Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 10 Sayı: 5, 1275 - 1291, 10.09.2024

Öz

Kaynakça

  • [1] Wang L, Feng LH, Xu YI, Xu YA, Wang JJ. Experimental investigation on flow characteristics and unsteady heat transfer of noncircular impinging synthetic jets. Int J Heat Mass Transf 2022;190:122760. [CrossRef]
  • [2] Zhu J, Dou R, Hu Y, Zhang S, Wang X. Heat transfer of multi-slot nozzles air jet impingement with different Reynolds number. Appl Therm Engineer 2021;186:116470. [CrossRef]
  • [3] Afroz F, Sharif MAR. Numerical investigation of heat transfer from a plane surface due to turbulent annular swirling jet impingement. Int J Therm Sci 2020;151:106257. [CrossRef]
  • [4] Fenot M, Dorignac E, Lantier R. Heat transfer and flow structure of a hot annular impinging jet. Int J Therm Sci 2021;170:107091. [CrossRef]
  • [5] Yadav S, Saini RP. Numerical investigation on the performance of a solar air heater using jet impingement with absorber plate. Sol Energy 2020;208:236248. [CrossRef]
  • [6] Mohammed AA, Razuqi SA. Effect of air fan position on heat transfer performance of elliptical pin fin heat sink subjected to impinging air flow. J Therm Engineer 2021;7:14061416. [CrossRef]
  • [7] Badiger B, Katti VV, Anil TR. Experimental investigation of heat transfer characteristics of an inverse diffusion flame in a coaxial tube burner for with and without swirl. J Therm Engineer 2022;8:6777. [CrossRef]
  • [8] Mohammed AA, Razuqi SA. Performance of rectangular pin-fin heat sink subject to an impinging air flow. J Therm Engineer 2021;7:666676. [CrossRef]
  • [9] Lee D H, Song J, Jo MC. The effects of nozzle diameter on impinging jet heat transfer and fluid flow. J Heat Transf 2004;126:554557. [CrossRef]
  • [10] Katti V, Prabhu SV. Experimental study and theoretical analysis of local heat transfer distribution between smooth flat surface and impinging air jet from a circular straight pipe nozzle. Int J Heat Mass Transf 2008;51:4480–4495. [CrossRef]
  • [11] Yan WM, Mei SC, Liu HC, Soong CY, Yan WJ. Measurement of detailed heat transfer on a surface under arrays of impinging elliptic jets by a transient liquid crystal technique. Int J Heat Mass Transf 2004;47:52355245. [CrossRef]
  • [12] Lytle D,Webb BW. Air jet impingement heat transfer at low nozzle-plate Spacings. Int J Heat Mass Transf 1994;37:16871697. [CrossRef]
  • [13] Sezai I, Mohamad AA. Three-dimensional simulation of laminar rectangular impinging jets, Flow structure and heat transfer. J Heat Transf 1999;121:5056. [CrossRef]
  • [14] Alekseenko SV, Bilsky AV, Dulin VM, Markovich DM. Experimental study of an impinging jet with different swirl rates. Int J Heat Fluid Flow 2007;28:1340–1359. [CrossRef]
  • [15] Ianiro A, Cardone G. Heat transfer rate and uniformity in multichannel swirling impinging jets. Appl Therm Engineer 2012;49:89–98. [CrossRef]
  • [16] Zuckerman N, Lior N. Jet impingement heat transfer: Physics, correlations, and numerical modeling. Adv Heat Transf 2006;39:565631. [CrossRef]
  • [17] Mehta RD. The aerodynamic design of blower tunnels with wide - Angle diffusers. Progress Aerospace Sci 1979;18:59120. [CrossRef]
  • [18] Gonzalez RC, Woods RE, Eddins SL. Digital Image Processing Using MATLAB. New York: McGraw Hill; 2013.
  • [19] Nuntadusit C, Waehayee M, Bunyajitradulya A, Eiamsa-ard S. Visualization of flow and heat transfer characteristics for swirling impinging jet. Int Commun Heat Mass Transf 2012;39:640648. [CrossRef]
  • [20] Nanan K, Wongcharee K, Nuntadusit C, Eiamsa-ard S. Forced convective heat transfer by swirling impinging jets issuing from nozzles equipped with twisted tapes. Int Comm Heat Mass Transf 2012;39:844–852. [CrossRef]
  • [21] Holman JP. Heat Transfer Eight SI Metric Edition. New York: McGraw- Hill; 2002.
  • [22] John CT, Anderson D, Pletcher RH. Computational Fluid Mechanics Heat Transfer. Abington, UK: Taylor and Francis; 1997.
  • [23] Angioletti ME, Ruocco GN. CFD turbulent modeling of jet impingement and its validation by particle image velocimetry and mass transfer measurements. Int J Therm Sci 2005;44:349356. [CrossRef]
  • [24] Yang YT, Tsai SY. Numerical study of transient conjugate heat transfer of a turbulent impinging jet. Int J Heat Mass Transf 2007;50:799807. [CrossRef]
  • [25] Sagot B, Antonini G, Christgen A, Buron F. Jet impingement heat transfer on a flat plate at a constant wall temperature. Int J Therm Sci 2008;47:6101619. [CrossRef]
  • [26] Yang YT, Wang YH, Hsu JC. Numerical thermal analysis and optimization of a water jet impingement cooling with VOF two phase approach. Int Comm Heat Mass Transf 2015;68:162171. [CrossRef]
  • [27] Draksler M, Koncar B. Analysis of heat transfer and flow characteristics in turbulent impinging jet. Nucl Engineer Des 2011;241:12481254. [CrossRef]
  • [28] Sharif MAR, Banerjee A. Numerical analysis of heat transfer due to confined slot jet impingement on a moving plate. Appl Therm Engineer 2009;29:532540. [CrossRef]
  • [29] Yang YT, Wei TC, Wang YH. Numerical study of turbulent slot jet impingement cooling on a semi-circular concave surface. Int J Heat Mass Transf 2011;54:482489. [CrossRef]
  • [30] O’Donovan TS, Murray DB. Jet impingement heat transfer – Part I: Mean and root mean square heat transfer and velocity distributions. Int J Heat Mass Transf 2007;50:32913301. [CrossRef]
  • [31] Dutta R, Dewan A, Srinivasan B. Comparison of various integration to wall (ITW) RANS models for predicting turbulent slot jet impingement heat transfer. Int J Heat Mass Transf 2013;65:750764. [CrossRef]
  • [32] ANSYS. Ansys CFX Solver modeling guide. Available at: https://dl.cfdexperts.net/cfd_resources/Ansys_Documentation/CFX/Ansys_CFX-Solver_Modeling_Guide.pdf. Accessed Aug 7, 2024.
  • [33] Liu Z, Li J, Feng Z. Numerical study of swirl cooling in a turbine blade leading edge model. J Therm Phys Heat Transf 2015;29:66178. [CrossRef]
  • [34] Ianiro A, Cardone G. Heat transfer rate and uniformity in multichannel swirling impinging jets. Appl Therm Engineer 2012;49:8998. [CrossRef]
  • [35] Yang HQ, Kim T, Lu TJ, Ichimiya K. Flow structure, wall pressure and heat transfer characteristics of impinging annular jet with/without steady swirling. Int J Heat Mass Transf 2010;53:40924100. [CrossRef]
  • [36] Gardon R, Akfirat JC. The role of turbulence in determining the heat-transfer characteristics of impinging jets. Int J Heat Mass Transf 1965;8:12611272. [CrossRef]
  • [37] Parham K, Esmaeilzadeh E, Atikol U, Aldabbagh LBY. A numerical study of turbulent opposed impinging jets issuing from triangular nozzles with different geometries. Heat Mass Transf 2011;47:427437. [CrossRef]
  • [38] Viskanta R. Heat transfer to impinging isothermal gas and flame jets. experiment Therm Fluid Sci 1993;6:111134. [CrossRef]
  • [39] Alimohammadi S, Murray BD, Persoons T. Experimental validation of a computational fluid dynamics methodology for transitional flow heat transfer characteristics of a steady impinging jet. J Heat Transf 2014;136:091703. [CrossRef]
  • [40] Fenot M, Dorignac E, Lalizel G. Heat transfer and flow structure of a multichannel impinging jet. Int J Therm Sci 2015;90:323338. [CrossRef]
  • [41] Fairweather M, Hargrave GK. Experimental investigation of an axi symmetric, impinging turbulent jet. 1. Velocity field. Experiment Fluids 2002;33:464–471. [CrossRef]
  • [42] Senda M, Inaoka K, Toyoda D. Sato S, Heat transfer and fluid flow characteristics in a swirling impinging jet. Heat Transf Asian Res 2005;34:324335. [CrossRef]

Experimental and computational study of heat transfer and flow structure of slotted impinging jet

Yıl 2024, Cilt: 10 Sayı: 5, 1275 - 1291, 10.09.2024

Öz

The study is focused on the flow parameters of the slotted impinging jet associated with its heat transfer performance. The analysis is performed for the circular and slotted jets of square, cross, and oval sections for flow outlet to target plate distance of L/D = 1 to 4. The Reynolds number range of 12700 – 23000 is used in this study to analyze the heat transfer pattern using liquid crystal sheet. The numerical analysis is carried out using CFD. The axial velocity peak (u/U0 = 2.124) is observed for the square jet corresponding to r/D = 0.33 at L/D = 1 and the peak reduces with increasing L/D distances. Higher intensity of average radial velocity (ur/U0 = 1.44) is observed close to the impinging plate for the slotted jet at L/D = 1 at 0.5 ≤ r/D ≤ 1.4 compared with radial velocity (ur/U0 = 0.91) of circular jet. Nusselt number distribution has little dependence for circular jet on the separation distance as the variation is marginal at L/D = 4 when compared to L/D = 1 and 2, the slotted jet however shows marked variation of Nusselt number (136.8 at L/D = 1, 135.2 at L/D = 2 and 113.5 at L/D = 4) in the region at X/D = 1.5. The highest values of turbulence intensity (TI = 0.206) is observed at r/D = 0.5 for the square jet at L/D = 3.

Kaynakça

  • [1] Wang L, Feng LH, Xu YI, Xu YA, Wang JJ. Experimental investigation on flow characteristics and unsteady heat transfer of noncircular impinging synthetic jets. Int J Heat Mass Transf 2022;190:122760. [CrossRef]
  • [2] Zhu J, Dou R, Hu Y, Zhang S, Wang X. Heat transfer of multi-slot nozzles air jet impingement with different Reynolds number. Appl Therm Engineer 2021;186:116470. [CrossRef]
  • [3] Afroz F, Sharif MAR. Numerical investigation of heat transfer from a plane surface due to turbulent annular swirling jet impingement. Int J Therm Sci 2020;151:106257. [CrossRef]
  • [4] Fenot M, Dorignac E, Lantier R. Heat transfer and flow structure of a hot annular impinging jet. Int J Therm Sci 2021;170:107091. [CrossRef]
  • [5] Yadav S, Saini RP. Numerical investigation on the performance of a solar air heater using jet impingement with absorber plate. Sol Energy 2020;208:236248. [CrossRef]
  • [6] Mohammed AA, Razuqi SA. Effect of air fan position on heat transfer performance of elliptical pin fin heat sink subjected to impinging air flow. J Therm Engineer 2021;7:14061416. [CrossRef]
  • [7] Badiger B, Katti VV, Anil TR. Experimental investigation of heat transfer characteristics of an inverse diffusion flame in a coaxial tube burner for with and without swirl. J Therm Engineer 2022;8:6777. [CrossRef]
  • [8] Mohammed AA, Razuqi SA. Performance of rectangular pin-fin heat sink subject to an impinging air flow. J Therm Engineer 2021;7:666676. [CrossRef]
  • [9] Lee D H, Song J, Jo MC. The effects of nozzle diameter on impinging jet heat transfer and fluid flow. J Heat Transf 2004;126:554557. [CrossRef]
  • [10] Katti V, Prabhu SV. Experimental study and theoretical analysis of local heat transfer distribution between smooth flat surface and impinging air jet from a circular straight pipe nozzle. Int J Heat Mass Transf 2008;51:4480–4495. [CrossRef]
  • [11] Yan WM, Mei SC, Liu HC, Soong CY, Yan WJ. Measurement of detailed heat transfer on a surface under arrays of impinging elliptic jets by a transient liquid crystal technique. Int J Heat Mass Transf 2004;47:52355245. [CrossRef]
  • [12] Lytle D,Webb BW. Air jet impingement heat transfer at low nozzle-plate Spacings. Int J Heat Mass Transf 1994;37:16871697. [CrossRef]
  • [13] Sezai I, Mohamad AA. Three-dimensional simulation of laminar rectangular impinging jets, Flow structure and heat transfer. J Heat Transf 1999;121:5056. [CrossRef]
  • [14] Alekseenko SV, Bilsky AV, Dulin VM, Markovich DM. Experimental study of an impinging jet with different swirl rates. Int J Heat Fluid Flow 2007;28:1340–1359. [CrossRef]
  • [15] Ianiro A, Cardone G. Heat transfer rate and uniformity in multichannel swirling impinging jets. Appl Therm Engineer 2012;49:89–98. [CrossRef]
  • [16] Zuckerman N, Lior N. Jet impingement heat transfer: Physics, correlations, and numerical modeling. Adv Heat Transf 2006;39:565631. [CrossRef]
  • [17] Mehta RD. The aerodynamic design of blower tunnels with wide - Angle diffusers. Progress Aerospace Sci 1979;18:59120. [CrossRef]
  • [18] Gonzalez RC, Woods RE, Eddins SL. Digital Image Processing Using MATLAB. New York: McGraw Hill; 2013.
  • [19] Nuntadusit C, Waehayee M, Bunyajitradulya A, Eiamsa-ard S. Visualization of flow and heat transfer characteristics for swirling impinging jet. Int Commun Heat Mass Transf 2012;39:640648. [CrossRef]
  • [20] Nanan K, Wongcharee K, Nuntadusit C, Eiamsa-ard S. Forced convective heat transfer by swirling impinging jets issuing from nozzles equipped with twisted tapes. Int Comm Heat Mass Transf 2012;39:844–852. [CrossRef]
  • [21] Holman JP. Heat Transfer Eight SI Metric Edition. New York: McGraw- Hill; 2002.
  • [22] John CT, Anderson D, Pletcher RH. Computational Fluid Mechanics Heat Transfer. Abington, UK: Taylor and Francis; 1997.
  • [23] Angioletti ME, Ruocco GN. CFD turbulent modeling of jet impingement and its validation by particle image velocimetry and mass transfer measurements. Int J Therm Sci 2005;44:349356. [CrossRef]
  • [24] Yang YT, Tsai SY. Numerical study of transient conjugate heat transfer of a turbulent impinging jet. Int J Heat Mass Transf 2007;50:799807. [CrossRef]
  • [25] Sagot B, Antonini G, Christgen A, Buron F. Jet impingement heat transfer on a flat plate at a constant wall temperature. Int J Therm Sci 2008;47:6101619. [CrossRef]
  • [26] Yang YT, Wang YH, Hsu JC. Numerical thermal analysis and optimization of a water jet impingement cooling with VOF two phase approach. Int Comm Heat Mass Transf 2015;68:162171. [CrossRef]
  • [27] Draksler M, Koncar B. Analysis of heat transfer and flow characteristics in turbulent impinging jet. Nucl Engineer Des 2011;241:12481254. [CrossRef]
  • [28] Sharif MAR, Banerjee A. Numerical analysis of heat transfer due to confined slot jet impingement on a moving plate. Appl Therm Engineer 2009;29:532540. [CrossRef]
  • [29] Yang YT, Wei TC, Wang YH. Numerical study of turbulent slot jet impingement cooling on a semi-circular concave surface. Int J Heat Mass Transf 2011;54:482489. [CrossRef]
  • [30] O’Donovan TS, Murray DB. Jet impingement heat transfer – Part I: Mean and root mean square heat transfer and velocity distributions. Int J Heat Mass Transf 2007;50:32913301. [CrossRef]
  • [31] Dutta R, Dewan A, Srinivasan B. Comparison of various integration to wall (ITW) RANS models for predicting turbulent slot jet impingement heat transfer. Int J Heat Mass Transf 2013;65:750764. [CrossRef]
  • [32] ANSYS. Ansys CFX Solver modeling guide. Available at: https://dl.cfdexperts.net/cfd_resources/Ansys_Documentation/CFX/Ansys_CFX-Solver_Modeling_Guide.pdf. Accessed Aug 7, 2024.
  • [33] Liu Z, Li J, Feng Z. Numerical study of swirl cooling in a turbine blade leading edge model. J Therm Phys Heat Transf 2015;29:66178. [CrossRef]
  • [34] Ianiro A, Cardone G. Heat transfer rate and uniformity in multichannel swirling impinging jets. Appl Therm Engineer 2012;49:8998. [CrossRef]
  • [35] Yang HQ, Kim T, Lu TJ, Ichimiya K. Flow structure, wall pressure and heat transfer characteristics of impinging annular jet with/without steady swirling. Int J Heat Mass Transf 2010;53:40924100. [CrossRef]
  • [36] Gardon R, Akfirat JC. The role of turbulence in determining the heat-transfer characteristics of impinging jets. Int J Heat Mass Transf 1965;8:12611272. [CrossRef]
  • [37] Parham K, Esmaeilzadeh E, Atikol U, Aldabbagh LBY. A numerical study of turbulent opposed impinging jets issuing from triangular nozzles with different geometries. Heat Mass Transf 2011;47:427437. [CrossRef]
  • [38] Viskanta R. Heat transfer to impinging isothermal gas and flame jets. experiment Therm Fluid Sci 1993;6:111134. [CrossRef]
  • [39] Alimohammadi S, Murray BD, Persoons T. Experimental validation of a computational fluid dynamics methodology for transitional flow heat transfer characteristics of a steady impinging jet. J Heat Transf 2014;136:091703. [CrossRef]
  • [40] Fenot M, Dorignac E, Lalizel G. Heat transfer and flow structure of a multichannel impinging jet. Int J Therm Sci 2015;90:323338. [CrossRef]
  • [41] Fairweather M, Hargrave GK. Experimental investigation of an axi symmetric, impinging turbulent jet. 1. Velocity field. Experiment Fluids 2002;33:464–471. [CrossRef]
  • [42] Senda M, Inaoka K, Toyoda D. Sato S, Heat transfer and fluid flow characteristics in a swirling impinging jet. Heat Transf Asian Res 2005;34:324335. [CrossRef]
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Termodinamik ve İstatistiksel Fizik
Bölüm Makaleler
Yazarlar

S. Mohamed Illyas Bu kişi benim 0000-0001-8894-5057

B. R. Ramesh Bapu Bu kişi benim 0000-0002-0746-4620

A. Muthu Manokar Bu kişi benim 0000-0001-7523-6796

Yayımlanma Tarihi 10 Eylül 2024
Gönderilme Tarihi 18 Haziran 2022
Yayımlandığı Sayı Yıl 2024 Cilt: 10 Sayı: 5

Kaynak Göster

APA Illyas, S. M., Bapu, B. R. R., & Manokar, A. M. (2024). Experimental and computational study of heat transfer and flow structure of slotted impinging jet. Journal of Thermal Engineering, 10(5), 1275-1291.
AMA Illyas SM, Bapu BRR, Manokar AM. Experimental and computational study of heat transfer and flow structure of slotted impinging jet. Journal of Thermal Engineering. Eylül 2024;10(5):1275-1291.
Chicago Illyas, S. Mohamed, B. R. Ramesh Bapu, ve A. Muthu Manokar. “Experimental and Computational Study of Heat Transfer and Flow Structure of Slotted Impinging Jet”. Journal of Thermal Engineering 10, sy. 5 (Eylül 2024): 1275-91.
EndNote Illyas SM, Bapu BRR, Manokar AM (01 Eylül 2024) Experimental and computational study of heat transfer and flow structure of slotted impinging jet. Journal of Thermal Engineering 10 5 1275–1291.
IEEE S. M. Illyas, B. R. R. Bapu, ve A. M. Manokar, “Experimental and computational study of heat transfer and flow structure of slotted impinging jet”, Journal of Thermal Engineering, c. 10, sy. 5, ss. 1275–1291, 2024.
ISNAD Illyas, S. Mohamed vd. “Experimental and Computational Study of Heat Transfer and Flow Structure of Slotted Impinging Jet”. Journal of Thermal Engineering 10/5 (Eylül 2024), 1275-1291.
JAMA Illyas SM, Bapu BRR, Manokar AM. Experimental and computational study of heat transfer and flow structure of slotted impinging jet. Journal of Thermal Engineering. 2024;10:1275–1291.
MLA Illyas, S. Mohamed vd. “Experimental and Computational Study of Heat Transfer and Flow Structure of Slotted Impinging Jet”. Journal of Thermal Engineering, c. 10, sy. 5, 2024, ss. 1275-91.
Vancouver Illyas SM, Bapu BRR, Manokar AM. Experimental and computational study of heat transfer and flow structure of slotted impinging jet. Journal of Thermal Engineering. 2024;10(5):1275-91.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering