Araştırma Makalesi
BibTex RIS Kaynak Göster

İnsansız Hava Araçlarının Kullanımına İlişkin Bibliyometrik Analiz: Rusya ve Türkiye'nin Karşılaştırmalı Araştırması

Yıl 2025, Cilt: 7 Sayı: 1, 1 - 15, 30.06.2025
https://doi.org/10.51534/tiha.1660404

Öz

Son yıllarda bilgi ve iletişim teknolojilerindeki hızlı teknolojik gelişmeler, İHA'ların stratejik değerini artırmıştır. Bu çalışmada, Türkiye ve Rusya'da İHA teknolojisi açısından gelişim süreçleri ve bunların sivil ve savunma sektörlerine entegrasyonu karşılaştırmalı olarak analiz edilmiştir. İki ülke coğrafi, endüstriyel ve stratejik ortamlar açısından alternatif stratejiler izlemiş ve İHA teknolojisine büyük yatırımlar yapmıştır. Bu çalışma, her iki ülkede İHA çalışmaları ve uygulamaları açısından tematik eğilimleri, teknolojik alanları ve stratejik öncelikleri belirleyerek bilimsel çalışmalara katkıda bulunmayı amaçlamaktadır. Bibliyometrik analiz tekniği kullanılarak, 2005-2025 yılları arasında Scopus veri tabanından elde edilen bilgiler açısından yıllık yayınlar, anahtar kelime analizi ve işbirliği ağlarındaki eğilimler analiz edilmiştir. Analize göre, Rusya'nın İHA teknolojisinin askeri kullanımına odaklandığı ve sürü kontrol sistemleri, enerji verimliliği ve güvenli iletişim açısından önemli iyileştirmeler geliştirdiği görülmektedir. Türkiye ise savunma sektörünün yanı sıra tarım, afet yönetimi ve altyapı izleme gibi sivil uygulamalarda yerli üretimi desteklemekte ve yapay zeka tabanlı optimizasyonlarla 5G entegrasyonuna odaklanmaktadır. Bu çalışmada, Türkiye ve Rusya'nın İHA teknolojisine ilişkin bireysel yaklaşımları ve uluslararası savunma ve sürdürülebilir kalkınma açısından değeri vurgulanmış olup, İHA teknolojisinin hem bilimsel hem de uygulanabilir çalışmalar açısından yaygın bir potansiyele sahip olduğu belirlenmiştir.

Kaynakça

  • Abdulrahman Al-Mashhadani, M. (2019). Random vibrations in unmanned aerial vehicles, mathematical analysis and control methodology based on expectation and probability. Journal of Low Frequency Noise, Vibration and Active Control, 38(1), 143-153.
  • Ahmed, F., Mohanta, J., Keshari, A., & Yadav, P. S. (2022). Recent advances in unmanned aerial vehicles: a review. Arabian Journal for Science and Engineering, 47(7), 7963-7984.
  • Anton, S. R., & Inman, D. J. (2008). Vibration energy harvesting for unmanned aerial vehicles. Paper presented at the Active and passive smart structures and integrated systems 2008.
  • Arockiadoss, A. S., Novah, R. N., Sajal, K., Pratap, S. S., Premachandra, C., & Schilberg, D. (2024). Optimization of Monocoque Drone Frame Using Generative Design. Paper presented at the 2024 International Conference on Image Processing and Robotics (ICIPRoB).
  • Bashi, O. I. D., Hasan, W., Azis, N., Shafie, S., & Wagatsuma, H. (2017). Unmanned aerial vehicle quadcopter: A review. Journal of Computational and Theoretical Nanoscience, 14(12), 5663-5675.
  • Bektash, O., & la Cour-Harbo, A. (2020). Vibration analysis for anomaly detection in unmanned aircraft. Paper presented at the Annual Conference of the Prognostics and Health Management Society 2020.
  • Bolognini, M., Izzo, G., Marchisotti, D., Fagiano, L., Limongelli, M. P., & Zappa, E. (2022). Vision-based modal analysis of built environment structures with multiple drones. Automation in Construction, 143, 104550.
  • Butt, F., & Omenzetter, P. (2012). Evaluation of Seismic Response Trends from Long‐Term Monitoring of Two Instrumented RC Buildings Including Soil‐Structure Interaction. Advances in Civil engineering, 2012(1), 595238.
  • Cai, Y., Lam, E., Howlett, T., & Cai, A. (2020). Spatiotemporal analysis of “jello effect” in drone videos. Paper presented at the Advances in Human Factors in Robots and Unmanned Systems: Proceedings of the AHFE 2019 International Conference on Human Factors in Robots and Unmanned Systems, July 24-28, 2019, Washington DC, USA 10.
  • Chen, K., Meng, W., Wang, J., Liu, K., & Lu, Z. (2023). An investigation on the structural vibrations of multi-rotor passenger drones. International Journal of Micro Air Vehicles, 15, 17568293231199097.
  • Craig Jr, R. R., & Kurdila, A. J. (2006). Fundamentals of structural dynamics: John Wiley & Sons.
  • Cruz, C., & Miranda, E. (2017). Evaluation of damping ratios for the seismic analysis of tall buildings. Journal of structural engineering, 143(1), 04016144.
  • Eid, S. E., & Dol, S. S. (2019). Design and development of lightweight-high endurance unmanned aerial vehicle for offshore search and rescue operation. Paper presented at the 2019 Advances in Science and Engineering Technology International Conferences (ASET).
  • Foti, D., Ivorra, S., & Sabbà, M. F. (2012). Dynamic investigation of an ancient masonry bell tower with operational modal analysis: A non-destructive experimental technique to obtain the dynamic characteristics of a structure.
  • Fu, H., Liu, P., Zhang, Q., & Wang, Y. (2010). Vibration modal analysis of the active magnetic bearing system based on finite element. Paper presented at the 2010 IEEE International Conference on Mechatronics and Automation.
  • Ge, C., Dunno, K., Singh, M. A., Yuan, L., & Lu, L.-X. (2021). Development of a drone’s vibration, shock, and atmospheric profiles. Applied Sciences, 11(11), 5176.
  • Hafizi, Z., Aizzuddin, A., Halim, N., & Jamaludin, M. (2017). Modal properties investigation of car body-in-white with attached windscreen and rear screen. Paper presented at the IOP Conference Series: Materials Science and Engineering.
  • Hassanalian, M., & Abdelkefi, A. (2017). Classifications, applications, and design challenges of drones: A review. Progress in Aerospace sciences, 91, 99-131.
  • Hii, M. S. Y., Courtney, P., & Royall, P. G. (2019). An evaluation of the delivery of medicines using drones. Drones, 3(3), 52.
  • Inman, D. J. (2017). Vibration with control: John Wiley & Sons.
  • Kim, I.-H., Jung, H.-J., Yoon, S., & Park, J. W. (2023). Dynamic Response Measurement and Cable Tension Estimation Using an Unmanned Aerial Vehicle. Remote Sensing, 15(16), 4000.
  • Kruithof, K. H., & Egeland, M. (2021). State estimator using hybrid kalman and particle filter for indoor uav navigation. University of Agder.
  • Legovich, Y., Maximov, Y., & Maximov, D. (2020). Quadrocopter vibration damping. Paper presented at the 2020 13th International Conference" Management of large-scale system development"(MLSD).
  • Meirovitch, L. (1980). Computational methods in structural dynamics (Vol. 5): Springer Science & Business Media.
  • Mohsan, S. A. H., Khan, M. A., Noor, F., Ullah, I., & Alsharif, M. H. (2022). Towards the unmanned aerial vehicles (UAVs): A comprehensive review. Drones, 6(6), 147.
  • Morales, R. M., Turner, M. C., Court, P., Hilditch, R., & Postlethwaite, I. (2014). Force control of semi‐active valve lag dampers for vibration reduction in helicopters. IET Control Theory & Applications, 8(6), 409-419.
  • Oakey, A., Waters, T., Zhu, W., Royall, P. G., Cherrett, T., Courtney, P., . . . Jelev, N. (2021). Quantifying the effects of vibration on medicines in transit caused by fixed-wing and multi-copter drones. Drones, 5(1), 22.
  • Ortiz Cayón, R. J. (2012). Online video stabilization for UAV. Motion estimation and compensation for unnamed aerial vehicles.
  • Perez, M., Billon, K., Gerges, T., Capsal, J.-F., Cabrera, M., Chesné, S., & Jean-Mistral, C. (2022). Vibration energy harvesting on a drone quadcopter based on piezoelectric structures. Mechanics & Industry, 23, 20.
  • Radkowski, S., & Szulim, P. (2014). Analysis of vibration of rotors in unmanned aircraft. Paper presented at the 2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR).
  • Rahman, S., & Robertson, D. A. (2019). In‐flight RCS measurements of drones and birds at K‐band and W‐band. IET Radar, Sonar & Navigation, 13(2), 300-309.
  • Rasid, S. M. R., Mizuno, T., Ishino, Y., Takasaki, M., Hara, M., & Yamaguchi, D. (2019). Design and control of active vibration isolation system with an active dynamic vibration absorber operating as accelerometer. Journal of Sound and Vibration, 438, 175-190.
  • Redde, G., Kulkarni, P., Patil, P., Khedkar, D., & Chopade, J. (2018). Vibration analysis on frame and propeller of drone. International Journal of Advance Research in Science and Engineering, 7(5), 1-10.
  • Ren, Y., Zhu, F., Sui, S., Yi, Z., & Chen, K. (2024). Enhancing Quadrotor Control Robustness with Multi-Proportional–Integral–Derivative Self-Attention-Guided Deep Reinforcement Learning. Drones, 8(7), 315.
  • Shin, Y.-H., Kim, D., Son, S., Ham, J.-W., & Oh, K.-Y. (2021). Vibration isolation of a surveillance system equipped in a drone with mode decoupling. Applied Sciences, 11(4), 1961.
  • Sundararaj, S., Dharsan, K., Ganeshraman, J., & Rajarajeswari, D. (2021). Structural and modal analysis of hybrid low altitude self-sustainable surveillance drone technology frame. Materials Today: Proceedings, 37, 409-418.
  • Susilo, A. W., Achmad, W., Sri, N., & David, S. (2013). The effect of geometric structure on stiffness and damping factor of wood applicable to machine tool structure. International Journal of Science and Engineering, 4(2), 57-60.
  • Verma, & Collette. (2021). Active vibration isolation system for drone cameras. Paper presented at the Proceedings of the 14th International Conference on Vibration Problems: ICOVP 2019.
  • Verma, Lafarga, V., Baron, M., & Collette, C. (2020). Active stabilization of unmanned aerial vehicle imaging platform. Journal of Vibration and Control, 26(19-20), 1791-1803.
  • Verma, Pradhan, N. K., Nehra, R., & Prateek. (2018). Challenge and advantage of materials in design and fabrication of composite UAV. Paper presented at the IOP Conference Series: Materials Science and Engineering.
  • Verma, M., & Collette, C. (2021). Active Vibration Isolation System for Drone Cameras. En: Proceedings of the 14th International Conference on Vibration Problems. Lecture in Mechanical Engineering: Springer, Singapore.
  • Vreugdenhil, C. B. (1964). Natural frequencies of free vertical ship vibrations. International Shipbuilding Progress, 11(122), 458-480.
  • Wang, Lu, Q., Zhang, K., & Shao, L. (2023). Design of micro-vibration suppression platform based on piezo-stack array intelligent structure. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 237(4), 799-810.
  • Wang, X., Fan, W., Li, X., & Wang, L. (2019). Weak degradation characteristics analysis of UAV motors based on laplacian eigenmaps and variational mode decomposition. Sensors, 19(3), 524.
  • Yin, Q., Zhao, J., Liu, Y., & Zhang, Y. (2021). The approximate calculation of the natural frequencies of a Stockbridge type vibration damper and analysis of natural frequencies' sensitivity to the structural parameters. Mechanical Sciences, 12(2), 863-873.
  • You, C., & Zhang, R. (2019). 3D trajectory optimization in Rician fading for UAV-enabled data harvesting. IEEE Transactions on Wireless Communications, 18(6), 3192-3207.
  • Zhou, Y., Chang, S.-H., Wu, S., Cai, X. Y., Tang, L., & Xu, Z. (2018). FFT-ApEn analysis for the vibration signal of a rotating motor. International Journal of Acoustics & Vibration, 23(2), 203-207.

A Bibliometric Analysis on The Use of Unmanned Aerial Vehicles: A Comparative Study of Russia and Türkiye

Yıl 2025, Cilt: 7 Sayı: 1, 1 - 15, 30.06.2025
https://doi.org/10.51534/tiha.1660404

Öz

In recent years, rapid technological developments in information and communication technologies have increased the strategic value of UAVs. In this study, the development processes in terms of UAV technology in Turkey and Russia and their integration into the civil and defense sectors are analyzed comparatively. The two countries have pursued alternative strategies in terms of geographical, industrial, and strategic environments and have invested heavily in UAV technology. This study aims to contribute to scientific studies by determining thematic trends, technological areas, and strategic priorities in terms of UAV studies and applications in both countries. Using bibliometric analysis techniques, annual publications, keyword analysis, and trends in cooperation networks were analyzed in terms of information obtained from the Scopus database between 2005-2025. According to the analysis, Russia focuses on military use of UAV technology and has developed significant improvements in terms of swarm control systems, energy efficiency, and secure communication. Turkey, on the other hand, supports domestic production in the defense sector as well as in civilian applications such as agriculture, disaster management, and infrastructure monitoring, and focuses on 5G integration with artificial intelligence-based optimizations. In this study, individual approaches of Türkiye and Russia in terms of UAV technology and their value in terms of international defense and sustainable development were emphasized and it was determined that UAV technology has a widespread potential in terms of both scientific and applicable studies.

Kaynakça

  • Abdulrahman Al-Mashhadani, M. (2019). Random vibrations in unmanned aerial vehicles, mathematical analysis and control methodology based on expectation and probability. Journal of Low Frequency Noise, Vibration and Active Control, 38(1), 143-153.
  • Ahmed, F., Mohanta, J., Keshari, A., & Yadav, P. S. (2022). Recent advances in unmanned aerial vehicles: a review. Arabian Journal for Science and Engineering, 47(7), 7963-7984.
  • Anton, S. R., & Inman, D. J. (2008). Vibration energy harvesting for unmanned aerial vehicles. Paper presented at the Active and passive smart structures and integrated systems 2008.
  • Arockiadoss, A. S., Novah, R. N., Sajal, K., Pratap, S. S., Premachandra, C., & Schilberg, D. (2024). Optimization of Monocoque Drone Frame Using Generative Design. Paper presented at the 2024 International Conference on Image Processing and Robotics (ICIPRoB).
  • Bashi, O. I. D., Hasan, W., Azis, N., Shafie, S., & Wagatsuma, H. (2017). Unmanned aerial vehicle quadcopter: A review. Journal of Computational and Theoretical Nanoscience, 14(12), 5663-5675.
  • Bektash, O., & la Cour-Harbo, A. (2020). Vibration analysis for anomaly detection in unmanned aircraft. Paper presented at the Annual Conference of the Prognostics and Health Management Society 2020.
  • Bolognini, M., Izzo, G., Marchisotti, D., Fagiano, L., Limongelli, M. P., & Zappa, E. (2022). Vision-based modal analysis of built environment structures with multiple drones. Automation in Construction, 143, 104550.
  • Butt, F., & Omenzetter, P. (2012). Evaluation of Seismic Response Trends from Long‐Term Monitoring of Two Instrumented RC Buildings Including Soil‐Structure Interaction. Advances in Civil engineering, 2012(1), 595238.
  • Cai, Y., Lam, E., Howlett, T., & Cai, A. (2020). Spatiotemporal analysis of “jello effect” in drone videos. Paper presented at the Advances in Human Factors in Robots and Unmanned Systems: Proceedings of the AHFE 2019 International Conference on Human Factors in Robots and Unmanned Systems, July 24-28, 2019, Washington DC, USA 10.
  • Chen, K., Meng, W., Wang, J., Liu, K., & Lu, Z. (2023). An investigation on the structural vibrations of multi-rotor passenger drones. International Journal of Micro Air Vehicles, 15, 17568293231199097.
  • Craig Jr, R. R., & Kurdila, A. J. (2006). Fundamentals of structural dynamics: John Wiley & Sons.
  • Cruz, C., & Miranda, E. (2017). Evaluation of damping ratios for the seismic analysis of tall buildings. Journal of structural engineering, 143(1), 04016144.
  • Eid, S. E., & Dol, S. S. (2019). Design and development of lightweight-high endurance unmanned aerial vehicle for offshore search and rescue operation. Paper presented at the 2019 Advances in Science and Engineering Technology International Conferences (ASET).
  • Foti, D., Ivorra, S., & Sabbà, M. F. (2012). Dynamic investigation of an ancient masonry bell tower with operational modal analysis: A non-destructive experimental technique to obtain the dynamic characteristics of a structure.
  • Fu, H., Liu, P., Zhang, Q., & Wang, Y. (2010). Vibration modal analysis of the active magnetic bearing system based on finite element. Paper presented at the 2010 IEEE International Conference on Mechatronics and Automation.
  • Ge, C., Dunno, K., Singh, M. A., Yuan, L., & Lu, L.-X. (2021). Development of a drone’s vibration, shock, and atmospheric profiles. Applied Sciences, 11(11), 5176.
  • Hafizi, Z., Aizzuddin, A., Halim, N., & Jamaludin, M. (2017). Modal properties investigation of car body-in-white with attached windscreen and rear screen. Paper presented at the IOP Conference Series: Materials Science and Engineering.
  • Hassanalian, M., & Abdelkefi, A. (2017). Classifications, applications, and design challenges of drones: A review. Progress in Aerospace sciences, 91, 99-131.
  • Hii, M. S. Y., Courtney, P., & Royall, P. G. (2019). An evaluation of the delivery of medicines using drones. Drones, 3(3), 52.
  • Inman, D. J. (2017). Vibration with control: John Wiley & Sons.
  • Kim, I.-H., Jung, H.-J., Yoon, S., & Park, J. W. (2023). Dynamic Response Measurement and Cable Tension Estimation Using an Unmanned Aerial Vehicle. Remote Sensing, 15(16), 4000.
  • Kruithof, K. H., & Egeland, M. (2021). State estimator using hybrid kalman and particle filter for indoor uav navigation. University of Agder.
  • Legovich, Y., Maximov, Y., & Maximov, D. (2020). Quadrocopter vibration damping. Paper presented at the 2020 13th International Conference" Management of large-scale system development"(MLSD).
  • Meirovitch, L. (1980). Computational methods in structural dynamics (Vol. 5): Springer Science & Business Media.
  • Mohsan, S. A. H., Khan, M. A., Noor, F., Ullah, I., & Alsharif, M. H. (2022). Towards the unmanned aerial vehicles (UAVs): A comprehensive review. Drones, 6(6), 147.
  • Morales, R. M., Turner, M. C., Court, P., Hilditch, R., & Postlethwaite, I. (2014). Force control of semi‐active valve lag dampers for vibration reduction in helicopters. IET Control Theory & Applications, 8(6), 409-419.
  • Oakey, A., Waters, T., Zhu, W., Royall, P. G., Cherrett, T., Courtney, P., . . . Jelev, N. (2021). Quantifying the effects of vibration on medicines in transit caused by fixed-wing and multi-copter drones. Drones, 5(1), 22.
  • Ortiz Cayón, R. J. (2012). Online video stabilization for UAV. Motion estimation and compensation for unnamed aerial vehicles.
  • Perez, M., Billon, K., Gerges, T., Capsal, J.-F., Cabrera, M., Chesné, S., & Jean-Mistral, C. (2022). Vibration energy harvesting on a drone quadcopter based on piezoelectric structures. Mechanics & Industry, 23, 20.
  • Radkowski, S., & Szulim, P. (2014). Analysis of vibration of rotors in unmanned aircraft. Paper presented at the 2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR).
  • Rahman, S., & Robertson, D. A. (2019). In‐flight RCS measurements of drones and birds at K‐band and W‐band. IET Radar, Sonar & Navigation, 13(2), 300-309.
  • Rasid, S. M. R., Mizuno, T., Ishino, Y., Takasaki, M., Hara, M., & Yamaguchi, D. (2019). Design and control of active vibration isolation system with an active dynamic vibration absorber operating as accelerometer. Journal of Sound and Vibration, 438, 175-190.
  • Redde, G., Kulkarni, P., Patil, P., Khedkar, D., & Chopade, J. (2018). Vibration analysis on frame and propeller of drone. International Journal of Advance Research in Science and Engineering, 7(5), 1-10.
  • Ren, Y., Zhu, F., Sui, S., Yi, Z., & Chen, K. (2024). Enhancing Quadrotor Control Robustness with Multi-Proportional–Integral–Derivative Self-Attention-Guided Deep Reinforcement Learning. Drones, 8(7), 315.
  • Shin, Y.-H., Kim, D., Son, S., Ham, J.-W., & Oh, K.-Y. (2021). Vibration isolation of a surveillance system equipped in a drone with mode decoupling. Applied Sciences, 11(4), 1961.
  • Sundararaj, S., Dharsan, K., Ganeshraman, J., & Rajarajeswari, D. (2021). Structural and modal analysis of hybrid low altitude self-sustainable surveillance drone technology frame. Materials Today: Proceedings, 37, 409-418.
  • Susilo, A. W., Achmad, W., Sri, N., & David, S. (2013). The effect of geometric structure on stiffness and damping factor of wood applicable to machine tool structure. International Journal of Science and Engineering, 4(2), 57-60.
  • Verma, & Collette. (2021). Active vibration isolation system for drone cameras. Paper presented at the Proceedings of the 14th International Conference on Vibration Problems: ICOVP 2019.
  • Verma, Lafarga, V., Baron, M., & Collette, C. (2020). Active stabilization of unmanned aerial vehicle imaging platform. Journal of Vibration and Control, 26(19-20), 1791-1803.
  • Verma, Pradhan, N. K., Nehra, R., & Prateek. (2018). Challenge and advantage of materials in design and fabrication of composite UAV. Paper presented at the IOP Conference Series: Materials Science and Engineering.
  • Verma, M., & Collette, C. (2021). Active Vibration Isolation System for Drone Cameras. En: Proceedings of the 14th International Conference on Vibration Problems. Lecture in Mechanical Engineering: Springer, Singapore.
  • Vreugdenhil, C. B. (1964). Natural frequencies of free vertical ship vibrations. International Shipbuilding Progress, 11(122), 458-480.
  • Wang, Lu, Q., Zhang, K., & Shao, L. (2023). Design of micro-vibration suppression platform based on piezo-stack array intelligent structure. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 237(4), 799-810.
  • Wang, X., Fan, W., Li, X., & Wang, L. (2019). Weak degradation characteristics analysis of UAV motors based on laplacian eigenmaps and variational mode decomposition. Sensors, 19(3), 524.
  • Yin, Q., Zhao, J., Liu, Y., & Zhang, Y. (2021). The approximate calculation of the natural frequencies of a Stockbridge type vibration damper and analysis of natural frequencies' sensitivity to the structural parameters. Mechanical Sciences, 12(2), 863-873.
  • You, C., & Zhang, R. (2019). 3D trajectory optimization in Rician fading for UAV-enabled data harvesting. IEEE Transactions on Wireless Communications, 18(6), 3192-3207.
  • Zhou, Y., Chang, S.-H., Wu, S., Cai, X. Y., Tang, L., & Xu, Z. (2018). FFT-ApEn analysis for the vibration signal of a rotating motor. International Journal of Acoustics & Vibration, 23(2), 203-207.
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Savunma Çalışmaları, Bölgesel Çalışmalar
Bölüm Araştırma Makaleleri [tr] Research Articles [en]
Yazarlar

Beyza Güdek 0000-0002-7432-9234

Sharabiddin Ahmayev 0009-0000-7620-5297

Serhat Peker 0000-0002-6876-3982

Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 18 Mart 2025
Kabul Tarihi 28 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 7 Sayı: 1

Kaynak Göster

APA Güdek, B., Ahmayev, S., & Peker, S. (2025). A Bibliometric Analysis on The Use of Unmanned Aerial Vehicles: A Comparative Study of Russia and Türkiye. Türkiye İnsansız Hava Araçları Dergisi, 7(1), 1-15. https://doi.org/10.51534/tiha.1660404
AMA Güdek B, Ahmayev S, Peker S. A Bibliometric Analysis on The Use of Unmanned Aerial Vehicles: A Comparative Study of Russia and Türkiye. tiha. Haziran 2025;7(1):1-15. doi:10.51534/tiha.1660404
Chicago Güdek, Beyza, Sharabiddin Ahmayev, ve Serhat Peker. “A Bibliometric Analysis on The Use of Unmanned Aerial Vehicles: A Comparative Study of Russia and Türkiye”. Türkiye İnsansız Hava Araçları Dergisi 7, sy. 1 (Haziran 2025): 1-15. https://doi.org/10.51534/tiha.1660404.
EndNote Güdek B, Ahmayev S, Peker S (01 Haziran 2025) A Bibliometric Analysis on The Use of Unmanned Aerial Vehicles: A Comparative Study of Russia and Türkiye. Türkiye İnsansız Hava Araçları Dergisi 7 1 1–15.
IEEE B. Güdek, S. Ahmayev, ve S. Peker, “A Bibliometric Analysis on The Use of Unmanned Aerial Vehicles: A Comparative Study of Russia and Türkiye”, tiha, c. 7, sy. 1, ss. 1–15, 2025, doi: 10.51534/tiha.1660404.
ISNAD Güdek, Beyza vd. “A Bibliometric Analysis on The Use of Unmanned Aerial Vehicles: A Comparative Study of Russia and Türkiye”. Türkiye İnsansız Hava Araçları Dergisi 7/1 (Haziran2025), 1-15. https://doi.org/10.51534/tiha.1660404.
JAMA Güdek B, Ahmayev S, Peker S. A Bibliometric Analysis on The Use of Unmanned Aerial Vehicles: A Comparative Study of Russia and Türkiye. tiha. 2025;7:1–15.
MLA Güdek, Beyza vd. “A Bibliometric Analysis on The Use of Unmanned Aerial Vehicles: A Comparative Study of Russia and Türkiye”. Türkiye İnsansız Hava Araçları Dergisi, c. 7, sy. 1, 2025, ss. 1-15, doi:10.51534/tiha.1660404.
Vancouver Güdek B, Ahmayev S, Peker S. A Bibliometric Analysis on The Use of Unmanned Aerial Vehicles: A Comparative Study of Russia and Türkiye. tiha. 2025;7(1):1-15.