51] Volkmer K, Kaufmann N, Carolus TH. Mitigation of the aerodynamic noise of small axial wind turbines: Methods and experimental validation. J Sound Vib 2021;500:116027. [CrossRef] [52] Li Y, Zhao S, Qu C, Tong G, Feng F, Zhao B, et al. Aerodynamic characteristics of straight-bladed vertical axis wind turbine with a curved-outline wind gathering device. Energy Conver Manage 2019;203:112249. [CrossRef]
  • [53] Wang H, Jiang X, Chao Y, Li Q, Li M, Zheng W, Chen T. Effects of leading edge slat on flow separation and aerodynamic performance of wind turbine. Energy. 2019;182:988−998. [CrossRef]
  • [54] Liu X, Wang L, Tang X. Optimized linearization of chord and twist angle profiles for fixed-pitch fixed-speed wind turbine blades. Renew Energy 2015;57:111−119. [CrossRef]
  • [55] Dorrego JR, Rios A, Hernandez-Escobedo Q, Campos-Amezcua R, Iracheta R, Lastres O, et al. Theoretical and experimental analysis of aero- dynamic noise in small wind turbines. Energy 2021;14:727. [CrossRef]
  • [56] Jimenez AA, Zhang L, Munoz CQG, Marquez FPG. Maintenance management based on Machine Learning and nonlinear features in wind turbines. Renew Energy 2019;146:316−328. [CrossRef]
  • [57] Ragheb M, Ragheb AM. Wind turbines theory - the Betz equation and optimal rotor tip speed ratio. In: Carriveau R, ed. Fundamental and Advanced Topics in Wind Power. Intech; 2011. [CrossRef]
  • [58] Chen J, Wang X, Li H, Jiang C, Bao L. Design of the blade under low flow velocity for horizontal axis tidal current turbine. J Mar Sci Engineer 2020;8:989. [CrossRef]
  • [59] Tobin N, Hamed AM, Chamorro LP. An experi- mental study on the effects of winglets on the wake and performance of a model wind turbine. Energy 2015;8:11955−11972. [CrossRef]
  • [60] Hand B, Kelly G, Cashman A. Aerodynamic design and performance parameters of a lift-type verti- cal axis wind turbine: A comprehensive review. Renew Sustain Energy Rev 2021;139:269−271. [CrossRef] [61] Ragheb M. Wind energy conversion theory, Betz Equation. Available at: https://mragheb.com/ NPRE%20475%20Wind%20Power%20Systems/ Wind%20Energy%20Conversion%20Theory%20 Betz%20Equation..pdf. Accessed Jun 7, 2024.
  • [62] Darwish A, Shaaban S, Marsillac E, Aldabash N. A methodology for improving wind energy pro- duction in low wind speed regions, with a case study application in Iraq. J Comput Ind Engineer 2019;127:89−102. [CrossRef]
  • [63] Ali SU, Khan R, Masood A. Analysis of wind energy potential and optimum wind blade design for jams- horo wind corridor. Mehran Univ Res J Engineer Technol 2018;36:8. [CrossRef]
  • [64] Derakhshan S, Tavaziani A, Kasaeian N. Numerical shape optimization of a wind turbine blades using artificial bee colony algorithm. Energy 2015;137:051210. [CrossRef]
  • [65] Iswahyudi S, Strisno, Prajitno, Wibowo SB. Effect of blade tip shades on the performance of a small HAWT: An investigation in a wind tunnel. 2020;19:100634. [CrossRef]
  • [66] Schubel PJ, Crossley RJ. Wind turbine blade design. Energy 2015;5:3425−3449. [CrossRef]
  • [67] Bender JJ, Hallett SR, Lindgaard E. Investigation of the effect of wrinkle features on wind turbine blade sub-structure strength. Compos Struct 2019;218:39-49. [CrossRef]
  • [68] Shukla V, Kaviti A, Scholar PG, Hod. Different analysis on wind turbine blade: A review. Energy 2015;3:321−326.
  • [69] Pytel K, Gumula S, Dudek P, Bielik S, Szpin S, Hudy W, et al. Testing the performance characteristics of specific profiles for applications in wind turbines. Energy 2019;108:01015. [CrossRef]
  • [70] Owkes M. A guide to writing your first CFD solver. Available at: https://www.montana.edu/mowkes/ research/source-codes/GuideToCFD.pdf. Accessed Jun 7, 2024.
  • [71] Burton T, Jenkins N, Sharpe D, Bossanyi E. Aerodynamics of Horizontal Axis: Author's Note on Aerodynamics. In: Burton T, Jenkins N, Sharpe D, Bossanyi E, eds. Wind energy handbook. New Jersey, US: Wiley; 2011. [CrossRef]
  • [72] Branlard E. Wind Turbine Aerodynamics and Methods. New York: Springer; 2017.
  • [73] Madi E, Pope K, Huang W, Tariq I. A review of integrating ice detection and mitigation for wind turbine blades. Renew Sustain Energy Rev 2019;103:269−281. [CrossRef]
  • [74] Rafiuddin AM, Patel SK. Computational and exper- imental studies on solar chimney power plants for power generation in Pacific Island countries. Energy Conver Manage 2017;149:61−78. [CrossRef]
  • [75] Gofran M, Goossens D, Goverde H, Catthoor F. Experimentally validated CFD simulations predicting wind effects on photovoltaic modules mounted on inclined surfaces. Sustain Energy Technol Assess 2018;30:201−208. [CrossRef]
  • [76] Li L, Li YH, Liu QK, Lv HW. A mathematical model for horizontal axis wind turbine blades. Appl Math Model 2014;38:2695−2715. [CrossRef]
  • [77] Madsen MHA, Zahle F, Horcas SG, Barlas TK, Sørensen NN. CFD-based curved tip shape design for wind turbine blades. Wind Energy Sci 2022;7:1471−1501. [CrossRef]
  • [78] Ghasemian M, Ashrafi ZN, Sedaghat A. A review on computational fluid dynamic simulation techniques for Darrieus vertical axis wind turbines. Energy Conver Manage 2017;149:87−100. [CrossRef]
  • [79] Sobhani E, Ghaffari M, Maghrebi MJ. Numerical investigation of dimple effects on Darrieus vertical axis wind turbine. Energy 2017;133:231−241. [CrossRef]
  • [80] Arpino F, Scungio M, Cortellessa G. Numerical per- formance assessment of an innovative Darrieus-style vertical axis wind turbine with auxiliary straight blades. Energy Conver Manage 2018;171:769−777. [CrossRef]
  • [81] Shen W, Ming T, Ding Y, Wu Y, Richter RK. Numerical analysis on an industrial-scaled solar updraft power plant system with ambient crosswind. Renew Energy 2014;68:662−676. [CrossRef]
  • [82] Li S, Li Y, Yang C, Wang Q, Zhao B, Li D, et al. Experimental investigation of solidity and other characteristics on dual vertical axis wind turbines in an urban environment. Energy Conver Manage 2021;229:113689. [CrossRef]
  • [83] Habibi H, Cheng L, Zheng H, Kappatos V, Selcuk C, Gan T. A dual de-icing system for wind turbine blades combining high-power ultrasonic guided waves and low-frequency forced vibrations. Renew Energy 2015;83:859−870. [CrossRef]
  • [84] Li Y, Zhao S, Tagawa K, Feng F. Starting perfor- mance effect of a truncated-cone-shaped wind gathering device on small-scale straight-bladed vertical axis wind turbine. Energy Conver Manage 2018;167:70−80. [CrossRef]
  • [85] Chen W, Wang J, Chang M, Mutuku JK, Hoang AT. Efficiency improvement of a vertical-axis wind turbine using a deflector optimized by Taguchi approach with modified additive method. Energy Conver Manage 2021;245:114609. [CrossRef] [86] Jafarifar N, Matin BM, Yaghini M. The effect of strong ambient winds on the efficiency of solar updraft power towers: A numerical case study for Orkney. Renew Energy 2019;136:937−944. [CrossRef]
  • [87] Posta GD, Leonardi S, Bernardini M. A two- way coupling method for the study of aeroelas- tic effects in large wind turbines. Renew Energy 2022;190:971−992. [CrossRef]
  • [88] Hassanpour M, Azadani LN. Aerodynamic opti- mization of the configuration of a pair of verti- cal axis wind turbines. Energy Conver Manage 2021;238:114069. [CrossRef]
  • [89] Shu L, Qiu G, Hu Q, Jiang X, McClure G, Liu Y. Numerical and experimental investigation of threshold de-icing heat flux of wind turbine. J Wind Engineer Ind Aerodyn 2018;174:296−302. [CrossRef]
  • [90] Abdulqadir S, Iacovides H, Nasser A. The physical modelling and aerodynamics of turbulent flows around horizontal axis wind turbines. Energy 2017;119:767−799. [CrossRef]
  • [91] Li Y, Tagawa K, Feng F, Li Q, He Q. Effect of tur- bulence models on predicting HAWT rotor blade performances. Energy Conver Manage 2019;85:591−595. [CrossRef]
  • [92] Bouhelal A, Smaili A, Guerri O, Masson C. Numerical investigation of turbulent flow around a recent horizontal axis wind turbine using low and high Reynolds models. J Appl Fluids Mech 2018;11:151−164. [CrossRef]
  • [93] Alabi OO, Ogunsiji GO, Dada SA, Gbadeyan OJ, Bala A. Numerical study of aerodynamic charac- teristics of the NACA 6420 airfoil using the transi- tion RANS k-ε model. Available at: https://papers. ssrn.com/sol3/papers.cfm?abstract_id=4575964. Accessed Jun 7, 2024. [CrossRef]
  • [94] Attou Y, Bouhafs M, Feddal A. Numerical analysis of turbulent flow and heat transfer enhancement using V-shaped grooves mounted on the rotary kiln's outer walls. J Ther Engineer 2023;10:350−359. [CrossRef]
  • [95] Mohammed MA, Husain MA. Numerical simula- tion of aerodynamic performance of the wing with edge of attack and sinusoidal escape. J Ther Engineer 2024;10:697−709. [CrossRef]
Yıl 2024, Cilt: 10 Sayı: 4, 1092 - 1106, 29.07.2024

Öz

Kaynakça

  • [1] Chen J, Yang H, Yang M, Xu H. The effect of the opening ratio and location on the performance of a novel vertical axis Darrieus turbine. Energy 2015;89:819−834. [CrossRef]
  • [2] Khlaifat N, Altaee A, Zhou J, Huang Y. A review of the key sensitive parameters on the aerodynamic performance of a horizontal wind turbine using Computational Fluid Dynamics modelling. Energy 2020;8:493−524. [CrossRef]
  • [3] Adeaga OA, Alabi OO, Akintola AS. Experimental investigation of the potential of liquified. Lautech J Engineer Technol 2023;17:1−7.
  • [4] Kundu P. Hydrodynamic performance improvement on small horizontal axis current turbine blade using different tube slots configurations. Appl Ocean Res 2019;91:101873. [CrossRef]
  • [5] Ajay V. A review on fabrication and performance evaluation of small wind turbine blades. Energy 2018;9:240−265.
  • [6] Hu L, Zhu X, Hu C, Chen J, Du Z. Wind turbines ice distribution and load response under icing con- ditions. Renew Energy 2017;113:608−619. [CrossRef]
  • [7] Scungio M, Arpino F, Focanti V, Profili M, Rotondi M. Wind tunnel testing of scaled models of a newly developed Darrieus-style vertical axis wind tur- bine with auxiliary straight blades. Energy Conver Manage 2016;130:60−70. [CrossRef] [8] Borg M, Shires A, Collu M. Offshore floating verti- cal axis wind turbines, dynamics modelling state of the art. Part I: Aerodynamics. Renew Sustain Energy Rev 2019;39:1214−1225. [CrossRef]
  • [9] Gao Z, Qian X, Wang T. Spectral partition charac- teristics of wind turbine load response under differ- ent atmospheric stability. Sustain Energy Technol Assess 2021;47:101421. [CrossRef]
  • [10] Akhter Z, Omar FH. Review of flow-control devices for wind-turbine performance enhancement. Energy 2021;14:1268. [CrossRef]
  • [11] Rehman S, Alam M, Alhems LM, Rafique MM. Horizontal axis wind turbine blade design meth- odologies for efficiency enhancement - A review. Energy 2018;11:506. [CrossRef]
  • [12] Sudhanshu SM, Sourabh DR, Sanjay NH, Shubhanga VK, Yash AK. Horizontal axis wind turbines pas- sive flow control methods: A review. Energy 2021;1136:012022. [CrossRef]
  • [13] Pytel K, Szpin S, Hudy W, Piaskowska-Silarska M, Gumula S. Analysis of the suitability of using the selected wind turbine blades for wind power appli- ances based on numerical analyses. Matec Web Conf 2018;46:00006. [CrossRef]
  • [14] Bashir MBA. Principle parameters and environ- mental impacts that affect the performance of wind turbine: An overview. Arab J Sci Engineer 2022;47:7891−7909. [CrossRef]
  • [15] Adeaga OA. Towards numerical modelling of veloc- ity variation on thin ellipsoidal aerofoil (NACA 3520) using surface vorticity method. Proceedings of the IEEE International Conference on Science, Engineering and Business for Sustainable Development Goals; 2023 Apr 5-7; Omu-Aran, Kwara State, Nigeria; 2023. [CrossRef]
  • [16] Ebrahimi A, Movahhedi M. Wind turbine power improvement utilizing passive flow control with microtab. Energy 2018;150:575−582. [CrossRef]
  • [17] Erkan O, Özkan M, Karakoç TH, Garrett SJ, Thomas PJ. Investigation of aerodynamic perfor- mance characteristics of a wind-turbine-blade pro- file using the finite-volume method. Renew Energy 2020;161:1359−1367. [CrossRef]
  • [18] Oukassou K, Mouhsine SE, Hajjaji AE, Kharbouch B. Comparison of the power, lift, and drag coeffi- cients of wind turbine blade from aerodynamics characteristics of Naca0012 and Naca2412. Procedia Manuf 2019;32:983−990. [CrossRef]
  • [19] Nakhchi ME, Naung SW, Rahmati M. High- resolution direct numerical simulations of flow structure and aerodynamic performance of wind turbine airfoil at wide range of Reynolds numbers. Energy 2021;225:120261. [CrossRef]
  • [20] Jayanarasimhan K., Subramani-Mahalakshmi V. Wind turbine aerodynamics and flow control. In: Maalawi K, ed. Wind Turbines - Advances and Challenges in Design, Manufacture and Operation. IntechOpen; 2022. [CrossRef]
  • [21] Kelele HK, Frøyd L, Kahsay MB, Nielsen TK. Characterization of aerodynamics of small wind turbine blade for enhanced performance and low cost of energy. Energy 2022;15:8111. [CrossRef]
  • [22] Almukhtar EAH. Effect of drag on the performance for an efficient wind turbine blade design. Energy Procedia 2018;18:404−415. [CrossRef]
  • [23] Li Q, Kamada Y, Takao M, Nishida Y. Experimental investigations of boundary layer impact on the airfoil aerodynamic forces of horizontal axis wind turbine in turbulent inflows. Energy 2017;135:799−810. [CrossRef]
  • [24] Li Q, Xu J, Kamada Y, Takao M, Nishimura S, Wu G, et al. Experimental investigations of airfoil sur- face flow of a horizontal axis wind turbine with LDV measurements. Energy 2020;191:116558. [CrossRef]
  • [25] Akbari V, Naghashzadegan M, Kouhikamali R, Afsharpanah F, Yaïci W. Multi-objective optimi- zation and optimal airfoil blade selection for a small horizontal-axis wind turbine (HAWT) for application in regions with various wind potential. Machines 2022;10:687. [CrossRef]
  • [26] Chen K, Yao W, Wei J, Gao R, Li Y. Bionic cou- pling design and aerodynamic analysis of horizon- tal axis wind turbine blades. Energy Sci Engineer 2021;9:1826−1838. [CrossRef]
  • [27] Zongheng H, Tao Y, Guanyu C, Xiangrui L, Yu H. Simulation analysis on the blade airfoil of small wind turbine. IOP Conf Ser Earth Environ Sci 2019;295:012079. [CrossRef]
  • [28] D'Alessandro V, Clementi G, Giammichele L, Ricci R. Assessment of the dimples as passive boundary layer control technique for laminar airfoils operating at wind turbine blades root region typical Reynolds numbers. Energy 2019;170:102−111. [CrossRef]
  • [29] Wang Y, Li G, Shen S, Huang D, Zheng ZC. Investigation on aerodynamic performance of horizontal axis wind turbine by setting micro-cyl- inder in front of the blade leading edge. Energy 2018;143:1107−1124. [CrossRef]
  • [30] Muheisen AH, Yass MAR, Irthiea IK. Enhancement of horizontal wind turbine blade performance using multiple airfoils sections and fences. J King Saud Univ Engineer Sci 2023;35:69−81. [CrossRef]
  • [31] Chamorro LP, Arndt REA, Sotiropoulos F. Drag reduction of large wind turbine blades through riblets: Evaluation of riblet geometry and application strate- gies. Renew Energy 2013;50:1095−1105. [CrossRef]
  • [32] Ma J, Duan Y, Zhao M, Lv W, Wang J, Meng Ke Q, et al. Effect of airfoil concavity on wind turbine blade performances. Shock Vib 2019;6405153. [CrossRef]
  • [33] Elsakka MM, Ingham DB, Ma L, Pourkashanian M. CFD analysis of the angle of attack for a verti- cal axis wind turbine blade. Energy Conver Manage 2019;182:154−165. [CrossRef] [34] Gueraiche D, Popov S. Winglet geometry impact on DLR-F4 aerodynamics and an analysis of a hyper- bolic winglet concept. Aerospace 2017;4:60. [CrossRef]
  • [35] Zhang T, Elsakka M, Huang W, Wang Z, Ingham DB, Ma L, et al. Winglet design for vertical axis wind turbines based on a design of experiment and CFD approach. Energy Convers Manag 2019;195:712−726. [CrossRef]
  • [36] Sedighi H, Akbarzadeh P, Salavatipour A. Aerodynamic performance enhancement of hor- izontal axis wind turbines by dimples on blades: Numerical investigation. Energy 2020;195:117056. [CrossRef]
  • [37] Khaled M, Ibrahim MM, Hamed HEA, Abdelgwad AF. Investigation of a small horizontal-axis wind turbine performance with and without winglet. Energy 2019;187:115921. [CrossRef]
  • [38] Hua X, Zhang C, Wei J, Hu X, Wei H. Wind tur- bine bionic blade design and performance analysis. J Vis Commun Image Represent 2019;60:258−265. [CrossRef]
  • [39] Reddy SR, Dulikravich GS, Sobieczky H, Gonzale M. Bladelets - winglets on blades of wind turbines: A multiobjective design optimization study. Energy 2019;141:061003. [CrossRef]
  • [40] Gaheen OA, Aziz MA, Hamza M, Kashkoush H, Khalifa MA. Fluid and structure analysis of wind turbine blade with winglet. Energy 2022;90:80−101. [CrossRef]
  • [41] Mourad MG, Mekhail TA, Shahin I, Abdellatif OE, Mekhail TA. Effect of winglet geometry on hor- izontal axis wind turbine performance. Energy 2020;2:e12101. [CrossRef]
  • [42] Khan T, Singh B, Sultan MTBH, Ahmad KA. Performance of a HAWT rotor with a modified blade configuration. Energy 2019;30:201−220. [CrossRef]
  • [43] Zhu B, Sun X, Wang Y, Huang D. Performance char- acteristics of a horizontal axis turbine with fusion winglet. Energy 2017;120:431−440. [CrossRef]
  • [44] Satwika NA, Hantoro R. Investigation flow on horizontal axis wind turbine with betz chord dis- tribution, twist, and winglet. In proceedings of the 4th International Conference on Science and Technology; 2018 Agu 7-8; Yogyakarta, Indonesia; 2018. [CrossRef]
  • [45] Satwika NA, Hantoro R, Sarwono S, Nugroho G. Experimental investigation and numerical analysis on horizontal axis wind turbine with winglet and pitch variations. Energy 2019;23:345−360. [CrossRef]
  • [46] Verma S, Paul AR, Jain A, Alam F. Numerical inves- tigation of stall characteristics for winglet blade of a horizontal axis wind turbine. Energy 2021;32:03004. [CrossRef]
  • [47] Hansen TH, Mühle F. Winglet optimization for a model-scale wind turbine. Wind Energy 2018;21:634−649. [CrossRef] [48] Sessarego M, Ramos-Garcia N, Shen WZ. Analysis of winglets and sweep on wind turbine blades using a lifting line vortex particle method in complex inflow conditions. Energy 2018;1037:022021. [CrossRef]
  • [49] Khalafallah MG, Ahmed AM, Emam MK. The effect of using winglets to enhance the performance of swept blades of a horizontal axis wind turbine. J Renew Sustain Energy Rev 2019;11. [CrossRef]
  • [50] Chen J, Yang H, Yang M, Xu H, Hu Z. A compre- hensive review of the theoretical approaches for the airfoil design of lift-type vertical axis wind turbine. Renew Sustain Energy Rev 2015;51:1709−1720. [CrossRef]
  • [51] Volkmer K, Kaufmann N, Carolus TH. Mitigation of the aerodynamic noise of small axial wind turbines: Methods and experimental validation. J Sound Vib 2021;500:116027. [CrossRef] [52] Li Y, Zhao S, Qu C, Tong G, Feng F, Zhao B, et al. Aerodynamic characteristics of straight-bladed vertical axis wind turbine with a curved-outline wind gathering device. Energy Conver Manage 2019;203:112249. [CrossRef]
  • [53] Wang H, Jiang X, Chao Y, Li Q, Li M, Zheng W, Chen T. Effects of leading edge slat on flow separation and aerodynamic performance of wind turbine. Energy. 2019;182:988−998. [CrossRef]
  • [54] Liu X, Wang L, Tang X. Optimized linearization of chord and twist angle profiles for fixed-pitch fixed-speed wind turbine blades. Renew Energy 2015;57:111−119. [CrossRef]
  • [55] Dorrego JR, Rios A, Hernandez-Escobedo Q, Campos-Amezcua R, Iracheta R, Lastres O, et al. Theoretical and experimental analysis of aero- dynamic noise in small wind turbines. Energy 2021;14:727. [CrossRef]
  • [56] Jimenez AA, Zhang L, Munoz CQG, Marquez FPG. Maintenance management based on Machine Learning and nonlinear features in wind turbines. Renew Energy 2019;146:316−328. [CrossRef]
  • [57] Ragheb M, Ragheb AM. Wind turbines theory - the Betz equation and optimal rotor tip speed ratio. In: Carriveau R, ed. Fundamental and Advanced Topics in Wind Power. Intech; 2011. [CrossRef]
  • [58] Chen J, Wang X, Li H, Jiang C, Bao L. Design of the blade under low flow velocity for horizontal axis tidal current turbine. J Mar Sci Engineer 2020;8:989. [CrossRef]
  • [59] Tobin N, Hamed AM, Chamorro LP. An experi- mental study on the effects of winglets on the wake and performance of a model wind turbine. Energy 2015;8:11955−11972. [CrossRef]
  • [60] Hand B, Kelly G, Cashman A. Aerodynamic design and performance parameters of a lift-type verti- cal axis wind turbine: A comprehensive review. Renew Sustain Energy Rev 2021;139:269−271. [CrossRef] [61] Ragheb M. Wind energy conversion theory, Betz Equation. Available at: https://mragheb.com/ NPRE%20475%20Wind%20Power%20Systems/ Wind%20Energy%20Conversion%20Theory%20 Betz%20Equation..pdf. Accessed Jun 7, 2024.
  • [62] Darwish A, Shaaban S, Marsillac E, Aldabash N. A methodology for improving wind energy pro- duction in low wind speed regions, with a case study application in Iraq. J Comput Ind Engineer 2019;127:89−102. [CrossRef]
  • [63] Ali SU, Khan R, Masood A. Analysis of wind energy potential and optimum wind blade design for jams- horo wind corridor. Mehran Univ Res J Engineer Technol 2018;36:8. [CrossRef]
  • [64] Derakhshan S, Tavaziani A, Kasaeian N. Numerical shape optimization of a wind turbine blades using artificial bee colony algorithm. Energy 2015;137:051210. [CrossRef]
  • [65] Iswahyudi S, Strisno, Prajitno, Wibowo SB. Effect of blade tip shades on the performance of a small HAWT: An investigation in a wind tunnel. 2020;19:100634. [CrossRef]
  • [66] Schubel PJ, Crossley RJ. Wind turbine blade design. Energy 2015;5:3425−3449. [CrossRef]
  • [67] Bender JJ, Hallett SR, Lindgaard E. Investigation of the effect of wrinkle features on wind turbine blade sub-structure strength. Compos Struct 2019;218:39-49. [CrossRef]
  • [68] Shukla V, Kaviti A, Scholar PG, Hod. Different analysis on wind turbine blade: A review. Energy 2015;3:321−326.
  • [69] Pytel K, Gumula S, Dudek P, Bielik S, Szpin S, Hudy W, et al. Testing the performance characteristics of specific profiles for applications in wind turbines. Energy 2019;108:01015. [CrossRef]
  • [70] Owkes M. A guide to writing your first CFD solver. Available at: https://www.montana.edu/mowkes/ research/source-codes/GuideToCFD.pdf. Accessed Jun 7, 2024.
  • [71] Burton T, Jenkins N, Sharpe D, Bossanyi E. Aerodynamics of Horizontal Axis: Author's Note on Aerodynamics. In: Burton T, Jenkins N, Sharpe D, Bossanyi E, eds. Wind energy handbook. New Jersey, US: Wiley; 2011. [CrossRef]
  • [72] Branlard E. Wind Turbine Aerodynamics and Methods. New York: Springer; 2017.
  • [73] Madi E, Pope K, Huang W, Tariq I. A review of integrating ice detection and mitigation for wind turbine blades. Renew Sustain Energy Rev 2019;103:269−281. [CrossRef]
  • [74] Rafiuddin AM, Patel SK. Computational and exper- imental studies on solar chimney power plants for power generation in Pacific Island countries. Energy Conver Manage 2017;149:61−78. [CrossRef]
  • [75] Gofran M, Goossens D, Goverde H, Catthoor F. Experimentally validated CFD simulations predicting wind effects on photovoltaic modules mounted on inclined surfaces. Sustain Energy Technol Assess 2018;30:201−208. [CrossRef]
  • [76] Li L, Li YH, Liu QK, Lv HW. A mathematical model for horizontal axis wind turbine blades. Appl Math Model 2014;38:2695−2715. [CrossRef]
  • [77] Madsen MHA, Zahle F, Horcas SG, Barlas TK, Sørensen NN. CFD-based curved tip shape design for wind turbine blades. Wind Energy Sci 2022;7:1471−1501. [CrossRef]
  • [78] Ghasemian M, Ashrafi ZN, Sedaghat A. A review on computational fluid dynamic simulation techniques for Darrieus vertical axis wind turbines. Energy Conver Manage 2017;149:87−100. [CrossRef]
  • [79] Sobhani E, Ghaffari M, Maghrebi MJ. Numerical investigation of dimple effects on Darrieus vertical axis wind turbine. Energy 2017;133:231−241. [CrossRef]
  • [80] Arpino F, Scungio M, Cortellessa G. Numerical per- formance assessment of an innovative Darrieus-style vertical axis wind turbine with auxiliary straight blades. Energy Conver Manage 2018;171:769−777. [CrossRef]
  • [81] Shen W, Ming T, Ding Y, Wu Y, Richter RK. Numerical analysis on an industrial-scaled solar updraft power plant system with ambient crosswind. Renew Energy 2014;68:662−676. [CrossRef]
  • [82] Li S, Li Y, Yang C, Wang Q, Zhao B, Li D, et al. Experimental investigation of solidity and other characteristics on dual vertical axis wind turbines in an urban environment. Energy Conver Manage 2021;229:113689. [CrossRef]
  • [83] Habibi H, Cheng L, Zheng H, Kappatos V, Selcuk C, Gan T. A dual de-icing system for wind turbine blades combining high-power ultrasonic guided waves and low-frequency forced vibrations. Renew Energy 2015;83:859−870. [CrossRef]
  • [84] Li Y, Zhao S, Tagawa K, Feng F. Starting perfor- mance effect of a truncated-cone-shaped wind gathering device on small-scale straight-bladed vertical axis wind turbine. Energy Conver Manage 2018;167:70−80. [CrossRef]
  • [85] Chen W, Wang J, Chang M, Mutuku JK, Hoang AT. Efficiency improvement of a vertical-axis wind turbine using a deflector optimized by Taguchi approach with modified additive method. Energy Conver Manage 2021;245:114609. [CrossRef] [86] Jafarifar N, Matin BM, Yaghini M. The effect of strong ambient winds on the efficiency of solar updraft power towers: A numerical case study for Orkney. Renew Energy 2019;136:937−944. [CrossRef]
  • [87] Posta GD, Leonardi S, Bernardini M. A two- way coupling method for the study of aeroelas- tic effects in large wind turbines. Renew Energy 2022;190:971−992. [CrossRef]
  • [88] Hassanpour M, Azadani LN. Aerodynamic opti- mization of the configuration of a pair of verti- cal axis wind turbines. Energy Conver Manage 2021;238:114069. [CrossRef]
  • [89] Shu L, Qiu G, Hu Q, Jiang X, McClure G, Liu Y. Numerical and experimental investigation of threshold de-icing heat flux of wind turbine. J Wind Engineer Ind Aerodyn 2018;174:296−302. [CrossRef]
  • [90] Abdulqadir S, Iacovides H, Nasser A. The physical modelling and aerodynamics of turbulent flows around horizontal axis wind turbines. Energy 2017;119:767−799. [CrossRef]
  • [91] Li Y, Tagawa K, Feng F, Li Q, He Q. Effect of tur- bulence models on predicting HAWT rotor blade performances. Energy Conver Manage 2019;85:591−595. [CrossRef]
  • [92] Bouhelal A, Smaili A, Guerri O, Masson C. Numerical investigation of turbulent flow around a recent horizontal axis wind turbine using low and high Reynolds models. J Appl Fluids Mech 2018;11:151−164. [CrossRef]
  • [93] Alabi OO, Ogunsiji GO, Dada SA, Gbadeyan OJ, Bala A. Numerical study of aerodynamic charac- teristics of the NACA 6420 airfoil using the transi- tion RANS k-ε model. Available at: https://papers. ssrn.com/sol3/papers.cfm?abstract_id=4575964. Accessed Jun 7, 2024. [CrossRef]
  • [94] Attou Y, Bouhafs M, Feddal A. Numerical analysis of turbulent flow and heat transfer enhancement using V-shaped grooves mounted on the rotary kiln's outer walls. J Ther Engineer 2023;10:350−359. [CrossRef]
  • [95] Mohammed MA, Husain MA. Numerical simula- tion of aerodynamic performance of the wing with edge of attack and sinusoidal escape. J Ther Engineer 2024;10:697−709. [CrossRef]
Toplam 89 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Termodinamik ve İstatistiksel Fizik
Bölüm Derlemeler
Yazarlar

Oluwaseyi Omotayo Alabı 0009-0005-0027-5930

Oyetunde Adeaga 0000-0003-0690-5874

Ademola A. Dare Bu kişi benim

Yayımlanma Tarihi 29 Temmuz 2024
Gönderilme Tarihi 28 Temmuz 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 10 Sayı: 4

Kaynak Göster

APA Omotayo Alabı, O., Adeaga, O., & Dare, A. A. (2024). Reviewing the enhancement optimum performance characteristics of horizontal axis wind turbine blades using add-on of suitable aerodynamic properties. Journal of Thermal Engineering, 10(4), 1092-1106.
AMA Omotayo Alabı O, Adeaga O, Dare AA. Reviewing the enhancement optimum performance characteristics of horizontal axis wind turbine blades using add-on of suitable aerodynamic properties. Journal of Thermal Engineering. Temmuz 2024;10(4):1092-1106.
Chicago Omotayo Alabı, Oluwaseyi, Oyetunde Adeaga, ve Ademola A. Dare. “Reviewing the Enhancement Optimum Performance Characteristics of Horizontal Axis Wind Turbine Blades Using Add-on of Suitable Aerodynamic Properties”. Journal of Thermal Engineering 10, sy. 4 (Temmuz 2024): 1092-1106.
EndNote Omotayo Alabı O, Adeaga O, Dare AA (01 Temmuz 2024) Reviewing the enhancement optimum performance characteristics of horizontal axis wind turbine blades using add-on of suitable aerodynamic properties. Journal of Thermal Engineering 10 4 1092–1106.
IEEE O. Omotayo Alabı, O. Adeaga, ve A. A. Dare, “Reviewing the enhancement optimum performance characteristics of horizontal axis wind turbine blades using add-on of suitable aerodynamic properties”, Journal of Thermal Engineering, c. 10, sy. 4, ss. 1092–1106, 2024.
ISNAD Omotayo Alabı, Oluwaseyi vd. “Reviewing the Enhancement Optimum Performance Characteristics of Horizontal Axis Wind Turbine Blades Using Add-on of Suitable Aerodynamic Properties”. Journal of Thermal Engineering 10/4 (Temmuz 2024), 1092-1106.
JAMA Omotayo Alabı O, Adeaga O, Dare AA. Reviewing the enhancement optimum performance characteristics of horizontal axis wind turbine blades using add-on of suitable aerodynamic properties. Journal of Thermal Engineering. 2024;10:1092–1106.
MLA Omotayo Alabı, Oluwaseyi vd. “Reviewing the Enhancement Optimum Performance Characteristics of Horizontal Axis Wind Turbine Blades Using Add-on of Suitable Aerodynamic Properties”. Journal of Thermal Engineering, c. 10, sy. 4, 2024, ss. 1092-06.
Vancouver Omotayo Alabı O, Adeaga O, Dare AA. Reviewing the enhancement optimum performance characteristics of horizontal axis wind turbine blades using add-on of suitable aerodynamic properties. Journal of Thermal Engineering. 2024;10(4):1092-106.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering