The integration of vertiports into airports for eVTOL/UAV flights poses operational challenges. The aim of the study was to propose and prioritize solutions to overcome these challenges. A comprehensive literature review identified remote vertiport networks, geofencing technology, dedicated airspace corridors, advanced collision avoidance systems and dynamic airspace management as potential solutions. These solutions were prioritized using the Analytic Hierarchy Process (AHP) based on criteria such as safety, cost, efficiency, feasibility, and sustainability. Dynamic airspace management (=0.396) was the highest priority, followed by remote vertiport networks (=0.385), dedicated airspace corridors (=0.273), geofencing technology (=0.205), and advanced collision avoidance systems (=0.137). The study highlights the importance of dynamic data sharing and real-time planning through integrated ATM/UTM systems, enhanced by AI technologies, to ensure safety and efficiency. In addition, the development of remote vertiport networks and dedicated airspace corridors is essential to manage growing air traffic and ensure the safe coexistence of eVTOL/UAVs and traditional aircraft. Geofencing technology and advanced collision avoidance systems are also essential to maintain safety and operational integrity. It is recommended that future studies focus on the integration of ATM/UTM and the application of artificial intelligence. Continued collaboration between UAM stakeholders is essential to develop effective integration strategies.
Abastante, F., Corrente, S., Greco, S., Ishizaka, A., & Lami, I. (2019). A new parsimonious AHP methodology: Assigning priorities to many objects by comparing pairwise few reference objects. Expert Systems with Applications, 127, 109–120. https://doi.org/10.1016/j.eswa.2019.02.036
Abeyratne, D. R., & Abeyratne, R. (2014). The airport business. In Law and Regulation of Aerodromes. 145–167).
Ackerman, E., Cass, S., Dumiak, M., & Gallucci, M. (2021). Transportation: How safe are eVTOLs? Extremely safe—say manufacturers: News. IEEE Spectrum, 58(11), 6–13.
Afrin, T., & Yodo, N. (2020). A survey of road traffic congestion measures towards a sustainable and resilient transportation system. Sustainability, 12(11), 4660. https://doi.org/10.3390/su12114660
Ahn, B., & Hwang, H. (2022). Design criteria and accommodating capacity analysis of vertiports for urban air mobility and its application at Gimpo Airport in Korea. Applied Sciences, 12(12), 6077. https://doi.org/10.3390/app12126077
Ahrenhold, N., Pohling, O., & Schier-Morgenthal, S. (2021). Impact of air taxis on air traffic in the vicinity of airports. Infrastructures, 6(10), 140. https://doi.org/10.3390/infrastructures6100140
Ali, B. S. (2019). Traffic management for drones flying in the city. International Journal of Critical Infrastructure Protection, 26, 100310.
Almeida, C., Li, W., Meinerz, G., & Li, L. (2016). Satisficing game approach to collaborative decision making including airport management. IEEE Transactions on Intelligent Transportation Systems, 17, 2262–2271. https://doi.org/10.1109/TITS.2016.2516444
Al-Rubaye, S., Tsourdos, A., & Namuduri, K. (2023). Advanced air mobility operation and infrastructure for sustainable connected eVTOL vehicle. Drones, 7(5), 319. https://doi.org/10.3390/drones7050319
Alturbeh, H., & Whidborne, J. (2020). Visual flight rules-based collision avoidance systems for UAV flying in civil aerospace. Robotics, 9(1), 9. https://doi.org/10.3390/robotics9010009
Asslouj, A., Atkins, E., & Rastgoftar, H. (2023). Can a Laplace PDE define air corridors through low-altitude airspace? 2023 International Conference on Unmanned Aircraft Systems (ICUAS), 1–8. https://doi.org/10.1109/ICUAS57906.2023.10180409
Auerbach, S., & Koch, B. (2007). Cooperative approaches to managing air traffic efficiently—the airline perspective. Journal of Air Transport Management, 13, 37–44. https://doi.org/10.1016/j.jairtraman.2006.10.005
Australia CASA. (2023). Advisory circular AC 139.V-01v1.0: Guidance for vertiport design, D23/134615. Retrieved from https://www.casa.gov.au/sites/default/files/2023-07/advisory-circular-139.v-01-guidance-vertiport-design.pdf
Brunelli, M., Ditta, C. C., & Postorino, M. N. (2023). New infrastructures for urban air mobility systems: A systematic review on vertiport location and capacity. Journal of Air Transport Management, 112, 102460. https://doi.org/10.1016/j.jairtraman.2023.102460
Cafieri, S., & D’Ambrosio, C. (2017). Feasibility pump for aircraft deconfliction with speed regulation. Journal of Global Optimization, 71, 501–515. https://doi.org/10.1007/s10898-017-0560-7
Caulfield, B., Bailey, D., & Mullarkey, S. (2013). Using data envelopment analysis as a public transport project appraisal tool. Transport Policy, 29, 74–85. https://doi.org/10.1016/j.tranpol.2013.04.006
Chang, Y., Shao, P., & Chen, H. (2015). Performance evaluation of airport safety management systems in Taiwan. Safety Science, 75, 72–86. https://doi.org/10.1016/j.ssci.2014.12.006
Cheng, P., & Geng, R. (2010). Dynamic airspace management—Models and algorithms. Air Traffic Control.
Cheng, V. H. (2004). Surface operation automation research for airport tower and flight deck automation. In Proceedings. The 7th International IEEE Conference on Intelligent Transportation Systems (IEEE Cat. No. 04TH8749, 607–612. https://doi.org/10.1109/ITSC.2004.1398970
Cizrelioğulları, M. N., Barut, P., & Imanov, T. (2022). Future air transportation ramification: Urban air mobility (UAM) concept. Prizren Social Science Journal, 6(2), 24–31.
Clarke, M., Smart, J., Botero, E. M., Maier, W., & Alonso, J. J. (2019). Strategies for posing a well-defined problem for urban air mobility vehicles. In AIAA Scitech 2019 Forum, 0818. https://doi.org/10.2514/6.2019-0818
Coppola, P., De Fabiis, F., & Silvestri, F. (2024). Urban air mobility (UAM): Airport shuttles or city-taxis? Transport Policy, 150, 24–34.
Daskilewicz, M., German, B., Warren, M., Garrow, L., Boddupalli, S., & Douthat, T. (2018). Progress in vertiport placement and estimating aircraft range requirements for eVTOL daily commuting. 2018 Aviation Technology, Integration, and Operations Conference. https://doi.org/10.2514/6.2018-2884
Dmitruk, A., & Koshevoy, G. (1991). On the existence of a technical efficiency criterion. Journal of Economic Theory, 55, 121–144. https://doi.org/10.1016/0022-0531(91)90061-7
Dulchinos, V., Wood, R. D., Farrahi, A., Mogford, R., Shyr, M., & Ghatas, R. (2022). Design and analysis of corridors for UAM operations. In 2022 IEEE/AIAA 41st Digital Avionics Systems Conference (DASC), pp. 1–10. https://doi.org/10.1109/DASC55683.2022.9925820
Eissfeldt, H. (2020). Sustainable urban air mobility supported with participatory noise sensing. Sustainability, 12(8), 3320. https://doi.org/10.3390/su12083320
Ellis, K. K., Prinzel, L. J., Davies, M. D., Homola, J., Glaab, L., Krois, P., et al. (2023). An in-time aviation safety management system (IASMS) concept of operations for vertiport design and operations. In AIAA AVIATION 2023 Forum, 3965. https://doi.org/10.2514/6.2023-3965
European Union Safety Agency. (2022). Prototype technical specifications for the design of VFR vertiports for operation with manned VTOL-capable aircraft certified in the enhanced category. Retrieved from https://www.easa.europa.eu/document-library/general-publications/prototype-technical-designspecifications-vertiports
Forsyth, P. (2007). The impacts of emerging aviation trends on airport infrastructure. Journal of Air Transport Management, 13, 45–52. https://doi.org/10.1016/j.jairtraman.2006.10.004
Future Travel Experience. (2022). Mobility. Retrieved from https://www.futuretravelexperience.com/2022/08/vports-to-build-and-operate-vertiport-hub-at-sao-paulo-international-airport/
Gelhausen, M., Berster, P., & Wilken, D. (2013). Do airport capacity constraints have a serious impact on the future development of air traffic? Journal of Air Transport Management, 28, 3–13. https://doi.org/10.1016/j.jairtraman.2012.12.004
Gerdes, I., Temme, A., & Schultz, M. (2018). Dynamic airspace sectorisation for flight-centric operations. Transportation Research Part C: Emerging Technologies, 95, 460–480. https://doi.org/10.1016/j.trc.2018.07.032
Gibson, W., & Morrell, P. (2004). Theory and practice in aircraft financial evaluation. Journal of Air Transport Management, 10, 427–433. https://doi.org/10.1016/j.jairtraman.2004.07.002
Gillis, D., Petri, M., Pratelli, A., Semanjski, I., & Semanjski, S. (2021). Urban air mobility: A state of art analysis. In Computational Science and Its Applications–ICCSA 2021: 21st International Conference, Cagliari, Italy, September 13–16, 2021, Proceedings, Part II, 411–425. Springer International Publishing.
Groupe ADP. (n.d.). Innovation. Retrieved from https://presse.groupeadp.fr/first-vertiport-pontoise/?lang=en
Guida, R., Bertolino, A. C., De Martin, A., Raviola, A., Jacazio, G., & Sorli, M. (2023). On the effects of strain wave gear kinematic errors on the behavior of an electro-mechanical flight control actuator for eVTOL aircrafts. Materials Research Proceedings, 26, 207–212. https://doi.org/10.21741/9781644902431-34
Hosseinzadeh, M. (2021). UAV geofencing: Navigation of UVAs in constrained environments. In Unmanned Aerial Systems, 567–594. Academic Press. https://doi.org/10.1016/B978-0-12-820276-0.00029-7
Jain, S., Jain, S. S., & Jain, G. V. (2018). An operational analysis and congestion estimation of urban bus route based on ITS. Civil Engineering Research Journal, 3(2), 555610. https://doi.org/10.19080/CERJ.2018.03.555610
Janic, M. (2000). An assessment of risk and safety in civil aviation. Journal of Air Transport Management, 6, 43–50. https://doi.org/10.1016/S0969-6997(99)00021-6
Janic, M. (2016). Analyzing, modeling, and assessing the performances of land use by airports. International Journal of Sustainable Transportation, 10, 683–702. https://doi.org/10.1080/15568318.2015.1104566
Jin, Z., Ng, K. K., Zhang, C., Wu, L., & Li, A. (2024). Integrated optimization of strategic planning and service operations for urban air mobility systems. Transportation Research Part A: Policy and Practice, 183, 104059.
Karacapilidis, N. (2000). Integrating new information and communication technologies in a group decision support system. International Transactions in Operational Research, 7, 487–507. https://doi.org/10.1016/S0969-6016(00)00028-9
Kim, W., Park, J., Yu, J. W., & Ko, J. (2023). A study on the criterions affecting UAM vertiport location based on user-oriented perspectives. Journal of Korean Society of Transportation, 41(2), 212–225.
Kleinbekman, I. C., Mitici, M. A., & Wei, P. (2018). eVTOL arrival sequencing and scheduling for on-demand urban air mobility. In 2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC), 1–7. IEEE. https://doi.org/10.1109/DASC.2018.8569645
Kong, Y., Zhang, X., & Mahadevan, S. (2022). Bayesian deep learning for aircraft hard landing safety assessment. IEEE Transactions on Intelligent Transportation Systems, 23(10), 17062–17076.
Koscak, P., Jencova, E., Galanda, J., & Liptakova, D. (2019). Airports SMS penetration with occupational health protection. 2019 New Trends in Aviation Development (NTAD), 96–101. https://doi.org/10.1109/NTAD.2019.8875592
Lanshou, H., & Fuqing, D. (2010). Dynamic air route management based on flight demand. In 2010 Second International Conference on Computer and Network Technology (pp. 426–429). IEEE. https://doi.org/10.1109/ICCNT.2010.79
Lascara, B., Lacher, A., DeGarmo, M., Maroney, D., Niles, R., & Vempati, L. (2019). Urban air mobility airspace integration concepts: Operational concepts and exploration approaches. MITRE CORP MCLEAN VA MCLEAN. Retrieved from https://apps.dtic.mil/sti/pdfs/AD1107997.pdf
Lin, C., & Wu, Y. (2011). Collision avoidance solution for low-altitude flights. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 225, 779–790. https://doi.org/10.1177/0954410011399211
Lombaerts, T., Kaneshige, J., Schuet, S., Aponso, B. L., Shish, K. H., & Hardy, G. (2020). Dynamic inversion-based full envelope flight control for an eVTOL vehicle using a unified framework. In AIAA Scitech 2020 Forum (p. 1619). https://doi.org/10.2514/6.2020-1619
Markatos, D. N., & Pantelakis, S. G. (2022). Assessment of the impact of material selection on aviation sustainability, from a circular economy perspective. Aerospace, 9(2), 52.
McQueen, B. (2021). Unsettled issues concerning urban air mobility infrastructure (No. EPR2021025). SAE Technical Paper. Retrieved from https://saemobilus.sae.org/content/EPR2021025/
Michael, A. P., & Meyers, P. E. (2022). Engineering brief no. 105, vertiport design. Memorandum, Airport Engineering Division, AAS-100, Federal Aviation Administration. Retrieved from https://www.faa.gov/sites/faa.gov/files/eb-105-vertiports.pdf
Mudumba, S. V., Chao, H., Maheshwari, A., DeLaurentis, D. A., & Crossley, W. A. (2021). Modeling CO2 emissions from trips using urban air mobility and emerging automobile technologies. Transportation Research Record, 2675(9), 1224–1237. https://doi.org/10.1177/03611981211006439
Nikulin, A. (2018). The system of collaborative decision making as an effective tool for the organization of the airport operation in peak loads. Civil Aviation High Technologies. https://doi.org/10.26467/2079-0619-2018-21-5-43-55
Panchal, I., Armanini, S., & Metz, I. (2023). Validation of collision detection and avoidance methods for urban air mobility through simulation. ArXiv, abs/2311.18047. https://doi.org/10.48550/arXiv.2311.18047
Park, H., Sison, F., Mendez, B., Marchetti, M., & Anaya, G. (2020). Conceptual design of vertiport and UAM corridor. San Jose State University. Retrieved from https://vsgc.odu.edu/acrpdesigncompetition/wp-content/uploads/sites/3/2021/06/2021-ACRP-Design-Competition_1st_Operation.pdf
Peksa, M., Dandl, F., & Bogenberger, K. (2023). Hierarchical vertiport network for an urban air mobility system: Munich metropolitan area case study. 2023 IEEE/AIAA 42nd Digital Avionics Systems Conference (DASC), 1–6. https://doi.org/10.1109/DASC58513.2023.10311154
Peng, X., Bulusu, V., & Sengupta, R. (2022). Hierarchical vertiport network design for on-demand multi-modal urban air mobility. In 2022 IEEE/AIAA 41st Digital Avionics Systems Conference (DASC) 1–8. IEEE. https://doi.org/10.1109/DASC55683.2022.9925782
Pothana, P., Joy, J., Snyder, P., & Vidhyadharan, S. (2023). UAS air-risk assessment in and around airports. In 2023 Integrated Communication, Navigation and Surveillance Conference (ICNS). 1–11. https://doi.org/10.1109/ICNS58246.2023.10124319
Pradeep, P. (2019). Arrival management for eVTOL aircraft in on-demand urban air mobility. Aerospace Engineering. Retrieved from https://dr.lib.iastate.edu/handle/20.500.12876/31259
Pradeep, P., & Wei, P. (2018). Energy efficient arrival with RTA constraint for urban eVTOL operations. In 2018 AIAA Aerospace Sciences Meeting.
Preis, L. (2021). Quick sizing, throughput estimating and layout planning for VTOL aerodromes: A methodology for vertiport design. In AIAA Aviation 2021 Forum (p. 2372). https://doi.org/10.2514/6.2021-2372
Preis, L. (2023). Estimating vertiport passenger throughput capacity for prominent eVTOL designs. CEAS Aeronautical Journal, 1–16.
Preis, L., & Hornung, M. (2022). Vertiport operations modeling, agent-based simulation and parameter value specification. Electronics, 11(7), 1071. https://doi.org/10.3390/electronics11071071
Preis, L., & Vazquez, M. H. (2022). Vertiport throughput capacity under constraints caused by vehicle design, regulations and operations. In Delft International Conference on Urban Air-Mobility (DICUAM). Retrieved from http://cdn.aanmelderusercontent.nl/i/doc/8fa60b7fcfa71ea900ce2bea2037a151
Qu, W., Xu, C., Tan, X., Tang, A., He, H., & Liao, X. (2023). Preliminary concept of urban air mobility traffic rules. Drones, 7(1), 54. https://doi.org/10.3390/drones7010054
Raigoza, K., Chadwick, A., & Kishore, C. (2022). Electric vertical take-off and landing (eVTOL) vehicle reliability and safety analysis. In ASME International Mechanical Engineering Congress and Exposition. 86717, V009T14A036. American Society of Mechanical Engineers. https://doi.org/10.1115/IMECE2022-97038
Rimjha, M., & Trani, A. (2021). Urban air mobility: Factors affecting vertiport capacity. In 2021 Integrated Communications Navigation and Surveillance Conference (ICNS). 1–14. https://doi.org/10.1109/ICNS52807.2021.9441631
Rothfeld, R., Fu, M., Balać, M., & Antoniou, C. (2021). Potential urban air mobility travel time savings: An exploratory analysis of Munich, Paris, and San Francisco. Sustainability, 13(4), 2217. https://doi.org/10.3390/su13042217
Saaty, T. L., & Vargas, L. G. (2006). Decision making with the analytic network process. Springer Science+Business Media, LLC.
Sanches, M. P., Faria, R. A. P., & Cunha, S. R. (2020). Visual flight rules-based collision avoidance system for VTOL UAV. In 2020 5th International Conference on Robotics and Automation Engineering (ICRAE). https://doi.org/10.1109/ICRAE50850.2020.93108
Schweiger, K., & Preis, L. (2022). Urban air mobility: Systematic review of scientific publications and regulations for vertiport design and operations. Drones, 6(7), 179. https://doi.org/10.3390/drones6070179
Scott, B. I. (2022). Vertiports: Ready for takeoff... and landing. Journal of Air Law and Commerce, 87, 503.
Shmelova, T., Sikirda, Y., Yatsko, M., & Kasatkin, M. (2021). Synthesis of the collaborative decision-making models for the remote pilot during flight emergency. In 2021 IEEE 6th International Conference on Actual Problems of Unmanned Aerial Vehicles Development (APUAVD). 66–70. https://doi.org/10.1109/APUAVD53804.2021.9615175
Smith, M., Strohmeier, M., Lenders, V., & Martinovic, I. (2020). Understanding realistic attacks on airborne collision avoidance systems. Journal of Transportation Security, 15, 87–118. https://doi.org/10.1007/s12198-021-00238-2
Song, K., Yeo, H., & Moon, J. H. (2021). Approach control concepts and optimal vertiport airspace design for urban air mobility (UAM) operation. International Journal of Aeronautical and Space Sciences, 22, 982–994.
Sridhar, B., Grabbe, S., & Mukherjee, A. (2008). Modeling and optimization in traffic flow management. Proceedings of the IEEE, 96, 2060–2080. https://doi.org/10.1109/JPROC.2008.2006141
Stevens, M. N., Coloe, B., & Atkins, E. M. (2015). Platform-independent geofencing for low altitude UAS operations. In 15th AIAA Aviation Technology, Integration, and Operations Conference, 3329. https://doi.org/10.2514/6.2015-3329
Stevens, M., & Atkins, E. (2020). Geofence definition and deconfliction for UAS traffic management. IEEE Transactions on Intelligent Transportation Systems, 22(9), 5880–5889.
Taylor, M., Saldanli, A., & Park, A. (2020). Design of a vertiport design tool. In 2020 Integrated Communications Navigation and Surveillance Conference (ICNS). 2A2-1. https://doi.org/10.1109/ICNS50378.2020.9222989
Thu, Z. W., Kim, D., Lee, J., Won, W. J., Lee, H. J., Ywet, N. L., Maw, A. A., & Lee, J. W. (2022). Multivehicle point-to-point network problem formulation for UAM operation management used with dynamic scheduling. Applied Sciences, 12(22), 11858. https://doi.org/10.3390/app122211858
Tomaszewska, J., Krzysiak, P., Zieja, M., & Woch, M. (2018). Statistical analysis of ground-related incidents at airports. Journal of KONES, 25, 467–472. https://doi.org/10.5604/01.3001.0012.4369
Toratani, D., Hirabayashi, H., Senoguchi, A., & Otsuyama, T. (2023). Study on urban air mobility corridor design in the vicinity of airports. In 2023 IEEE/AIAA 42nd Digital Avionics Systems Conference (DASC). 1–7. https://doi.org/10.1109/DASC58513.2023.10311283
Tuncal, A., & Uslu, S. (2021). Kentsel hava hareketliliği kavramının gelişiminde iki önemli faktör: ATM ve toplum. Karamanoğlu Mehmetbey Üniversitesi Sosyal ve Ekonomik Araştırmalar Dergisi, 23(41), 564–577.
Unverricht, J., Buck, B. K., Petty, B., Chancey, E. T., Politowicz, M. S., & Glaab, L. J. (2024). Vertiport management from simulation to flight: Continued human factors assessment of vertiport operations. In AIAA SCITECH 2024 Forum. 0526. https://doi.org/10.2514/6.2024-0526
Vascik, P. D., & Hansman, R. J. (2019). Development of vertiport capacity envelopes and analysis of their sensitivity to topological and operational factors. In AIAA Scitech 2019 Forum. 0526. https://doi.org/10.2514/6.2019-0526
Vascik, P. D., & Hansman, R. J. (2020). Allocation of airspace cutouts to enable procedurally separated small aircraft operations in terminal areas. In AIAA AVIATION 2020 FORUM. 2905.
Vitale, C. (2023). Eve and Kookiejar set to advance vertiport operations in Dubai. Retrieved from https://www.airport-technology.com/news/eve-and-kookiejar-set-to-advance-vertiport-operations-in-dubai/?cf-view
Volocopter. (2022). Newsroom. Retrieved from https://www.volocopter.com/en/newsroom/italys-first-vertiport-deployed-at-fiumicino-airport
Wang, K., Jacquillat, A., & Vaze, V. (2022). Vertiport planning for urban aerial mobility: An adaptive discretization approach. Manufacturing & Service Operations Management, 24, 3215–3235. https://doi.org/10.1287/msom.2022.1148
Wang, X., Sang, Y., & Zhou, G. (2020). Combining stable inversion and H∞ synthesis for trajectory tracking and disturbance rejection control of civil aircraft auto landing. Applied Sciences, 10(4), 1224.
Willey, L., & Salmon, J. (2021). A method for urban air mobility network design using hub location and subgraph isomorphism. Transportation Research Part C: Emerging Technologies, 125, 102997. https://doi.org/10.1016/j.trc.2021.102997
Wipf, H. (2020). Safety versus security in aviation. In The Coupling of Safety and Security: Exploring Interrelations in Theory and Practice. 29–41.
Wu, Z., & Zhang, Y. (2021). Integrated network design and demand forecast for on-demand urban air mobility. Engineering, 7(4), 473–487. https://doi.org/10.1016/j.eng.2020.11.007
Xie, Y., Shortle, J., & Donohue, G. (2004). Airport terminal-approach safety and capacity analysis using an agent-based model. In Proceedings of the 2004 Winter Simulation Conference, 2004. 2, 1349–1357.
Yang, X., & Wei, P. (2021). Autonomous free flight operations in urban air mobility with computational guidance and collision avoidance. IEEE Transactions on Intelligent Transportation Systems, 22, 5962–5975. https://doi.org/10.1109/TITS.2020.3048360
Yang, X., Deng, L., Liu, J., Wei, P., & Li, H. (2020). Multi-agent autonomous operations in urban air mobility with communication constraints. In AIAA Scitech 2020 Forum (p. 1839). https://doi.org/10.2514/6.2020-1839
Ye, S., Wan, Z., Zeng, L., Li, C., & Zhang, Y. (2020). A vision-based navigation method for eVTOL final approach in urban air mobility (UAM). In 2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI). 645–649. https://doi.org/10.1109/CVCI51460.2020.9338487
Yedavalli, P. (2021). Designing and simulating urban air mobility vertiport networks under land use constraints (No. TRBAM-21-00693). Retrieved from https://trid.trb.org/view/1759451
Yedavalli, P., & Cohen, A. (2022). Planning land use constrained networks of urban air mobility infrastructure in the San Francisco Bay Area. Transportation Research Record, 2676, 106–116. https://doi.org/10.1177/03611981221076839
Yılmaz, A., & Ulvi, H. (2022). Kentsel hava sahasında insansız hava aracı sistemleri trafik yönetimi için verilmesi gereken hizmetler ve kullanılabilecek bazı teknolojiler. Türkiye İnsansız Hava Araçları Dergisi, 4(1), 8–18.
Zanin, M., & Lillo, F. (2013). Modelling the air transport with complex networks: A short review. The European Physical Journal Special Topics, 215, 5–21. https://doi.org/10.1140/epjst/e2013-01711-9
Zelinski, S. (2020). Operational analysis of vertiport surface topology. In 2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC). 1–10. https://doi.org/10.1109/DASC50938.2020.9256794
Zhang, H., Fei, Y., Li, J., Li, B., & Liu, H. (2022). Method of vertiport capacity assessment based on queuing theory of unmanned aerial vehicles. Sustainability, 15(1), 709.
Zhang, X. (2019). Operation and cohesion strategy of hub airport ground based on the background of multi-terminal areas. In IOP Conference Series: Earth and Environmental Science. 330 (2), 022128. IOP Publishing. https://doi.org/10.1088/1755-1315/330/2/022128
Zhu, G., & Wei, P. (2016). Low-altitude UAS traffic coordination with dynamic geofencing. In 16th AIAA Aviation Technology, Integration, and Operations Conference.
Havalimanlarına Vertiportların Entegrasyonundaki Operasyonel Zorluklar ve Potansiyel Çözümlerin Önceliklendirilmesi
Vertiportların eVTOL/UAV uçuşları için havalimanlarına entegrasyonu fırsatlarla beraber operasyonel zorlukları da beraberinde getirmektedir. Bu çalışmanın amacı, bu zorlukların üstesinden gelmek için çözümler önermek ve bu çözümleri önceliklendirmektir. Kapsamlı bir literatür taraması sonucunda havalimanı civarında vertiport ağları, coğrafi sınır belirleme teknolojisi, ayrılmış hava sahası koridorları, ileri çarpışma önleme sistemleri ve dinamik hava sahası yönetimi gibi potansiyel çözümler belirlenmiştir. Bu çözümler emniyet, maliyet, verimlilik, uygulanabilirlik ve sürdürülebilirlik kriterlerine dayalı olarak Analitik Hiyerarşi Süreci (AHP) kullanılarak önceliklendirilmiştir. Dinamik hava sahası yönetimi (=0.396) en yüksek önceliğe sahipken, bunu sırasıyla havalimanı civarına konumlandırılan vertiport ağları (=0.385), ayrılmış hava sahası koridorları (=0.273), coğrafi sınır belirleme teknolojisi (=0.205) ve ileri çarpışma önleme sistemleri (=0.137) takip etmiştir. Çalışma uçuş emniyeti ve verimliliği sağlamak için entegre ATM/UTM sistemleri aracılığıyla dinamik veri paylaşımı ve gerçek zamanlı planlamanın, yapay zeka teknolojileriyle desteklenmesinin önemini vurgulamaktadır. Ayrıca artan hava trafiğini yönetmek ve eVTOL/UAV'ların geleneksel hava araçlarıyla emniyetli bir şekilde bir arada bulunmasını sağlamak için havalimanı civarına konumlandırılan vertiport ağlarının ve ayrılmış hava sahası koridorlarının geliştirilmesi gereklidir. Coğrafi sınır belirleme teknolojisi ve ileri çarpışma önleme sistemleri de operasyonel bütünlüğü sürdürmek için önemlidir. Gelecek çalışmaların ATM/UTM entegrasyonuna ve bu entegrasyonda yapay zekanın uygulanmasına odaklanması önerilmektedir. UAM paydaşları arasındaki sürekli iş birliği, etkili entegrasyon stratejileri geliştirme sürecine fayda sağlayacaktır.
Abastante, F., Corrente, S., Greco, S., Ishizaka, A., & Lami, I. (2019). A new parsimonious AHP methodology: Assigning priorities to many objects by comparing pairwise few reference objects. Expert Systems with Applications, 127, 109–120. https://doi.org/10.1016/j.eswa.2019.02.036
Abeyratne, D. R., & Abeyratne, R. (2014). The airport business. In Law and Regulation of Aerodromes. 145–167).
Ackerman, E., Cass, S., Dumiak, M., & Gallucci, M. (2021). Transportation: How safe are eVTOLs? Extremely safe—say manufacturers: News. IEEE Spectrum, 58(11), 6–13.
Afrin, T., & Yodo, N. (2020). A survey of road traffic congestion measures towards a sustainable and resilient transportation system. Sustainability, 12(11), 4660. https://doi.org/10.3390/su12114660
Ahn, B., & Hwang, H. (2022). Design criteria and accommodating capacity analysis of vertiports for urban air mobility and its application at Gimpo Airport in Korea. Applied Sciences, 12(12), 6077. https://doi.org/10.3390/app12126077
Ahrenhold, N., Pohling, O., & Schier-Morgenthal, S. (2021). Impact of air taxis on air traffic in the vicinity of airports. Infrastructures, 6(10), 140. https://doi.org/10.3390/infrastructures6100140
Ali, B. S. (2019). Traffic management for drones flying in the city. International Journal of Critical Infrastructure Protection, 26, 100310.
Almeida, C., Li, W., Meinerz, G., & Li, L. (2016). Satisficing game approach to collaborative decision making including airport management. IEEE Transactions on Intelligent Transportation Systems, 17, 2262–2271. https://doi.org/10.1109/TITS.2016.2516444
Al-Rubaye, S., Tsourdos, A., & Namuduri, K. (2023). Advanced air mobility operation and infrastructure for sustainable connected eVTOL vehicle. Drones, 7(5), 319. https://doi.org/10.3390/drones7050319
Alturbeh, H., & Whidborne, J. (2020). Visual flight rules-based collision avoidance systems for UAV flying in civil aerospace. Robotics, 9(1), 9. https://doi.org/10.3390/robotics9010009
Asslouj, A., Atkins, E., & Rastgoftar, H. (2023). Can a Laplace PDE define air corridors through low-altitude airspace? 2023 International Conference on Unmanned Aircraft Systems (ICUAS), 1–8. https://doi.org/10.1109/ICUAS57906.2023.10180409
Auerbach, S., & Koch, B. (2007). Cooperative approaches to managing air traffic efficiently—the airline perspective. Journal of Air Transport Management, 13, 37–44. https://doi.org/10.1016/j.jairtraman.2006.10.005
Australia CASA. (2023). Advisory circular AC 139.V-01v1.0: Guidance for vertiport design, D23/134615. Retrieved from https://www.casa.gov.au/sites/default/files/2023-07/advisory-circular-139.v-01-guidance-vertiport-design.pdf
Brunelli, M., Ditta, C. C., & Postorino, M. N. (2023). New infrastructures for urban air mobility systems: A systematic review on vertiport location and capacity. Journal of Air Transport Management, 112, 102460. https://doi.org/10.1016/j.jairtraman.2023.102460
Cafieri, S., & D’Ambrosio, C. (2017). Feasibility pump for aircraft deconfliction with speed regulation. Journal of Global Optimization, 71, 501–515. https://doi.org/10.1007/s10898-017-0560-7
Caulfield, B., Bailey, D., & Mullarkey, S. (2013). Using data envelopment analysis as a public transport project appraisal tool. Transport Policy, 29, 74–85. https://doi.org/10.1016/j.tranpol.2013.04.006
Chang, Y., Shao, P., & Chen, H. (2015). Performance evaluation of airport safety management systems in Taiwan. Safety Science, 75, 72–86. https://doi.org/10.1016/j.ssci.2014.12.006
Cheng, P., & Geng, R. (2010). Dynamic airspace management—Models and algorithms. Air Traffic Control.
Cheng, V. H. (2004). Surface operation automation research for airport tower and flight deck automation. In Proceedings. The 7th International IEEE Conference on Intelligent Transportation Systems (IEEE Cat. No. 04TH8749, 607–612. https://doi.org/10.1109/ITSC.2004.1398970
Cizrelioğulları, M. N., Barut, P., & Imanov, T. (2022). Future air transportation ramification: Urban air mobility (UAM) concept. Prizren Social Science Journal, 6(2), 24–31.
Clarke, M., Smart, J., Botero, E. M., Maier, W., & Alonso, J. J. (2019). Strategies for posing a well-defined problem for urban air mobility vehicles. In AIAA Scitech 2019 Forum, 0818. https://doi.org/10.2514/6.2019-0818
Coppola, P., De Fabiis, F., & Silvestri, F. (2024). Urban air mobility (UAM): Airport shuttles or city-taxis? Transport Policy, 150, 24–34.
Daskilewicz, M., German, B., Warren, M., Garrow, L., Boddupalli, S., & Douthat, T. (2018). Progress in vertiport placement and estimating aircraft range requirements for eVTOL daily commuting. 2018 Aviation Technology, Integration, and Operations Conference. https://doi.org/10.2514/6.2018-2884
Dmitruk, A., & Koshevoy, G. (1991). On the existence of a technical efficiency criterion. Journal of Economic Theory, 55, 121–144. https://doi.org/10.1016/0022-0531(91)90061-7
Dulchinos, V., Wood, R. D., Farrahi, A., Mogford, R., Shyr, M., & Ghatas, R. (2022). Design and analysis of corridors for UAM operations. In 2022 IEEE/AIAA 41st Digital Avionics Systems Conference (DASC), pp. 1–10. https://doi.org/10.1109/DASC55683.2022.9925820
Eissfeldt, H. (2020). Sustainable urban air mobility supported with participatory noise sensing. Sustainability, 12(8), 3320. https://doi.org/10.3390/su12083320
Ellis, K. K., Prinzel, L. J., Davies, M. D., Homola, J., Glaab, L., Krois, P., et al. (2023). An in-time aviation safety management system (IASMS) concept of operations for vertiport design and operations. In AIAA AVIATION 2023 Forum, 3965. https://doi.org/10.2514/6.2023-3965
European Union Safety Agency. (2022). Prototype technical specifications for the design of VFR vertiports for operation with manned VTOL-capable aircraft certified in the enhanced category. Retrieved from https://www.easa.europa.eu/document-library/general-publications/prototype-technical-designspecifications-vertiports
Forsyth, P. (2007). The impacts of emerging aviation trends on airport infrastructure. Journal of Air Transport Management, 13, 45–52. https://doi.org/10.1016/j.jairtraman.2006.10.004
Future Travel Experience. (2022). Mobility. Retrieved from https://www.futuretravelexperience.com/2022/08/vports-to-build-and-operate-vertiport-hub-at-sao-paulo-international-airport/
Gelhausen, M., Berster, P., & Wilken, D. (2013). Do airport capacity constraints have a serious impact on the future development of air traffic? Journal of Air Transport Management, 28, 3–13. https://doi.org/10.1016/j.jairtraman.2012.12.004
Gerdes, I., Temme, A., & Schultz, M. (2018). Dynamic airspace sectorisation for flight-centric operations. Transportation Research Part C: Emerging Technologies, 95, 460–480. https://doi.org/10.1016/j.trc.2018.07.032
Gibson, W., & Morrell, P. (2004). Theory and practice in aircraft financial evaluation. Journal of Air Transport Management, 10, 427–433. https://doi.org/10.1016/j.jairtraman.2004.07.002
Gillis, D., Petri, M., Pratelli, A., Semanjski, I., & Semanjski, S. (2021). Urban air mobility: A state of art analysis. In Computational Science and Its Applications–ICCSA 2021: 21st International Conference, Cagliari, Italy, September 13–16, 2021, Proceedings, Part II, 411–425. Springer International Publishing.
Groupe ADP. (n.d.). Innovation. Retrieved from https://presse.groupeadp.fr/first-vertiport-pontoise/?lang=en
Guida, R., Bertolino, A. C., De Martin, A., Raviola, A., Jacazio, G., & Sorli, M. (2023). On the effects of strain wave gear kinematic errors on the behavior of an electro-mechanical flight control actuator for eVTOL aircrafts. Materials Research Proceedings, 26, 207–212. https://doi.org/10.21741/9781644902431-34
Hosseinzadeh, M. (2021). UAV geofencing: Navigation of UVAs in constrained environments. In Unmanned Aerial Systems, 567–594. Academic Press. https://doi.org/10.1016/B978-0-12-820276-0.00029-7
Jain, S., Jain, S. S., & Jain, G. V. (2018). An operational analysis and congestion estimation of urban bus route based on ITS. Civil Engineering Research Journal, 3(2), 555610. https://doi.org/10.19080/CERJ.2018.03.555610
Janic, M. (2000). An assessment of risk and safety in civil aviation. Journal of Air Transport Management, 6, 43–50. https://doi.org/10.1016/S0969-6997(99)00021-6
Janic, M. (2016). Analyzing, modeling, and assessing the performances of land use by airports. International Journal of Sustainable Transportation, 10, 683–702. https://doi.org/10.1080/15568318.2015.1104566
Jin, Z., Ng, K. K., Zhang, C., Wu, L., & Li, A. (2024). Integrated optimization of strategic planning and service operations for urban air mobility systems. Transportation Research Part A: Policy and Practice, 183, 104059.
Karacapilidis, N. (2000). Integrating new information and communication technologies in a group decision support system. International Transactions in Operational Research, 7, 487–507. https://doi.org/10.1016/S0969-6016(00)00028-9
Kim, W., Park, J., Yu, J. W., & Ko, J. (2023). A study on the criterions affecting UAM vertiport location based on user-oriented perspectives. Journal of Korean Society of Transportation, 41(2), 212–225.
Kleinbekman, I. C., Mitici, M. A., & Wei, P. (2018). eVTOL arrival sequencing and scheduling for on-demand urban air mobility. In 2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC), 1–7. IEEE. https://doi.org/10.1109/DASC.2018.8569645
Kong, Y., Zhang, X., & Mahadevan, S. (2022). Bayesian deep learning for aircraft hard landing safety assessment. IEEE Transactions on Intelligent Transportation Systems, 23(10), 17062–17076.
Koscak, P., Jencova, E., Galanda, J., & Liptakova, D. (2019). Airports SMS penetration with occupational health protection. 2019 New Trends in Aviation Development (NTAD), 96–101. https://doi.org/10.1109/NTAD.2019.8875592
Lanshou, H., & Fuqing, D. (2010). Dynamic air route management based on flight demand. In 2010 Second International Conference on Computer and Network Technology (pp. 426–429). IEEE. https://doi.org/10.1109/ICCNT.2010.79
Lascara, B., Lacher, A., DeGarmo, M., Maroney, D., Niles, R., & Vempati, L. (2019). Urban air mobility airspace integration concepts: Operational concepts and exploration approaches. MITRE CORP MCLEAN VA MCLEAN. Retrieved from https://apps.dtic.mil/sti/pdfs/AD1107997.pdf
Lin, C., & Wu, Y. (2011). Collision avoidance solution for low-altitude flights. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 225, 779–790. https://doi.org/10.1177/0954410011399211
Lombaerts, T., Kaneshige, J., Schuet, S., Aponso, B. L., Shish, K. H., & Hardy, G. (2020). Dynamic inversion-based full envelope flight control for an eVTOL vehicle using a unified framework. In AIAA Scitech 2020 Forum (p. 1619). https://doi.org/10.2514/6.2020-1619
Markatos, D. N., & Pantelakis, S. G. (2022). Assessment of the impact of material selection on aviation sustainability, from a circular economy perspective. Aerospace, 9(2), 52.
McQueen, B. (2021). Unsettled issues concerning urban air mobility infrastructure (No. EPR2021025). SAE Technical Paper. Retrieved from https://saemobilus.sae.org/content/EPR2021025/
Michael, A. P., & Meyers, P. E. (2022). Engineering brief no. 105, vertiport design. Memorandum, Airport Engineering Division, AAS-100, Federal Aviation Administration. Retrieved from https://www.faa.gov/sites/faa.gov/files/eb-105-vertiports.pdf
Mudumba, S. V., Chao, H., Maheshwari, A., DeLaurentis, D. A., & Crossley, W. A. (2021). Modeling CO2 emissions from trips using urban air mobility and emerging automobile technologies. Transportation Research Record, 2675(9), 1224–1237. https://doi.org/10.1177/03611981211006439
Nikulin, A. (2018). The system of collaborative decision making as an effective tool for the organization of the airport operation in peak loads. Civil Aviation High Technologies. https://doi.org/10.26467/2079-0619-2018-21-5-43-55
Panchal, I., Armanini, S., & Metz, I. (2023). Validation of collision detection and avoidance methods for urban air mobility through simulation. ArXiv, abs/2311.18047. https://doi.org/10.48550/arXiv.2311.18047
Park, H., Sison, F., Mendez, B., Marchetti, M., & Anaya, G. (2020). Conceptual design of vertiport and UAM corridor. San Jose State University. Retrieved from https://vsgc.odu.edu/acrpdesigncompetition/wp-content/uploads/sites/3/2021/06/2021-ACRP-Design-Competition_1st_Operation.pdf
Peksa, M., Dandl, F., & Bogenberger, K. (2023). Hierarchical vertiport network for an urban air mobility system: Munich metropolitan area case study. 2023 IEEE/AIAA 42nd Digital Avionics Systems Conference (DASC), 1–6. https://doi.org/10.1109/DASC58513.2023.10311154
Peng, X., Bulusu, V., & Sengupta, R. (2022). Hierarchical vertiport network design for on-demand multi-modal urban air mobility. In 2022 IEEE/AIAA 41st Digital Avionics Systems Conference (DASC) 1–8. IEEE. https://doi.org/10.1109/DASC55683.2022.9925782
Pothana, P., Joy, J., Snyder, P., & Vidhyadharan, S. (2023). UAS air-risk assessment in and around airports. In 2023 Integrated Communication, Navigation and Surveillance Conference (ICNS). 1–11. https://doi.org/10.1109/ICNS58246.2023.10124319
Pradeep, P. (2019). Arrival management for eVTOL aircraft in on-demand urban air mobility. Aerospace Engineering. Retrieved from https://dr.lib.iastate.edu/handle/20.500.12876/31259
Pradeep, P., & Wei, P. (2018). Energy efficient arrival with RTA constraint for urban eVTOL operations. In 2018 AIAA Aerospace Sciences Meeting.
Preis, L. (2021). Quick sizing, throughput estimating and layout planning for VTOL aerodromes: A methodology for vertiport design. In AIAA Aviation 2021 Forum (p. 2372). https://doi.org/10.2514/6.2021-2372
Preis, L. (2023). Estimating vertiport passenger throughput capacity for prominent eVTOL designs. CEAS Aeronautical Journal, 1–16.
Preis, L., & Hornung, M. (2022). Vertiport operations modeling, agent-based simulation and parameter value specification. Electronics, 11(7), 1071. https://doi.org/10.3390/electronics11071071
Preis, L., & Vazquez, M. H. (2022). Vertiport throughput capacity under constraints caused by vehicle design, regulations and operations. In Delft International Conference on Urban Air-Mobility (DICUAM). Retrieved from http://cdn.aanmelderusercontent.nl/i/doc/8fa60b7fcfa71ea900ce2bea2037a151
Qu, W., Xu, C., Tan, X., Tang, A., He, H., & Liao, X. (2023). Preliminary concept of urban air mobility traffic rules. Drones, 7(1), 54. https://doi.org/10.3390/drones7010054
Raigoza, K., Chadwick, A., & Kishore, C. (2022). Electric vertical take-off and landing (eVTOL) vehicle reliability and safety analysis. In ASME International Mechanical Engineering Congress and Exposition. 86717, V009T14A036. American Society of Mechanical Engineers. https://doi.org/10.1115/IMECE2022-97038
Rimjha, M., & Trani, A. (2021). Urban air mobility: Factors affecting vertiport capacity. In 2021 Integrated Communications Navigation and Surveillance Conference (ICNS). 1–14. https://doi.org/10.1109/ICNS52807.2021.9441631
Rothfeld, R., Fu, M., Balać, M., & Antoniou, C. (2021). Potential urban air mobility travel time savings: An exploratory analysis of Munich, Paris, and San Francisco. Sustainability, 13(4), 2217. https://doi.org/10.3390/su13042217
Saaty, T. L., & Vargas, L. G. (2006). Decision making with the analytic network process. Springer Science+Business Media, LLC.
Sanches, M. P., Faria, R. A. P., & Cunha, S. R. (2020). Visual flight rules-based collision avoidance system for VTOL UAV. In 2020 5th International Conference on Robotics and Automation Engineering (ICRAE). https://doi.org/10.1109/ICRAE50850.2020.93108
Schweiger, K., & Preis, L. (2022). Urban air mobility: Systematic review of scientific publications and regulations for vertiport design and operations. Drones, 6(7), 179. https://doi.org/10.3390/drones6070179
Scott, B. I. (2022). Vertiports: Ready for takeoff... and landing. Journal of Air Law and Commerce, 87, 503.
Shmelova, T., Sikirda, Y., Yatsko, M., & Kasatkin, M. (2021). Synthesis of the collaborative decision-making models for the remote pilot during flight emergency. In 2021 IEEE 6th International Conference on Actual Problems of Unmanned Aerial Vehicles Development (APUAVD). 66–70. https://doi.org/10.1109/APUAVD53804.2021.9615175
Smith, M., Strohmeier, M., Lenders, V., & Martinovic, I. (2020). Understanding realistic attacks on airborne collision avoidance systems. Journal of Transportation Security, 15, 87–118. https://doi.org/10.1007/s12198-021-00238-2
Song, K., Yeo, H., & Moon, J. H. (2021). Approach control concepts and optimal vertiport airspace design for urban air mobility (UAM) operation. International Journal of Aeronautical and Space Sciences, 22, 982–994.
Sridhar, B., Grabbe, S., & Mukherjee, A. (2008). Modeling and optimization in traffic flow management. Proceedings of the IEEE, 96, 2060–2080. https://doi.org/10.1109/JPROC.2008.2006141
Stevens, M. N., Coloe, B., & Atkins, E. M. (2015). Platform-independent geofencing for low altitude UAS operations. In 15th AIAA Aviation Technology, Integration, and Operations Conference, 3329. https://doi.org/10.2514/6.2015-3329
Stevens, M., & Atkins, E. (2020). Geofence definition and deconfliction for UAS traffic management. IEEE Transactions on Intelligent Transportation Systems, 22(9), 5880–5889.
Taylor, M., Saldanli, A., & Park, A. (2020). Design of a vertiport design tool. In 2020 Integrated Communications Navigation and Surveillance Conference (ICNS). 2A2-1. https://doi.org/10.1109/ICNS50378.2020.9222989
Thu, Z. W., Kim, D., Lee, J., Won, W. J., Lee, H. J., Ywet, N. L., Maw, A. A., & Lee, J. W. (2022). Multivehicle point-to-point network problem formulation for UAM operation management used with dynamic scheduling. Applied Sciences, 12(22), 11858. https://doi.org/10.3390/app122211858
Tomaszewska, J., Krzysiak, P., Zieja, M., & Woch, M. (2018). Statistical analysis of ground-related incidents at airports. Journal of KONES, 25, 467–472. https://doi.org/10.5604/01.3001.0012.4369
Toratani, D., Hirabayashi, H., Senoguchi, A., & Otsuyama, T. (2023). Study on urban air mobility corridor design in the vicinity of airports. In 2023 IEEE/AIAA 42nd Digital Avionics Systems Conference (DASC). 1–7. https://doi.org/10.1109/DASC58513.2023.10311283
Tuncal, A., & Uslu, S. (2021). Kentsel hava hareketliliği kavramının gelişiminde iki önemli faktör: ATM ve toplum. Karamanoğlu Mehmetbey Üniversitesi Sosyal ve Ekonomik Araştırmalar Dergisi, 23(41), 564–577.
Unverricht, J., Buck, B. K., Petty, B., Chancey, E. T., Politowicz, M. S., & Glaab, L. J. (2024). Vertiport management from simulation to flight: Continued human factors assessment of vertiport operations. In AIAA SCITECH 2024 Forum. 0526. https://doi.org/10.2514/6.2024-0526
Vascik, P. D., & Hansman, R. J. (2019). Development of vertiport capacity envelopes and analysis of their sensitivity to topological and operational factors. In AIAA Scitech 2019 Forum. 0526. https://doi.org/10.2514/6.2019-0526
Vascik, P. D., & Hansman, R. J. (2020). Allocation of airspace cutouts to enable procedurally separated small aircraft operations in terminal areas. In AIAA AVIATION 2020 FORUM. 2905.
Vitale, C. (2023). Eve and Kookiejar set to advance vertiport operations in Dubai. Retrieved from https://www.airport-technology.com/news/eve-and-kookiejar-set-to-advance-vertiport-operations-in-dubai/?cf-view
Volocopter. (2022). Newsroom. Retrieved from https://www.volocopter.com/en/newsroom/italys-first-vertiport-deployed-at-fiumicino-airport
Wang, K., Jacquillat, A., & Vaze, V. (2022). Vertiport planning for urban aerial mobility: An adaptive discretization approach. Manufacturing & Service Operations Management, 24, 3215–3235. https://doi.org/10.1287/msom.2022.1148
Wang, X., Sang, Y., & Zhou, G. (2020). Combining stable inversion and H∞ synthesis for trajectory tracking and disturbance rejection control of civil aircraft auto landing. Applied Sciences, 10(4), 1224.
Willey, L., & Salmon, J. (2021). A method for urban air mobility network design using hub location and subgraph isomorphism. Transportation Research Part C: Emerging Technologies, 125, 102997. https://doi.org/10.1016/j.trc.2021.102997
Wipf, H. (2020). Safety versus security in aviation. In The Coupling of Safety and Security: Exploring Interrelations in Theory and Practice. 29–41.
Wu, Z., & Zhang, Y. (2021). Integrated network design and demand forecast for on-demand urban air mobility. Engineering, 7(4), 473–487. https://doi.org/10.1016/j.eng.2020.11.007
Xie, Y., Shortle, J., & Donohue, G. (2004). Airport terminal-approach safety and capacity analysis using an agent-based model. In Proceedings of the 2004 Winter Simulation Conference, 2004. 2, 1349–1357.
Yang, X., & Wei, P. (2021). Autonomous free flight operations in urban air mobility with computational guidance and collision avoidance. IEEE Transactions on Intelligent Transportation Systems, 22, 5962–5975. https://doi.org/10.1109/TITS.2020.3048360
Yang, X., Deng, L., Liu, J., Wei, P., & Li, H. (2020). Multi-agent autonomous operations in urban air mobility with communication constraints. In AIAA Scitech 2020 Forum (p. 1839). https://doi.org/10.2514/6.2020-1839
Ye, S., Wan, Z., Zeng, L., Li, C., & Zhang, Y. (2020). A vision-based navigation method for eVTOL final approach in urban air mobility (UAM). In 2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI). 645–649. https://doi.org/10.1109/CVCI51460.2020.9338487
Yedavalli, P. (2021). Designing and simulating urban air mobility vertiport networks under land use constraints (No. TRBAM-21-00693). Retrieved from https://trid.trb.org/view/1759451
Yedavalli, P., & Cohen, A. (2022). Planning land use constrained networks of urban air mobility infrastructure in the San Francisco Bay Area. Transportation Research Record, 2676, 106–116. https://doi.org/10.1177/03611981221076839
Yılmaz, A., & Ulvi, H. (2022). Kentsel hava sahasında insansız hava aracı sistemleri trafik yönetimi için verilmesi gereken hizmetler ve kullanılabilecek bazı teknolojiler. Türkiye İnsansız Hava Araçları Dergisi, 4(1), 8–18.
Zanin, M., & Lillo, F. (2013). Modelling the air transport with complex networks: A short review. The European Physical Journal Special Topics, 215, 5–21. https://doi.org/10.1140/epjst/e2013-01711-9
Zelinski, S. (2020). Operational analysis of vertiport surface topology. In 2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC). 1–10. https://doi.org/10.1109/DASC50938.2020.9256794
Zhang, H., Fei, Y., Li, J., Li, B., & Liu, H. (2022). Method of vertiport capacity assessment based on queuing theory of unmanned aerial vehicles. Sustainability, 15(1), 709.
Zhang, X. (2019). Operation and cohesion strategy of hub airport ground based on the background of multi-terminal areas. In IOP Conference Series: Earth and Environmental Science. 330 (2), 022128. IOP Publishing. https://doi.org/10.1088/1755-1315/330/2/022128
Zhu, G., & Wei, P. (2016). Low-altitude UAS traffic coordination with dynamic geofencing. In 16th AIAA Aviation Technology, Integration, and Operations Conference.
Tuncal, A. (2024). Operational Challenges and Prioritization of Potential Solutions for Integrating Vertiports into Airports. Türkiye İnsansız Hava Araçları Dergisi, 6(2), 42-55. https://doi.org/10.51534/tiha.1506936
AMA
Tuncal A. Operational Challenges and Prioritization of Potential Solutions for Integrating Vertiports into Airports. tiha. Aralık 2024;6(2):42-55. doi:10.51534/tiha.1506936
Chicago
Tuncal, Arif. “Operational Challenges and Prioritization of Potential Solutions for Integrating Vertiports into Airports”. Türkiye İnsansız Hava Araçları Dergisi 6, sy. 2 (Aralık 2024): 42-55. https://doi.org/10.51534/tiha.1506936.
EndNote
Tuncal A (01 Aralık 2024) Operational Challenges and Prioritization of Potential Solutions for Integrating Vertiports into Airports. Türkiye İnsansız Hava Araçları Dergisi 6 2 42–55.
IEEE
A. Tuncal, “Operational Challenges and Prioritization of Potential Solutions for Integrating Vertiports into Airports”, tiha, c. 6, sy. 2, ss. 42–55, 2024, doi: 10.51534/tiha.1506936.
ISNAD
Tuncal, Arif. “Operational Challenges and Prioritization of Potential Solutions for Integrating Vertiports into Airports”. Türkiye İnsansız Hava Araçları Dergisi 6/2 (Aralık 2024), 42-55. https://doi.org/10.51534/tiha.1506936.
JAMA
Tuncal A. Operational Challenges and Prioritization of Potential Solutions for Integrating Vertiports into Airports. tiha. 2024;6:42–55.
MLA
Tuncal, Arif. “Operational Challenges and Prioritization of Potential Solutions for Integrating Vertiports into Airports”. Türkiye İnsansız Hava Araçları Dergisi, c. 6, sy. 2, 2024, ss. 42-55, doi:10.51534/tiha.1506936.
Vancouver
Tuncal A. Operational Challenges and Prioritization of Potential Solutions for Integrating Vertiports into Airports. tiha. 2024;6(2):42-55.